首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环   总被引:49,自引:2,他引:47  
流域化学侵蚀及其速率与流域生态和环境之间的关系是当前地表地球化学研究的重要前沿领域,其中碳酸盐岩的硫酸风化机制及其与区域碳循环的关系则是科学家们最为关注的科学问题.因此,近年通过研究西南喀斯特流域地表水地球化学对这一科学问题进行了研究,发现西南喀斯特地区河水一般含有较多的SO2-4,从化学计量学、SO2-4的δ34S和溶解无机碳(DIC)的δ13S分析发现,硫循环中形成的硫酸广泛参与了流域碳酸盐矿物的溶解和流域侵蚀:西南喀斯特流域碳酸盐岩的侵蚀速率为97 t/(km2?a),消耗CO2量为25 t/(km2?a).对乌江流域河水硫酸盐离子的硫同位素研究结果认为:参与流域侵蚀的硫酸主要来自煤系地层硫化物和矿床硫化物的氧化及大气酸沉降,分别对河水SO2-4的贡献为50%、27% 20.5%(其余2.5%的SO2-4为硫酸盐蒸发岩的溶解);硫酸风化碳酸盐岩向大气净释放CO2的总通量为8.2 t/(km2?a),依此计算西南喀斯特区域向大气释放CO2的通量为4.4×1012g/a,相当于每年西南碳酸盐岩风化消耗CO2总通量的33%.将乌江流域的研究结果对我国大陆碳酸盐岩分布区域进行相应计算发现,硫酸风化碳酸盐矿物向大气释放的CO2总通量为28×1012g/a,相当于全球硅酸盐风化消耗CO2量的26%.硫酸参与流域侵蚀改变了区域碳循环,人为过程可以通过释放酸沉降、矿业活动和土地利用等形式加速流域侵蚀和影响流域元素的生物地球化学循环.  相似文献   

2.
碳酸盐岩的H2CO3溶蚀产生岩溶碳汇,占整个岩石风化碳汇的 94%。西南岩溶区硫酸型酸雨严重,硫酸型酸雨广泛参与碳酸盐岩的溶蚀。H2SO4参与的碳酸盐岩风化是一个大气CO2净释放过程,具有减汇作用巨大。另一方面,岩溶区石灰土壤和地下水具有较高的pH值及盐基饱和度,对H+有巨大的缓冲作用,大气酸沉降在碳酸盐岩地区可能并不会造成地下水的HCO3-和pH降低;相反,较高浓度的SO42-所产生的盐效应和SO2-4与各种阳离子形成的离子对会增大方解石、白云石溶解度,可增强H2CO3对碳酸盐的溶蚀,这可能会使岩溶作用产生更大的碳汇效应。因此,硫酸型酸雨参与碳酸盐岩风化的减汇效应不仅可能被高估,硫酸型酸雨还可能增强碳酸盐岩的H2CO3溶蚀,具有增加岩溶碳汇效应的作用。应结合石灰土壤对大气酸沉降的缓冲容量和阈值及大气酸沉降的H+与土壤中盐基离子的交换量,并综合考虑盐效应、离子对作用、同离子效应,客观评价硫酸型酸雨流经石灰土壤层后对碳酸盐岩溶蚀吸收大气/土壤CO2的影响   相似文献   

3.
杜文越  王琪  蒲俊兵  于奭 《地球学报》2022,43(4):449-460
于2020年4月对漓江流域主要干/支流进行采样及监测, 结合Gibbs图、离子比值、Galy模型和同位素特征值方法, 分析流域内水化学特征及外源酸对流域岩溶碳汇的影响。结果显示: (1)受碳酸盐岩风化影响所控制, 漓江水体主要水化学类型为HCO3-Ca; [Ca2++Mg2+]/[HCO– 3]的当量比均值为0.87, [Ca2++Mg2+]/ [HCO– 3+SO2– 4+NO– 3]的当量比均值为1.07, 指示碳酸盐岩风化过程受到外源输入的硫酸和硝酸影响; (2)漓江流域最终出口(阳朔断面)的碳汇通量为974.86×103 mol·(km2·a)–1。各支流碳汇量占总出口比例的波动较大, 比例最小为小溶江, 只占总通量1.44%, 而贡献比例最大则为良丰河35.74%, 甘棠江和良丰河贡献比例合计达57.04%。(3)流域内各支流CO2消耗量的占比均值为10.02%, 存在显著的空间变化, 受不同流域的地质分布和流量的影响明显。(4)外源酸风化碳酸盐岩的DIC贡献率介于13%~55%之间, 空间变化上, 大榕江和桃花江的贡献比例较大, 均高于50%, 而外源酸对阳朔断面DIC贡献率低至13%。  相似文献   

4.
珠江流域碳酸盐岩与硅酸盐岩风化对大气CO_2汇的效应   总被引:6,自引:0,他引:6  
对珠江流域11个测站的河水1个水文年4次取样进行水化学和同位素测试分析,揭示无论是碳酸盐岩区还是硅酸盐岩区,岩石风化均使河流的离子成分以HCO3-、Ca2+、Mg2+为主,碳酸盐岩风化溶蚀速率和由碳酸盐岩风化溶蚀引起的大气CO2消耗量分别为27.60 mm/ka和540.21x103mol/(km2·a-1),是硅酸盐岩风化速率和由硅酸盐岩风化引起的大气CO2消耗量的10.8倍和6.7倍,说明碳酸盐岩风化是流域碳汇过程及效应的主体。由于有利的水热条件和高的碳酸盐岩面积比例,珠江流域平均岩石风化速率和由岩石风化作用引起的大气CO2消耗量分别为30.15mm/ka和620.36×103mol/(km2·a-1),为全球60条河流平均值的2.6倍。  相似文献   

5.
对贵州中部喀斯特山区的阔叶林区、旱作农业区、复合农业区、城镇居民区进行地下水资源调查和浅层地下水的采样分析,探讨土地利用方式变化对喀斯特浅层地下水化学及水质的影响.研究结果表明:喀斯特山区土地利用方式从林地-耕地-城镇居民地方向的变化过程中,其浅层地下水的HCO3-、SO42-、Ca2 、Mg2 、Na 、K 、NH4 、Cl-、PO43-、NO3-的含量发生了明显的变化.在复合农业区表现为SO42-、NO3-、NH4 、Pb、Cr和Cd含量的增加造成地下水质量的下降,而在城镇居民区则表现在高锰酸钾指数以及SO42-、NH4 、NO3-、Pb、Cr和Cd含量的增加.  相似文献   

6.
碳酸盐岩岩溶作用对大气CO2 沉降的贡献   总被引:28,自引:10,他引:18  
刘再华 《中国岩溶》2000,19(4):293-300
精确预测大气CO2 的未来变化对于预测全球气候变化是至关重要的。为此,需要确定大气CO2 的源和汇及其随时间的变化。本文作者利用已发表和未发表的资料对一些实例进行了分析: 首先讨论了碳酸盐岩岩溶作用(包括碳酸盐溶解及再沉积的共同影响)对土壤CO2和径流变化的敏感性;接着利用水化学- 流量方法和碳酸盐岩石片试验方法得出了我国和世界碳酸盐岩地区因碳酸盐岩岩溶作用从大气中吸收的净CO2 总量,即碳酸盐岩岩溶作用对大气CO2 沉降的贡献。它们分别是: 中国每年1800万tC,整个世界岩溶地区1. 1亿tC;最后,文章据DBL理论模型计算得出世界碳酸盐岩地区碳酸盐岩溶解吸收CO2 一项产生的大气CO2 沉降量为每年4. 1亿tC,继而得出全世界碳酸盐岩地区因碳酸盐再沉积而释放CO2 产生的大气CO2 源项为每年3亿tC。   相似文献   

7.
对贵州中部喀斯特山区的阔叶林区、旱作农业区、复合农业区、城镇居民区进行地下水资源调查和浅层地下水的采样分析,探讨土地利用方式变化对喀斯特浅层地下水化学及水质的影响。研究结果表明:喀斯特山区土地利用方式从林地.耕地.城镇居民地方向的变化过程中,其浅层地下水的HCO3ˉ、SO4^2-、Ca^2+、Mg^2+、Na^+、K+、NH4^+、Clˉ、PO4^3-、NO3ˉ的含量发生了明显的变化。在复合农业区表现为SO4^2-、NO3ˉ、NH4^+、Pb、Cr和Cd含量的增加造成地下水质量的下降,而在城镇居民区则表现在高锰酸钾指数以及SO4^2-、NH4^+’、NO3ˉ、Pb、Cr和Cd含量的增加。  相似文献   

8.
土地利用对岩溶作用碳汇的影响研究综述   总被引:6,自引:4,他引:2  
曾思博  蒋勇军 《中国岩溶》2016,35(2):153-163
耦合水生光合作用的岩溶作用碳汇新模式的提出使得碳酸盐岩的风化过程成为寻找“陆地剩余碳汇”(residual land sink) 的新方向。传统意义上,碳酸盐岩风化在全球碳循环模型中被认为是未快速响应地表环境变化的地质过程,然而最新一系列研究表明人类土地利用显著改变了这一地质循环过程。文章总结了岩溶作用碳汇对不同土地利用/覆被变化的具体响应,并对其机理进行了系统分析。发现土地利用与覆被变化影响岩溶作用碳循环过程主要源自土壤CO2浓度和径流量变化以及外源酸(硝酸和硫酸)的介入。证据显示在土地利用对岩溶作用碳汇的调控中土壤CO2浓度与径流量是复杂且相互制约的两个机制,人类活动产生的外源酸干扰在不同层面上的影响也不同。由于地表水生生态系统所产生的内源有机碳(AOC)的巨大稳碳能力(水生碳泵效应)在以往的研究中并没有与碳酸盐岩风化过程相联系,因而其对土地利用变化的响应过程和机理是岩溶碳循环研究的最新方向。基于土地利用调控碳酸盐岩风化过程的复杂性和多样性特点,综合考虑岩溶作用产生的DIC(溶解无机碳)与AOC在不同土地利用情况下的相互关系以及定量分析各环境因素的具体效应成为了合理制定人为土地利用调控策略的必要前提,也是岩溶作用碳汇研究的未来发展方向。   相似文献   

9.
通过对四川省雅安龙苍沟峨眉山玄武岩小流域的水化学组成研究,分析了不同物质来源对小流域溪水溶解质的贡献,并对该小流域岩石风化速率和CO2消耗速率进行了估算。结果表明,龙苍沟流域溪水呈中性,PH平均值为6.82。溪水中阳离子以Ca^2+为主,约占阳离子总量的56%;阴离子以HCO3^-为主,约占阴离子总量的45%。碳酸盐岩风化、硅酸盐岩风化、大气降水和人为活动对溪水阳离子平均贡献率分别为50.2%、38.2%、10.5%和1.1%。流域硅酸盐岩风化速率为37.54±24.94 t/km^2/yr,硅酸盐岩风化对大气C02消耗速率为5.4±3.6 mol C/km^2/yr。本文首次对我国峨眉山玄武岩省化学风化大气CO2消耗量进行估算,得到其年消耗通量为1.35±0.89×10^11 mol C/yr,约为全球玄武岩CO2年消耗通量的3.31±2.18%。  相似文献   

10.
研究非岩溶水和硫酸参与溶蚀对地下河流域岩溶碳汇通量的影响,有助于提高岩石风化碳汇通量估算精度,对于推进地质作用与全球气候变化研究意义重大。选取湘南北江上游武水河流域内4条典型地下河为对象,通过水化学对比分析,揭示硅酸盐岩风化对流域地下水化学的重要影响。运用Galy方法计算流域非岩溶地层中的硅酸盐岩风化消耗大气/土壤CO_2对岩石风化碳汇的重要贡献,并评价了H_2SO_4参与下碳汇通量的扣除比例。结果显示:(1)流域内有非岩溶地层的L01,L02地下河,Na~+,K~+和SiO_2浓度明显高于纯碳酸盐L03和L04地下河,非岩溶地层中的硅酸盐的风化对地下河水中K~+,Na~+,SiO_2浓度有一定贡献;(2)4条地下河的[Ca~(2+)+Mg~(2+)]/[HCO_3~-]当量比值为1.05~1.15,[Ca~(2+)+Mg~(2+)]/[HCO_3~-+SO_4~(2-)]的当量比值为0.99~1.08,Ca~(2+)+Mg~(2+)相对于HCO_3~-过量,过量的Ca~(2+)+Mg~(2+)与SO_4~(2-)相平衡,证实硫酸参与流域碳酸盐岩的溶蚀;(3)L01和L02地下河岩石风化消耗的CO_2通量中非岩溶地层中的硅酸盐风化消耗所占比例分别为3.36%和2.22%,而L03和L04地下河中硅酸盐风化消耗比例小于0.50%,表明有非岩溶地层存在的地下河流域,其岩石风化消耗的CO_2通量中硅酸盐风化消耗占有一定比例;(4)在考虑硫酸参与碳酸盐岩溶蚀时,4条地下河的碳汇通量分别扣除4.84%,4.52%,6.20%和9.36%。  相似文献   

11.
利用pH计法来研究西南岩溶区4类土地利用类型11个样地20cm、40cm和60cm土层碳酸酐酶(Carbonic Anhydrase,CA)的剖面分异特征,并与非岩溶样地进行对比。结果表明:西南岩溶区不同土地利用类型不同土层的CA活性存在较大差异。在林地中,40cm和60cm土层的CA活性明显高于20cm土层;而在乔灌丛、灌丛和耕地中,土壤CA活性表现出60cm土层处最高,20cm土层处最低,并与弃耕地不同土壤层CA活性变化趋势截然相反,这是因为弃耕地受人类活动干扰导致土壤CA活性出现逆转。进一步分析还可以看出林地、乔灌丛、灌丛和耕地4种土地利用类型下土壤CA活性总体呈现出随植物根系深度增加而增加的变化趋势,从而说明土地利用类型是导致土壤碳酸酐酶剖面产生分异的主要因素,并为进一步研究土壤CA在自然界碳酸盐岩风化过程中的作用提供了科学依据。  相似文献   

12.
硅酸盐风化与全球碳循 环研究回顾及新进展   总被引:4,自引:0,他引:4  
硅酸盐风化是大气CO2 的一个主要汇,直接影响到全球碳循环进而影响全球气候。自Walker 等(1981)进行的开创 工作以来,有关“硅酸盐风化- 碳循环- 气候变化”方面的研究大量涌现。从计算机模型到河流水化学研究,从流域面积 超过百万平方公里的大河到数十数百平方公里的单岩性小河流,取得了很多重要的进展。从全球尺度上看,硅酸盐风化每 年所消耗的大气CO2 量为0.138~0.169 Gt,相比现在大气碳库中碳的含量(约800 Gt),乍看似乎是微不足道的,然而硅酸盐 风化消耗CO2 并将其作为碳酸盐矿物埋藏在海洋,它的存留时间超过了百万年。因此,在地质时间尺度上,硅酸盐风化是 调节全球碳循环的一个重要机制。对小流域进行的研究发现,热带地区流经玄武岩/蛇绿岩的小流域有着最高的硅酸盐风化 和大气CO2 消耗速率,热带区域火山岩化学风化消耗的大气CO2 占全球硅酸盐风化所消耗量的10%,而流域面积不到1%。  相似文献   

13.
中国岩溶碳汇潜力研究   总被引:17,自引:0,他引:17  
为了应对全球环境变化,中国地质科学院岩溶地质研究所等单位在地质调查项目的资助下,在中国典型岩溶流域开展了岩溶碳汇调查,建立了岩溶碳汇观测网站,深化了岩溶碳汇过程、影响因素和形成机理研究,发现了岩溶区外源水、土地合理利用、植被恢复和水生光合作用等增加岩溶碳汇的途径,取得了大量的科技创新进展。在调查研究的基础上,将我国岩溶区划分为南方岩溶区、北方岩溶区、青藏高原岩溶区和埋藏岩溶区4种类型区,利用GIS技术计算各区的岩溶面积和岩溶碳汇量,获得中国岩溶碳汇总量为3699.1万tCO2/a,这是我国344万km2岩溶区碳水钙无机循环产生的大气CO2汇。该项研究进展在2011年的《Science》通讯报道中获得高度评价。  相似文献   

14.
刘再华 《地球学报》2001,22(5):477-480
CO2向H^ 和HCO3^-的转换是一相对慢速过程。因此,其动力学可能决定碳酸盐岩的溶解速率。在灰岩和白云岩的溶解实验中,使用了自然界普遍存在的碳酸酐酶(CA)来催化这一CO2转换反应,结果发现,对灰岩而言,加入CA后,其溶解速率在高CO2分层时可增加10倍,而对白云岩,其溶解速率增加主要在低CO2分压时,可达3倍左右。这一发现表明,化学风化(包括碳酸盐岩溶解和硅酸盐风化)作用在大气CO2沉降和全球碳循环里的所谓丢失的汇中的重要性需要重新评价。毫无疑问,已往的研究由于未认识到CA在风化中的催化作用,因此低估了风化作用的速率,同时也低估了风化作用对大气CO2沉降的贡献。另一方面,也表明了研究自然界不同水体中CA分布及其活度和CA在自然界风化作用中的作用的必要性。  相似文献   

15.
The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determiningin carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze the CO2 conversion process in dissolution experiments of limestone and dolomite. It was found that the rate of dissolution increases by a factor of about 10 after the addition of CA at a high CO2 partial pressure (Pco2) for limestone and about 3 at low Pcoj for dolomite. This shows that reappraisal is necessary for the importance of chemical weathering (including carbonate rock dissolution and silicate weathering) in the atmospheric CO2 sink and the mysterious missing sink in carbon cycling. It is doubtless that previous studies of weathering underestimated weathering rates due to the ignorance of CA as an activator in weathering, thus the contribution of weathering to the atmospheric CO2 sink is also underestimated. This finding also shows the need to examine the situ distribution and activ  相似文献   

16.
     玄武岩风化是大气CO2 的一个主要碳汇过程,气候条件是影响玄武岩风化和固碳速率的重要因素。该文选择中国东 部不同气候带的新生代玄武岩典型风化剖面,进行了粘土矿物和常量元素分析。结果显示,在内蒙古-海南岛的采样区间内, 随着气候条件由干冷向暖湿转化,风化剖面中粘土矿物组合呈现蒙脱石+ 伊利石+ 高岭石→蒙脱石+ 高岭石→高岭石+ 三水 铝石的转变。剖面中土壤元素得失状况也显示出相应的规律,由于存在粉尘输入与风化淋滤作用的综合影响,在干冷的内 蒙古地区,粉尘对于Ca,K,Na,Si 等元素的输入量大于这些元素的淋失量;在山东地区,Ca,K,Na 元素开始快速淋失, 大于粉尘的输入量;在苏皖地区,Si 元素的淋失量开始小于粉尘输入量;而在湿热的海南地区,风化作用强烈,Si显示出 大量淋失的特点,碱性元素几乎全部流失。根据元素的相对得失率和北方粉尘平均组分的校正,初步估算了研究区内玄武 岩风化对大气CO2 的消耗速率,其数值在5.37~181.00 t(km2·a)之间,与Dessert 等(2003)的研究结果大致相当。  相似文献   

17.
发展中的板块边界:天山-贝加尔活动构造带   总被引:5,自引:0,他引:5  
不同的土地利用方式可使土地理化性质产生一系列的变化和差异,从而影响到岩溶作用的方向和强度。通过野外溶蚀试片实验法,对金佛山典型岩溶区碧潭泉和水房泉两泉域岩溶生态系统的5种典型土地利用方式下的土壤溶蚀速率进行雨季短时间尺度变化的野外观测。2006年7月中旬开始,重庆地区罕遇43天高温无雨的特殊天气,测试结果表明不同土地利用方式甚至同一土地利用方式下不同海拔的岩溶区石灰岩试片溶蚀速率都存在较大差异,碧潭泉域雨季绝对溶蚀量仅为水房泉域的13.3%,6个测试点土下溶蚀量由大到小依次为水房泉竹林地、水房泉林地、水房泉草地、碧潭泉林地、碧潭泉灌草丛、碧潭泉耕地。在研究时间内降雨量、温度和土壤CaCO3含量差异的基础上,金佛山两泉域岩溶作用主要有两个控制因素:土壤CO2浓度、土壤有机质。  相似文献   

18.
文章选择深圳市的亚热带典型小流域作为研究对象,通过定期采集流域内降水、泉水、岩石及风化残积土样品,分析所有样品的常量元素和微量元素,探讨流域水体的化学成分组成和主要成分来源以及岩石化学风化程度和风化趋势,结合流域水文气象数据估算了花岗岩化学风化速率及CO2消耗速率。结果表明,研究区地下水化学类型为HCO3-Na型,主要受控于硅酸盐矿物的风化溶解作用和阳离子交换作用。花岗岩的化学蚀变指数(CIA)为47.15~57.47,残积土的CIA为59.24~82.71。A-CN-K三角图指示风化初期Na,Ca活泼性元素流失,风化中后期K元素流失,Al元素逐渐富集。花岗岩的平均化学风化速率为14.40 m/Myr。岩性、离子径流通量和气候条件的不同可能是造成化学风化速率差异的主要原因。大气酸沉降对岩石风化的贡献约占总化学风化量的11.73%。研究区平均CO2消耗速率为0.59×106 mol/(km2 yr),酸雨使得岩石在风化过程中对大气/土壤中CO2的消耗减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号