首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Representative samples of crude oils from Cusiana, Cupiagua, Apiay, Castilla and Chichimene fields in the Eastern Llanos Basin of Colombia were analyzed to determine its compound-specific stable carbon isotope composition (CSIA) using gas chromatography–isotopic ratio–mass spectrometry (GC–IRMS). GC–IRMS analyses of n-alkanes allowed differentiating between Cretaceous and Cretaceous/Tertiary oil samples. Cretaceous sourced samples have δ13C-enriched values than Cretaceous/Tertiary sourced samples; the heavier isotope composition of these samples is due to their major terrigenous organic matter input. Their isotope distribution patterns suggest significant algal and/or bacterial contribution (marine origin). The analysis of the n-alkane fractions by GC–IRMS confirms that the organic matter has marine origin in those samples from Cusiana, Cupiagua and Apiay while Castilla and Chichimene have marine origin with terrestrial inputs. The results were confirmed by gas chromatography/FID and gas chromatography/mass spectrometry (GC/MS). Basic geochemical composition show that samples from Cupiagua/Cusiana fields and Apiay/Castilla/Chichimene fields in the Llanos basin, Colombia present different characteristics reflecting a specific for each depositional environment.  相似文献   

2.
The determination of δ13C values in speleothems is of considerable importance in palaeoenvironmental research, but has focussed solely on analysis of the carbonate. Here we demonstrate a new method for analysing the δ13C values of organic matter (OM) trapped in speleothems, utilising flow injection liquid chromatography–isotope ratio mass spectrometry (LC–IRMS). Developmental analysis using a homogenised speleothem powder showed that the method is robust, with repeated digests and analyses having an average standard deviation of 0.1‰. Dilution tests with samples of 4–23 μg total organic carbon (TOC) show relatively small linearity effects, with the overall standard deviation across a peak response range of 1700–9000 mV being 0.2‰.  相似文献   

3.
Methane (CH4) in terrestrial environments, whether microbial, thermogenic, or abiogenic, exhibits a large variance in C and H stable isotope ratios due to primary processes of formation. Isotopic variability can be broadened through secondary, post-genetic processes, such as mixing and isotopic fractionation by oxidation. The highest and lowest 13C and 2H (or D, deuterium) concentrations in CH4 found in various geologic environments to date, are defined as “natural” terrestrial extremes. We have discovered a new extreme in a natural gas seep with values of deuterium concentrations, δDCH4, up to + 124‰ that far exceed those reported for any terrestrial gas. The gas, seeping from the small Homorod mud volcano in Transylvania (Romania), also has extremely high concentrations of nitrogen (> 92 vol.%) and helium (up to 1.4 vol.%). Carbon isotopes in CH4, C2H6 and CO2, and nitrogen isotopes in N2 indicate a primary organic sedimentary origin for the gas (a minor mantle component is suggested by the 3He/4He ratio, R/Ra ~ 0.39). Both thermogenic gas formation modeling and Rayleigh fractionation modeling suggest that the extreme deuterium enrichment could be explained by an oxidation process characterised by a δDCH4 and δ13CCH4 enrichment ratio (ΔH/ΔC) of about 20, and may be accounted for by abiogenic oxidation mediated by metal oxides. All favourable conditions for such a process exist in the Homorod area, where increased heat flow during Pliocene–Quaternary volcanism may have played a key role. Finally we observed rapid variations (within 1 h) in C and H isotope ratios of CH4, and in the H2S concentrations which are likely caused by mixing of the deep oxidized CH4–N2–H2S–He rich gas with a microbial methane generated in the mud pool of one of the seeps.We hypothesize that the unusual features of Homorod gas can be the result of a rare combination of factors induced by the proximity of sedimentary organic matter, mafic, metal-rich volcanic rocks and salt diapirs, leading to the following processes: a) primary thermogenic generation of gas at temperatures between 130 and 175 °C; b) secondary alteration through abiogenic oxidation, likely triggered by the Neogene–Quaternary volcanism of the eastern Transylvanian margin; and c) mixing at the surface with microbial methane that formed through fermentation in the mud volcano water pool. The Homorod gas seep is a rare example that demonstrates how post-genetic processes can produce extreme gas isotope signatures (thus far only theorized), and that extremely positive δDCH4 values cannot be used to unambiguously distinguish between biotic and abiotic origin.  相似文献   

4.
The first data on abnormally high δ13С values in hydrocarbonates (НСО 3-) dissolved in underground waters of coal deposits of Kuzbass (up to +30.9‰) are reported. It is shown that such an unusual isotope composition of waters results from the long, strictly directed interaction in the water–rock–gas–organic material system occurring under the conditions of hindered water exchange. Extensive fractionation of C isotopes is the result of the evolution of the water–rock–gas–coal system after penetration of infiltration waters into the coal deposits and their long interaction with all these components, rather than metamorphism of organic material upon its transformation into coal. With respect to such an approach, the isotope composition of dissolved C may indicate the duration of the evolution in the water–rock–gas–organic material system.  相似文献   

5.
Zhuo  Yuzhou  Huang  Yong  Li  Jinwei  Gao  Wei  Li  Jinxiang 《中国地球化学学报》2019,38(5):670-682

Mercury mines in Guizhou province are the main base of mercury production and the most important resource base in China. The San-Dan mercury belt in Guizhou province contains a series of important mercury deposits. However, the source of metallogenic materials and the properties of metallogenic fluid of these mercury deposits have long been a controversial issue. In this study, we used cathode luminescence techniques to distinguish different stages of dolomite and calcite, laser ablation inductively coupled plasma mass spectrometry to analyze the trace elements, and stable isotope mass spectrometry techniques to analyze C–O isotopes compositions of dolomite and calcite in the Sixiangchang mercury deposit in San-Dan mercury belt. We also measured the sulfur isotope composition of cinnabar. Our study showed that dolomite can be divided into two stages, the lumpy dolomite associated with cinnabar in Dol 1 stage and dolomite vein in Dol 2 stage, which is associated with Cal 2 stage calcite vein. With the progress of mineralization, Al, As, Mo, Sb, and Sr elements were gradually enriched in the ore-forming fluid. The rare earth element (REE) partition curve of Dol 1 stage dolomite showed a trend of light REE enrichment. Cal 2 stage calcite and Dol 2 stage dolomite exhibited a flat-type REE partition curve, and Dol 2 stage dolomite showed a strong negative anomaly for Eu. δ13C of carbonate mineral variation ranges from − 6.89 to − 2.16 ‰, while δ18O variation ranges from 13.80 to 23.09 ‰, and the δ34S variation range of cinnabar is 16.51–24.28 ‰. Carbonate mineral trace elements and C–O isotopes compositions suggested that early ore-forming fluid was reduced, and late ore-forming fluid was oxidized. The ore-forming fluid of the Sixiangchang mercury deposit is a mixture of deep crustal fluid and meteoric water in deep thermal circulation, and involved in the oxidation of organic matter. The cinnabar δ34S results showed that sulfur mainly came from seawater sulfate with the participation of microbial reduction. Sulfur is sedimentary in origin and was derived mainly from the host-rock strata.

  相似文献   

6.
《Applied Geochemistry》2003,18(10):1641-1651
Compound-specific H isotope analysis has been used to monitor bioremediation of petroleum hydrocarbons. However, the success of this approach requires a full evaluation of the isotopic effects resulting from evaporation, because light petroleum hydrocarbons undergo both biodegradation and evaporation under natural conditions. The authors determined the H isotope fractionation of common volatile petroleum hydrocarbons, including the C10–C14 n-alkanes, MTBE (tert-butyl methyl ether), and BTEX (benzene, toluene, ethylbenzene, p-xylene and o-xylene) during progressive vaporization under simulated experimental conditions. A decrease in δD values for n-alkanes of up to 33.3‰ and up to 44.5‰ for BTEX compounds when 99% of these substances had evaporated was observed. The results also show that H isotope fractionation increases with n-alkane chain length. Such fractionation patterns are interpreted in terms of competition between the decreased intermolecular binding energy in D-enriched species, and the isotope effect due to the mass difference. In contrast to hydrocarbons, methanol and ethanol show H isotopic enrichment during vaporization, indicating that H-bonding, when present in organic molecules, plays a controlling role on the vapor pressure of different isotope species.  相似文献   

7.
针对湘中地区邵阳凹陷二叠系龙潭组页岩气资源评价,部署了页岩气调查井2015H-D3井,通过现场解析气等相关样品测试定量分析了页岩含气性特征及其影响因素,并借助气体稳定碳、氢同位素对气体成因进行了初步探讨.结果显示:钻深从150m处开始出现气显,随深度增加,解析气含量呈现先逐渐增大后减小的趋势,300~425m为最高含气层段,累计厚度达125m,现场解析气含量全部大于0.5m^3/t,最高为2.35m^3/t,平均1m^3/t,证实龙潭组具良好页岩气资源潜力.当埋深大于300m时,解析气含量受有机碳含量控制,而埋深小于300m时,解析气含量并不简单受控于有机碳含量,而是受到保存条件的严重制约.气体碳、氢同位素测试显示δ13C1介于-29.87‰~-36.82‰,平均为-34.52‰,δ13C_2介于-29.45‰~-31.02‰,平均为-30.09‰,δD1介于-131.20‰~-178.40‰,平均为-167.40‰.气体成因分析揭示龙潭组页岩气属热成因中的油型气类型.基于沉积现象判断龙潭组为海陆过渡相环境,与氢同位素判断结果基本吻合,但目前还无法确定具体判定区间.  相似文献   

8.
Landfill leachate comprises a complex mixture of contaminants many of which may have multiple sources in the environment confounding conventional techniques for apportioning sources. Compound specific isotope ratio mass spectrometry offers the potential to “fingerprint” compounds enabling discrimination to be made between different sources. This paper presents a rapid and highly reproducible method to prepare landfill leachate samples for compound specific isotope analysis. A suitable solid phase extraction (SPE) method was developed using artificial contaminant solutions, natural waters spiked with artificial contaminants (eucalyptol, dodecane, benzothiazole, dibutyl phthalate and naphthalene), and samples of landfill leachate. The elution of adsorbed compounds from the SPE cartridge was found to be the major cause of hydrogen and carbon isotope fractionation. Three different SPE cartridge types were tested: C18, Strata-X and ENV+. Fractionation of between 1‰ and 245‰ for hydrogen isotopes and 0–1.83‰ for carbon isotopes was observed. Part of the fractionation could be attributed to the different SPE cartridges but the major contribution was from the choice of the eluting solvent. Our results indicated hydroxylated styrene-divinylbenzene cartridges eluted with dichloromethane resulted in negligible hydrogen or carbon isotope fractionation for any of the tested organic compounds.The isotopic fractionation of hydrogen and/or carbon of most artificial contaminants were proportional to the efficiency with which they were extracted from water. Only naphthalene exhibited isotopic fractionation unrelated to its extraction efficiency but this fractionation was negligible.The comparative extraction of landfill leachate using SPE and LLE indicated SPE generally extracts slightly more of each compound from leachate than LLE. This relationship is stronger than for polar compounds. In addition, the δD composition of each compound prepared using SPE was with two standard deviations of the sample compound prepared using LLE, and the δ13C composition of each compound prepare using either method was mostly within two standard deviations.  相似文献   

9.
塔里木盆地东部地区天然气地球化学特征及成因探讨(之二)   总被引:17,自引:2,他引:17  
天然气的组分和碳、氢同位素组成特征研究表明塔里木盆地已发现的天然气均为热解气。通过气源对比可知,该盆地东部地区的天然气主要有两种类型 :1)是来自震旦纪到下古生界海相腐泥型母质的油型气,其甲烷、乙烷、丙烷δ13C值,分别为-44.5‰~-33.8‰、- 42‰~-2 8.1‰和-35.4‰~-2 8.4‰,其甲烷的氢同位素组成大于- 2 0 0‰;2 )是产自中生代陆相腐殖型源岩的煤型气,其甲烷、乙烷、丙烷的δ13C值分别为-40.5‰~-33.1‰、- 2 9.7‰~-2 1.3‰和-2 6.3‰~-2 0.3‰,其甲烷的氢同位素组成小于-2 0 0‰。将天然气的地化特征与地质背景相结合判断可知,在塔北隆起地区一些天然气藏是由成熟 (高成熟 )阶段的油型气与过成熟阶段的油型气混合形成,另一些天然气藏是由成熟阶段的油型气和成熟阶段的煤型气混合形成.  相似文献   

10.
天然气成因机理复杂,鉴于在高-过成熟阶段烷烃气碳同位素系列倒转普遍存在,而高-过成熟阶段有机质中常富含芳环结构,利用芳香烃(甲苯)热裂解实验探讨高-过成熟阶段烷烃气碳同位素系列倒转成因.甲苯热裂解实验表明随着模拟温度的增加,烷烃气产率逐渐增大;模拟产物中H2产率也随着模拟温度的增加而增加.甲苯裂解产物中δ13C1、δ13C2和δ13C3分布区间分别为-31.8‰~-27.7‰,-31.0‰~-20.4‰和-31.0‰~-20.4‰.在甲苯热模拟实验450℃时,出现了烷烃气碳同位素系列的部分倒转(δ13C1>δ13C2 < δ13C3).发现无论是煤成气还是油型气,在高-过成熟阶段都会出现烷烃气碳同位素系列的倒转,结合本次模拟实验结果,认为芳香烃脱甲基作用可能是烷烃气高-过成熟阶段出现碳同位素系列倒转的一个重要原因.   相似文献   

11.
祁连山冻土区天然气水合物分解气碳氢同位素组成特征   总被引:4,自引:0,他引:4  
开展祁连山冻土区天然气水合物气体同位素研究,是解决其气体成因、来源等科学问题的一个重要手段。本研究采集祁连山南麓多年冻土区水合物科学钻探DK2和DK3孔共8个含水合物的岩芯样品,采用真空顶空法收集样品中水合物的分解气,分别用气相色谱(GC)、气相色谱同位素比值质谱(GC-IRMS)测定其气体成分和同位素组成,测试结果表明:祁连山冻土区天然气水合物样品的气体碳氢同位素变化较大,甲烷、乙烷和丙烷的碳同位素(δ13C)变化范围分别为-52.6‰~-48.1‰、-38.6‰~-30.7‰和-34.7‰~-21.2‰,而二氧化碳的碳同位素(δ13C)最低为-27.9‰,最高为16.7‰;甲烷、乙烷和丙烷的氢同位素(δD)变化范围分别为-285‰~-227‰、-276‰~-236‰和-247‰~-198‰。通过对这些碳氢同位素进行综合研究,包括气体分子组成与同位素的关系分析、甲烷的碳氢同位素之间的关系判断等,结果表明研究区天然气水合物的气体主要来源于热解气,而且是在淡水环境中形成的有机成因气。  相似文献   

12.
Carbon isotope fractionation factors associated with the aerobic consumption of methane (C1), ethane (C2), propane (C3), and n-butane (C4) were determined from incubations of marine sediment collected from the Coal Oil Point hydrocarbon seep field, located offshore Santa Barbara, CA. Hydrogen isotope fractionation factors for C1, C2 and C3 were determined concurrently. Fresh sediment samples from two seep areas were each slurried with sea water and treated with C1, C2, C3 or C4, or with mixtures of all four gases. Triplicate samples were incubated aerobically at 15 °C, and the stable isotope composition and headspace levels of C1-C4 were monitored over the course of the experiment. Oxidation was observed for all C1-C4 gases, with an apparent preference for C3 and C4 over C1 and C2 in the mixed-gas treatments. Fractionation factors were calculated using a Rayleigh model by comparing the δ13C and δD of the residual C1-C4 gases to their headspace levels. Carbon isotope fractionation factors (reported in ε or (α-1) × 1000 notation) were consistent between seep areas and were −26.5‰ ± 3.9 for C1, −8.0‰ ± 1.7 for C2, −4.8‰ ± 0.9 for C3 and −2.9‰ ± 0.9 for C4. Fractionation factors determined from mixed gas incubations were similar to those determined from individual gas incubations, though greater variability was observed during C1 consumption. In the case of C1 and C3 consumption, carbon isotope fractionation appears to decrease as substrate becomes limiting. Hydrogen isotope fractionation factors determined from the two seep areas differed for C1 oxidation but were similar for C2 and C3. Hydrogen isotope fractionation factors ranged from −319.9‰ to −156.4‰ for C1 incubations, and averaged −61.9‰ ± 8.3 for C2 incubations and −15.1‰ ± 1.9 for C3 incubations. The fractionation factors presented here may be applied to estimate the extent of C1-C4 oxidation in natural gas samples, and should prove useful in further studying the microbial oxidation of these compounds in the natural environment.  相似文献   

13.
对淮北煤田祁东煤矿6个煤层的24个煤样和12个气样的稳定有机碳同位素分析,分别研究了煤和瓦斯中碳同位素的分布特征和变化趋势,为不同煤层及瓦斯源分析提供理论依据。研究表明:祁东煤矿煤的δ13C为-25.11‰~-22.76‰,6-1煤层至9煤层碳同位素均值呈波动变化,可能受当时成煤时期沉积环境的影响;瓦斯的δ13C1为-63.65‰~-52.51‰,表现出次生生物成因气的变化特征,二氧化碳碳同位素特征(-22.61‰~-17.96‰)表明其均是煤热解而来。   相似文献   

14.
An “on-line” mixing system has been developed and evaluated for continuous oxygen isotope exchange between gas-phase CO2 and liquid water. The system is composed of three basic parts: equipment and materials used to introduce water and gas into a mixing reservoir, the mixing and exchange reservoir, and a vessel used to separate gas and water phases exiting the system. A series of experiments were performed to monitor the isotope exchange process over a range of temperatures (5–40 °C) and CO2 partial pressures (202–15,200 Pa). Isotopic exchange was evaluated using CO2 having δ18O values of 30.4 and 37.8 ‰ and waters of two distinct oxygen isotope compositions (?6.5 to ?5 and 6 to 7.5 ‰). Isotope ratios were determined by isotope ratio mass spectrometry and cavity ring-down spectroscopy. CO2 did not reach oxygen isotope equilibrium under the conditions described here. However, oxygen isotope exchange rate constants were determined at different temperatures and regressed to yield the expression k (h?1) = 0.020 × T (°C) + 0.28. Using this expression, the residence time required to reach oxygen isotope equilibrium may be estimated for a given set of environmental conditions (e.g., δ18O value of water, temperature). System parameters can be modified to achieve a specific δ18O value for CO2. Consequently, the exchange system described here has the ability to deliver a constant flow of CO2 at a desired oxygen isotope composition. This ability is attractive for a variety of applications such as experiments that utilize flow-through reactors and environmental chambers or require static chemical conditions.  相似文献   

15.
胡庆  沈俊  冯庆来 《沉积学报》2012,30(5):806-816
根据碳循环模式,通过无机碳和有机碳碳同位素记录,半定量-定量地计算了贵州新民剖面晚二叠世有机碳埋藏分数forg,同时结合表征古海洋初级生产力的疑源类、藻类与菌孢的丰度值,详细分析了有机碳埋藏分数forg、古海洋生产力与岩石中保存的残余TOC之间的耦合关系。该研究发现新民剖面晚二叠世初级生产力较有机碳埋藏分数forg对残余TOC的贡献更大。但这一结果仍需进一步论证:新民剖面和煤山剖面forg与δ13Ccarb的高度相关性暗示forg主要受控于δ13Ccarb,而在Kump碳循环模型中忽略了晚二叠世火山活动对无机碳同位素组成的重要影响。  相似文献   

16.
The influence of ammonia on the pyrolysis pattern of selected organic substances sorbed on an inorganic phase was investigated. The thermal degradation products were identified by gas chromatography-mass spectrometry. The feasibility of this technique was tested on a meteoritic sample. All substances examined react with ammonia at the pyrolysis temperature of 500°C, the major products being nitriles and heterocyclic compounds in which nitrogen was incorporated. Based on these results, a model for the non-equilibrium production of organic compounds on Jupiter is discussed. The investigation was performed in connection with the Viking lander molecular analysis. The results obtained indicate that the concentrations of ammonia in the retrorocket fuel exhaust would have been probably too small to produce significant changes in the Martian soil organic compounds if any were found.  相似文献   

17.
Methyltrimethyltridecylchromans (MTTCs) have been widely detected in sediments and crude oils from various depositional settings and are established markers for palaeosalinities. A likely origin of these compounds, which show a distinctive isoprenoid substituted aromatic structure, seems to be condensation reactions of phytol with higher plant derived alkyl phenols during early diagenesis. However, a direct biological origin from phytoplanktonic organisms cannot be excluded. To further investigate the potential origin from condensation reactions, an online pyrolysis–gas chromatography–isotope ratio mass spectrometry (PY–GC–irMS) method with the capacity to measure δ13C in fragments (trimethylphenol and pristenes) generated from 5,7,8-trimethyl-MTTC was developed in this study. This straight forward technique poses a great potential for the elucidation of chroman formation in geological samples as it possibly enables the distinction between the different proposed sources of isoprenoid and alkyl-phenol fragments (mainly phytoplankton and higher plants, respectively) based on their stable isotopic compositions. Furthermore, it might be useful for the investigation of products generated from MTTCs during thermal maturation of geological samples.  相似文献   

18.
We present a 3-year study of concentrations and sulfur isotope values (δ34S, Δ33S, and Δ36S) of sulfur compounds in the water column of Fayetteville Green Lake (NY, USA), a stratified (meromictic) euxinic lake with moderately high sulfate concentrations (12-16 mM). We utilize our results along with numerical models (including transport within the lake) to identify and quantify the major biological and abiotic processes contributing to sulfur cycling in the system. The isotope values of sulfide and zero-valent sulfur across the redox-interface (chemocline) change seasonally in response to changes in sulfide oxidation processes. In the fall, sulfide oxidation occurs primarily via abiotic reaction with oxygen, as reflected by an increase in sulfide δ34S at the redox interface. Interestingly, S isotope values for zero-valent sulfur sampled at this time still reflect production and recycling by phototrophic S-oxidation. In the spring, sulfide S isotope values suggest an increased input from phototrophic oxidation, consistent with a more pronounced phototroph population at the chemocline. This trend is associated with smaller fractionations between sulfide and zero-valent sulfur, suggesting a metabolic rate control on fractionation similar to that for sulfate reduction. Comparison of our data with previous studies indicates that the S isotope values of sulfate and sulfide in the deep waters are remarkably stable over long periods of time, with consistently large fractionations of up to 58‰ in δ34S. Models of the δ34S and Δ33S trends in the deep waters (considering mass transport via diffusion and advection along with biological processes) require that these fractionations are a consequence of sulfur compound disproportionation at and below the redox interface in addition to large fractionations during sulfate reduction. The large fractionations during sulfate reduction appear to be a consequence of the high sulfate concentrations and the distribution of organic matter in the water column. The occurrence of disproportionation in the lake is supported by profiles of intermediate sulfur compounds and by lake microbiology, but is not evident from the δ34S trends alone. These results illustrate the utility of including minor S isotopes in sulfur isotope studies to unravel complex sulfur cycling in natural systems.  相似文献   

19.
Highly depleted C isotope composition of organic matters from the Onega (Fennoscandian shield) and Francevillian (Gabon) basins are differently interpreted. Kump et al. (2011) suggested the occurrence of a massive and global oxidation event during the period of 1980–2090 Ma, which follows the Great Oxidation Event (2450–2320 Ma) (Bekker et al., 2004). Inversely, Gauthier-Lafaye and Weber (2003) invoke the possible action of methanotrophic microorganisms to explain the δ13C values as low as –46‰ measured in the Franceville basin. Here we present the isotope data available in the Franceville basin in order to discuss these two interpretations. The lack of any δ13C correlation between organic matter and carbonate in the Franceville basin does not allow the consideration of a massive and global oxidation event.  相似文献   

20.
松辽盆地庆深气田异常氢同位素组成成因研究   总被引:2,自引:0,他引:2  
对松辽盆地徐家围子断陷庆深气田天然气组分、碳氢同位素和稀有气体同位素的分析表明,天然气以烷烃气为主,烷烃气碳同位素组成随着碳数增加呈变轻趋势,且δ13C1&gt;-30‰, R/Ra一般大于1.0,δ13CCO2值介于-16.5‰~-5.1‰之间;氢同位素组成δD1=-205‰~-197‰,平均值为-203‰,δD2=-247‰~-160‰,平均值为-195‰,δD3=-237‰~-126‰,平均值为-163‰,且存在氢同位素组成倒转现象,即δD1&gt;δD2&lt;δD3。根据对庆深气田天然气不同地球化学特征分析,认为该气田烷烃气中重烃主要为有机成因,而 CH4有相当无机成因混入。庆深气田烷烃气氢同位素组成具有 CH4变化小,而重烃(δD2,δD3)变化大的特点。根据与朝阳沟地区天然气烷烃气氢同位素组成对比分析,认为 CH4主要表现为无机成因,而重烃气(δD2,δD3)主要为有机成因,且无机成因CH4氢同位素组成重于有机成因CH4。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号