首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为深入评估中国南方陆地风化过程及河流物质循环过程, 通过测定西江主要干、支流丰水期及枯水期水体主要离子和锶及其同位素比值, 结合Galy模型对西江流域化学风化特征及CO2消耗通量进行计算。结果表明: (1)西江流域化学风化受人类活动的影响较小, 流域化学风化过程主要受到碳酸的控制。(2)河水阳离子的主要物质来源为硅酸盐岩和碳酸盐岩风化, 硅酸盐岩在丰水期和枯水期的阳离子物质来源摩尔占比均为0.04, 碳酸盐岩中石灰岩占比分别为0.79和0.78, 白云岩分别为0.17和0.18。(3)西江流域在丰水期和枯水期的化学风化过程具有一定的差异性, 由于硫酸参与白云岩的风化作用影响碳酸盐岩风化过程中的CO2消耗通量, 导致各个化学风化过程所涉及的CO2通量有所差别。(4)碳酸风化碳酸盐岩在丰水期和枯水期所消耗的CO2通量分别为(0.78~244.25)×106 mol/km2/yr和(0.10~49.16)×106 mol/km2/yr, 硫酸风化碳酸盐岩所产生的CO2通量分别为(0.25~42.16)×106 mol/km2/yr和(0.01~13.90)×106 mol/km2/yr, 碳酸风化硅酸盐岩所消耗CO2通量的分别为(0.05~17.83)×106 mol/km2/yr和(0.02~6.07)×106 mol/km2/yr。  相似文献   

2.
青藏高原化学风化和对大气CO2的消耗通量   总被引:1,自引:0,他引:1       下载免费PDF全文
为了评估青藏高原化学风化对全球气候的影响,笔者等对中国境内源自青藏高原的七条主要河流(金沙江、澜沧江、怒江、黄河、雅砻江、岷江和大渡河)进行了采样和地球化学分析,估算了硅酸盐、碳酸盐风化对河水中主量离子的贡献,以及硅酸盐风化和碳酸盐风化所消耗的大气CO2。研究显示,七条河流流域中硅酸盐风化引起的大气CO2消耗约为0.7×10^5~3.7×10^5mol/(km^2·a)。结合国外学者对于喜马拉雅山南缘三条河流(恒河、布拉马普特拉河和印度河)的研究结果可以得出,发源于喜马拉雅山-青藏高原的主要十条河流流域硅酸盐风化平均共消耗大气CO2328×10^9mol/a,仅占全球大陆硅酸盐岩风化所消耗大气CO28700×10^9mol/a的3.8%,并仅为全球通过河流向海洋输送有机碳(来自陆地上生物的消耗)通量的2.5%。  相似文献   

3.
硫酸参与的长江流域岩石化学风化速率与大气CO2消耗   总被引:4,自引:0,他引:4  
流域的岩石化学风化过程是全球碳循环中的重要环节。以往的流域水化学碳汇通量估算大多是基于碳酸的风化作用。而实际上,硫酸和碳酸一样,也参与了流域碳元素的地球化学循环,从而对全球碳循环过程产生影响。长江流域水体近几年出现酸化现象,大部分河段SO42-和Ca2+含量增高,其对应的岩石风化过程和大气CO2消耗速率也发生变化。文章对长江干流及主要支流2013年不同季节的离子组成进行监测,利用水化学平衡法和Galy估算模型,对长江流域岩石化学风化速率和CO2消耗通量进行了估算,对硫酸参与下的长江流域岩石风化和碳循环过程进行了分析。结果表明,长江流域水体离子主要来源于硅酸盐岩风化和碳酸盐岩风化。其中碳酸盐岩风化对河水离子贡献率为92%。在硅酸盐岩广泛分布的赣江流域,碳酸盐岩风化离子贡献也达85%。分析表明,硫酸参与了长江流域的岩石风化过程,对水体中离子产生一定影响。硫酸的参与加快了碳酸盐岩的化学风化速率,平均提高约30%,但是使流域大气CO2消耗速率降低。在不考虑蒸发岩溶蚀作用下,平均从516×103 mol/km2·a降至356×103 mol/km2·a,降低约31%。在各支流中,硫酸对乌江流域碳酸盐岩的风化和碳循环的影响最大,而对雅砻江的影响最小,这与乌江流域的含煤地层、矿床硫化物及大气酸沉降有关。  相似文献   

4.
流域的岩石化学风化过程是全球碳循环中的重要环节。近年来流域水化学碳汇通量估算已越来越多地关注到外源水(硅酸盐风化)及外源酸对全球碳循环的影响。文章选取万华岩地下河流域为研究区,流域硅酸盐岩和碳酸盐岩分布面积占比为64%和36%,于2017年对洞口进行为期一年的取样监测,并分别于4月和9月对万华岩地下河系统内13个水点的离子组成进行监测,利用水化学平衡法和Galy模型,对流域岩石化学风化速率和CO2消耗通量进行了计算,对万华岩地下河系统的岩石风化和碳循环过程进行了分析。结果表明,万华岩地下河系统岩石风化消耗CO2的速率为31.02 t·(km2·a)-1;以碳酸岩风化为主,其风化速率为硅酸盐溶蚀的20倍;流域内碳酸盐岩风化对CO2消耗量占到整个流域的92.16%;不同岩石风化类型对碳通量的贡献率以碳酸溶解碳酸盐岩最大,为87.06%;流域上游的外源水对岩溶碳汇具有巨大的促进作用,外源水汇入后碳酸盐岩碳汇速率可以达到无外源水汇入流域的2倍;硫酸溶解碳酸盐岩次之,为9.24%;碳酸风化硅酸盐岩最小,为3.7%,在计算流域碳汇量的时候应将硫酸参与岩石风化的影响去除。  相似文献   

5.
硅酸盐风化与全球碳循 环研究回顾及新进展   总被引:4,自引:0,他引:4  
硅酸盐风化是大气CO2 的一个主要汇,直接影响到全球碳循环进而影响全球气候。自Walker 等(1981)进行的开创 工作以来,有关“硅酸盐风化- 碳循环- 气候变化”方面的研究大量涌现。从计算机模型到河流水化学研究,从流域面积 超过百万平方公里的大河到数十数百平方公里的单岩性小河流,取得了很多重要的进展。从全球尺度上看,硅酸盐风化每 年所消耗的大气CO2 量为0.138~0.169 Gt,相比现在大气碳库中碳的含量(约800 Gt),乍看似乎是微不足道的,然而硅酸盐 风化消耗CO2 并将其作为碳酸盐矿物埋藏在海洋,它的存留时间超过了百万年。因此,在地质时间尺度上,硅酸盐风化是 调节全球碳循环的一个重要机制。对小流域进行的研究发现,热带地区流经玄武岩/蛇绿岩的小流域有着最高的硅酸盐风化 和大气CO2 消耗速率,热带区域火山岩化学风化消耗的大气CO2 占全球硅酸盐风化所消耗量的10%,而流域面积不到1%。  相似文献   

6.
文章选择深圳市的亚热带典型小流域作为研究对象,通过定期采集流域内降水、泉水、岩石及风化残积土样品,分析所有样品的常量元素和微量元素,探讨流域水体的化学成分组成和主要成分来源以及岩石化学风化程度和风化趋势,结合流域水文气象数据估算了花岗岩化学风化速率及CO2消耗速率。结果表明,研究区地下水化学类型为HCO3-Na型,主要受控于硅酸盐矿物的风化溶解作用和阳离子交换作用。花岗岩的化学蚀变指数(CIA)为47.15~57.47,残积土的CIA为59.24~82.71。A-CN-K三角图指示风化初期Na,Ca活泼性元素流失,风化中后期K元素流失,Al元素逐渐富集。花岗岩的平均化学风化速率为14.40 m/Myr。岩性、离子径流通量和气候条件的不同可能是造成化学风化速率差异的主要原因。大气酸沉降对岩石风化的贡献约占总化学风化量的11.73%。研究区平均CO2消耗速率为0.59×106 mol/(km2 yr),酸雨使得岩石在风化过程中对大气/土壤中CO2的消耗减少。  相似文献   

7.
流域的岩石化学风化过程是全球碳循环中的重要环节。以往的流域水化学碳汇通量估算大多是基于碳酸对岩石的风化作用。而实际上,硫酸和碳酸一样,也参与了碳元素的地球化学循环,从而对全球碳循环过程产生影响。长江流域水体近几年出现酸化现象,大部分河段SO_4~(2-)和Ca~(2+)含量增高,其对应的岩石风化过程和大气CO_2消耗速率也发生变化。文章对长江干流及主要支流2013年不同季节的离子组成进行监测,利用水化学平衡法和Galy估算模型,对长江流域岩石化学风化速率和CO_2消耗通量进行了估算,对硫酸参与下的长江流域岩石风化和碳循环过程进行了分析。结果表明,长江流域水体离子主要来源于硅酸盐岩风化和碳酸盐岩风化。其中碳酸盐岩风化对河水离子贡献率为92%。在硅酸盐岩广泛分布的赣江流域,碳酸盐岩风化离子贡献也达85%。分析表明,硫酸参与了长江流域的岩石风化过程,对水体中离子产生一定影响。硫酸的参与加快了碳酸盐岩的化学风化速率,平均提高约28%。在不考虑硫酸溶蚀作用下,流域大气CO_2消耗速率平均为514.12×10~3 mol/km~2·a,但是硫酸参与时,CO_2消耗速率为467.18×10~3 mol/km~2·a,扣除碳汇量约14%。在各支流中,乌江流域受硫酸影响最大,而对雅砻江的影响最小,这与乌江流域的含煤地层、矿床硫化物及大气酸沉降有关。  相似文献   

8.
硅酸盐岩风化对气候变化和构造运动的反馈对长尺度气候变化可能起到重要的调节作用,对该反馈过程的定量认识有助于更确切理解地球碳循环的运行规律。通常认为风化类型可分为两种,分别是供应限制和动力学限制。全球变暖可能促进了动力学限制流域的化学风化作用,然而,关于这方面的认识仍很有限。育空河流域是典型的动力学限制风化区域,研究育空河的风化对气候变暖的响应有助于深入认识气候和大陆风化之间的相互作用。正演模型是区分河流风化端元的重要手段,文章利用正演模型对育空河流域从1975年到2019年的主要离子组成的数据集进行分析,并获得了该流域在过去几十年的化学风化速率的变化趋势。结果表明,育空河水化学性质主要受到碳酸盐岩风化和硅酸盐岩风化控制,两者多年平均碳汇通量分别为2.1×1011 mol/yr和4.1×1010 mol/yr,处于世界主要大河碳汇通量的中间水平。更重要的是,在同一时期,伴随着2.2℃的温度增幅和13.7%的径流量增加,流域内的阳离子总通量增加了35.7%,其中硅酸盐岩和碳酸盐岩风化产生的阳离子通量分别增加了41%和35%,阳离子通量/风化速率对气候的敏感性与冰岛地区的研究结果符合的很好,与风化速率加快相对应的,硅酸盐岩风化碳汇通量相对增加了59.6%。尽管碳汇的增加在绝对通量上相比人类化石燃烧产生的碳排放通量微不足道,但是考虑到构造尺度内全球硅酸盐岩风化速率的增强,尤其是在较为寒冷的高纬度地区,额外的二氧化碳固定量可能对地球历史时期的全球气候产生重要影响。  相似文献   

9.
珠江流域碳酸盐岩与硅酸盐岩风化对大气CO_2汇的效应   总被引:6,自引:0,他引:6  
对珠江流域11个测站的河水1个水文年4次取样进行水化学和同位素测试分析,揭示无论是碳酸盐岩区还是硅酸盐岩区,岩石风化均使河流的离子成分以HCO3-、Ca2+、Mg2+为主,碳酸盐岩风化溶蚀速率和由碳酸盐岩风化溶蚀引起的大气CO2消耗量分别为27.60 mm/ka和540.21x103mol/(km2·a-1),是硅酸盐岩风化速率和由硅酸盐岩风化引起的大气CO2消耗量的10.8倍和6.7倍,说明碳酸盐岩风化是流域碳汇过程及效应的主体。由于有利的水热条件和高的碳酸盐岩面积比例,珠江流域平均岩石风化速率和由岩石风化作用引起的大气CO2消耗量分别为30.15mm/ka和620.36×103mol/(km2·a-1),为全球60条河流平均值的2.6倍。  相似文献   

10.
研究非岩溶水和硫酸参与溶蚀对地下河流域岩溶碳汇通量的影响,有助于提高岩石风化碳汇通量估算精度,对于推进地质作用与全球气候变化研究意义重大。选取湘南北江上游武水河流域内4条典型地下河为对象,通过水化学对比分析,揭示硅酸盐岩风化对流域地下水化学的重要影响。运用Galy方法计算流域非岩溶地层中的硅酸盐岩风化消耗大气/土壤CO_2对岩石风化碳汇的重要贡献,并评价了H_2SO_4参与下碳汇通量的扣除比例。结果显示:(1)流域内有非岩溶地层的L01,L02地下河,Na~+,K~+和SiO_2浓度明显高于纯碳酸盐L03和L04地下河,非岩溶地层中的硅酸盐的风化对地下河水中K~+,Na~+,SiO_2浓度有一定贡献;(2)4条地下河的[Ca~(2+)+Mg~(2+)]/[HCO_3~-]当量比值为1.05~1.15,[Ca~(2+)+Mg~(2+)]/[HCO_3~-+SO_4~(2-)]的当量比值为0.99~1.08,Ca~(2+)+Mg~(2+)相对于HCO_3~-过量,过量的Ca~(2+)+Mg~(2+)与SO_4~(2-)相平衡,证实硫酸参与流域碳酸盐岩的溶蚀;(3)L01和L02地下河岩石风化消耗的CO_2通量中非岩溶地层中的硅酸盐风化消耗所占比例分别为3.36%和2.22%,而L03和L04地下河中硅酸盐风化消耗比例小于0.50%,表明有非岩溶地层存在的地下河流域,其岩石风化消耗的CO_2通量中硅酸盐风化消耗占有一定比例;(4)在考虑硫酸参与碳酸盐岩溶蚀时,4条地下河的碳汇通量分别扣除4.84%,4.52%,6.20%和9.36%。  相似文献   

11.
Carbon sink produced during rock weathering is critical to global carbon cycles. In this work, we analyzed the major ion chemistry of the Chishuihe River Basin, and the major ion composition of the Chishuihe River system and the principal component analysis was applied for estimating the weathering rate and atmospheric CO2 consumption via the rock chemical weathering. The results demonstrated that the chemical composition of the river was dominated by Ca2+, Mg2+, HC and S. The average concentration(317.88 mg/L) of the total dissolved solids within the Chishuihe River was higher than the average value (65 mg/L) of world rivers. The Gibbs graph combining major ion element ratio analysis indicated that the catchment major ion composition mainly originated from rock weathering, primarily from carbonate weathering, sparsely from silicate weathering. Carbonate and silicate weathering contributed 70.77% and 5.03% separately to the dissolved loads. The anthropogenic and precipitation impact was limited. According to calculation based on principal component and the ion composition characteristics, the chemical weathering rate was 126.716 t/(km2·a), significantly higher than that of the Yellow River and Yangtze River, and also higher than the average rate of the global major rivers. The CO2 consumption flux based on annual average runoff was 10.96×109 mol/a, and the CO2 consumption rate by chemical weathering was 5.79×105 mol/(km2·a).  相似文献   

12.
长江流域面积巨大,岩性多变,加之三峡大坝等重大水利工程的影响,干流河水的水化学成因存在较大争议。此外,以往研究中流域矿物风化过程的碳汇通量估算一般基于阳离子来源分析,但该算法通常涉及多种矿物端元的参数选取,结果具有不确定性。本次研究对长江干流水化学的时空演变进行了整体分析,并基于上游河水样品HCO3~-含量的校正与计算,提出了一种计算矿物风化过程碳汇通量的新方法。研究结果表明,蒸发盐溶解、循环盐作用、矿物风化及硫酸盐溶解是控制长江干流河水离子组成的主要水文地球化学作用,而人类活动主要影响了离海距离3 000 km以内河水NO3~-含量;长江上游干流硅酸盐风化消耗CO2速率为1.16×10~5 mol/(km~2·a),碳酸盐风化消耗CO2速率为4.75×10~5 mol/(km~2·a)。本研究有助于加深对长江干流主要水文地球化学作用的认识,丰富和完善碳循环研究理论。  相似文献   

13.
Evaluating the impact of allogenic water and sulfuric acid on karst carbon sink not only helps to improve the accurate calculation of soil CO2 uptake by rock weathering, but also obtains a complete understanding of the global carbon cycle. Groundwater samples were collected from four karst subterranean rivers watershed within different lithology strata in Wushui Basin, upstream of Beijiang Basin, Hunan Province, for revealing the important impact of silicate weathering on hydrochemistry of groundwater. To estimate the contribution of soil CO2 uptake by silicate weathering to CO2 uptake by rock weathering, the Galy model was employed in this article. The important impact of sulfuric acid on CO2 uptake by carbonate weathering resulting from the substitution of carbonic acid by protons from sulfuric acid was investigated. Our results showed that the concentration of Na+, K+ and SiO2 in L01,L02 subterranean river with silicate strata in watershed were higher than that in L03,L04 subterranean river without silicate strata in watershed, which implied that the contribution of silicate weathering to Na+,K+ and SiO2 was very important in watershed within silicate strata . The changeable equivalent ratio between (Ca2++Mg2+) and HCO3- was 1.05 to 1.15, and the value of [Ca2++Mg2+]/[HCO3-+SO42-] was 0.99 to 1.08. The concentrations of Ca2+ and Mg2+ exceeded the equivalent concentrations of HC3-, and the excess of Ca2+ and Mg2+cations were compensated by SO42-, which suggested that sulfuric acid has an important influence on carbonate dissolution. The contribution of soil CO2uptake by silicate weathering to CO2 consumption in L01 and L02 subterranean river were 3.36% and 2.22%, respectively, whereas the contribution in L03, L04 subterranean river were less than 0.50%, indicating that the contribution of soil CO2 uptake by silicate weathering was important in the subterranean river basin within silicate strata. Due to the contributions made by sulfuric acid, the CO2 consumption in four subterranean rivers decreased by 4.84%, 4.52%, 6.20%, 9.36%, respectively.  相似文献   

14.
以疏勒河源区为研究区,自2018年12月至2019年11月分别采集河水、泉水和雪样样品44个、4个和7个,综合运用Piper三线图、Gibbs图、离子比值法定性分析不同水体水化学特征及控制因素,利用质量平衡法(正向地球化学模型)量化不同来源对不同季节河水水化学成分的贡献率。结果表明:疏勒河源区不同水体水化学特征存在差异,TDS含量为泉水>河水>冰川融水>雪水,河水水化学类型冬季为HCO3--Mg2+?Ca2+型,春季为HCO3--Ca2+?Mg2+?Na+型,夏、秋季均为HCO3--Ca2+?Mg2+型,泉水和雪水分别为HCO3--Ca2+?Mg2+型、HCO3--Ca2+型;受多种因素共同影响,不同季节河水主离子时空变化均存在差异;河水和泉水水化学组成受岩石风化作用控制,主离子来源于以白云石为主的碳酸盐岩风化、硅酸盐岩风化和盐岩、石膏、硫酸盐矿物等蒸发岩溶解;正向地球化学模型计算结果表明冬春季河水阳离子主要来源于硅酸盐岩风化溶解,夏秋季碳酸盐岩对河水阳离子贡献率大于硅酸盐岩,总体河水阳离子主要来源于碳酸盐岩和硅酸盐岩风化。  相似文献   

15.
咸海是亚洲仅次于里海的第二大内陆咸水湖, 20世纪60年代以来湖泊面积急剧萎缩。基于1960 - 2018年咸海的面积数据、 CRU气温和降水数据以及咸海流域灌溉面积、 水库容量等资料, 定量分析了1960年以来咸海湖泊面积的变化情况, 并从气候变化与人类活动两方面探究了咸海面积变化的主要影响因素。结果表明: 1960 - 2018年咸海的面积由6.85×104 km2持续萎缩至(8.32±0.19)×103 km2, 共减少了(6.02±0.02)×104 km2(约87.85%), 其中1960 - 2009年面积萎缩了(5.94±0.02)×104 km2(约86.77%), 而在2009 - 2018年其面积萎缩速率明显放缓, 减少了740.04 km2(约8.17%)。统计结果显示, 1960年以来强烈的人类活动(主要表现为灌溉用水和水库储水量的持续增加)是导致咸海面积急剧萎缩的主要因素, 其对咸海面积变化的影响远大于气候变化。在中亚地区气候继续向暖湿变化的背景下, 咸海流域应尽快调整以农业灌溉为主的用水结构, 否则在上游冰川融水达到峰值后, 咸海可能面临干涸的危险。  相似文献   

16.
未来百年全球气候变化的影响是当前学术界激烈争议的议题,深入探讨全球气候变化的驱动机理才能正确认识全球气候变化。持续生长的青藏高原吸收了巨量的CO2,导致大气中CO2浓度大幅下降,使地球从温室气候进入到以冰期、间冰期交替出现为特征的冰室气候,青藏高原成为新生碳储库。在间冰期,青藏高原和蒙古高原将淡水输送到中低纬度内陆区(以下简称内陆区),导致内陆区的硅酸岩化学风化强烈,植被和湖相沉积发育,吸收了巨量大气CO2,是碳汇; 在冰期,青藏高原、蒙古高原将内陆区表层淡水与尘埃最终输送到高纬度地区,导致内陆区荒漠化,对大气CO2的吸收量远小于其自身的排放量,内陆区成为碳源,使大气CO2浓度上升。这是中新世以来大气CO2浓度维持低浓度、准动态平衡的机理。地表平均温度的变化驱动了淡水在高、低纬度地区之间循环。人类巨量碳排放使全球大气CO2浓度暂时快速上扬,全球变暖,淡水回到内陆区,导致内陆区变绿,硅酸岩化学风化作用增强,吸收大气CO2的能力大幅提高,内陆区又变成碳汇,抑制大气CO2浓度的进一步上升; 初步测算,最早2050年、最迟2090年,当大气CO2浓度达到(510±40)×10-6时,其快速上升的趋势将得到抑制; 未来百年尺度的全球气候变化受地球和太阳内部的构造活动所驱动,是周期性变化的、是可预测。  相似文献   

17.
本文对塔西北震旦系中的苏盖特布拉克组玄武质岩墙以及塔西南奥陶系玛列兹肯群中辉绿岩脉的区域地质、岩石学、地球化学等进行了对比研究,同时对锆石的微区 U-Pb 同位素年代学及其构造环境等进行了研究。 前者为顺层侵入、包裹了中酸性的捕虏体, 发育了枕状构造、球形风化和柱状节理等玄武岩喷发等特征;后者穿插于韧性剪切带中碳酸盐质糜棱岩化中。 它们的常量组分变化较大:不包括 SiO2 外其它 9 种常量组分的含量为 36.3%~45.3%, 全碱 (Na2O+K2O)为 3.83%~7.16%;TiO2 含量较低, 为 0.63%~1.89%;MgO 为 3.72%~6.74%;前者中的常量组分、微量元素 Sr 、Ta、Nb、Ti、Yb、Ni、Cu、Zn、Y 含量明显高于后者对应值, 但大离子亲石、造岩元素中 Cs、Rb 等元素、La/Nb、K/T 元素比相对较低。 相比于原始地幔, 两者均相对富集造岩元素 Li、Rb、Ba、Ga、Sr 和稀有元素 Nb、Ta, 轻稀土中等富集;相对亏损铁族元素 Cr、Co 及 Mo、Pb、Bi、U 等;前者 ΣREE 为 227.72×10-6~426.32×10-6 、L/H = 2.51~2.61、δEu = 0.48~0.52、δCe = 0.56;后者的 ΣREE 为 142.37×10-6 ~187.92×10-6 、L/H = 2.34~3.99、δEu = 0.63~0.84、δCe = 0.52~0.54;综合判识表明, 前者主要来自于未混染或较弱混染的幔源、发育于新元古(878~808.6 Ma)板内伸展的构造环境, 变质和残留核锆石谐和年龄为 2 090 Ma, 记录了早元古的联合大陆的形成时代, 蚀变锆石 455.4±10.8 Ma 代表了加里东中晚期的岩浆热事件;后者岩浆锆石的 U-Pb 年龄为晚奥陶世 478±48 Ma, 发育于弧后盆地、与韧性剪切带有关的加里东中晚期岩浆活动。  相似文献   

18.
四川盆地华蓥山玄武岩出露于茅口组顶部,夹于龙潭组底部的杂色泥岩、页岩之间,岩性为灰黑色粗玄岩,底部致密块状,顶部见气孔—杏仁状构造。TAS图解显示玄武岩属于碱性与偏碱性过渡带上的拉斑玄武岩系列,TiO2含量介于2.92%~3.63%之间,Ti/Y值为465~567,属于高钛玄武岩(HT)。岩石LREE/HREE=3.25~3.96,轻稀土略富集,具有右倾平滑型稀土分配模式。华蓥山玄武岩与云南宾川,贵州赫章等地峨眉山玄武岩的地球化学特征相似,反映了相同的幔源性质。结合野外地质特征,认为华蓥山玄武岩应属峨眉地幔柱的一部分,是沿着华蓥山基底断裂发生裂隙式喷发的产物。研究区的高钛玄武岩Ce/Yb介于22.65~27.93,与前人报道的高钛玄武岩Ce/Yb比值范围基本一致,处于石榴石稳定区与尖晶石稳定区的过渡带,Th/Ta、Nb/U、La/Ta等比值反映出岩石受壳源物质的混染程度很低,可能是地幔柱轴部的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号