首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two‐step Th isolation protocol, involving micro‐columns of TRU‐Spec extraction chromatography material and AG1 resin, was evaluated. The MC‐ICP‐MS procedure included 232Th tailing characterisation and correction, and calibrator bracketing using an in‐house standard solution (ThS1) to correct for instrumental mass bias and Faraday cup to secondary electron multiplier relative gain. Repeated analyses of reference solutions (UCSC Th ‘A’, WUN, OU Th ‘U’, IRMM‐36) were consistent with published data. Six reference materials (A‐THO, BCR‐2, AGV‐2, BHVO‐2, BE‐N and BIR‐1) were processed. The average 230Th/232Th values obtained for these samples are in excellent agreement with published data. In addition, we report the first 230Th/232Th values for BE‐N and BIR‐1. The intermediate precisions for rock samples ranged from ± 0.24 to ± 0.49% (2 RSD) and were similar to those achieved for synthetic solutions, thereby supporting the overall validity of the chemical separation, data acquisition and reduction procedures. Counting statistics on the 230Th isotope was the most significant source of uncertainty. The intermediate precision of the mean 230Th/232Th for the Th‐depleted BIR‐1 (5.64 × 10?6 ± 0.27%, 2 RSD) is in the range of the analyses of other reference materials analysed in this study.  相似文献   

2.
Lead isotope ratio data were obtained with good precision and accuracy using a 266 nm femtosecond laser ablation (fLA) system connected to a multi‐collector ICP‐MS (MC‐ICP‐MS) and through careful control of analytical procedures. The mass fractionation coefficient induced by 266 nm femtosecond laser ablation was approximately 28% lower than that by 193 nm excimer laser ablation (eLA) with helium carrier gas. The exponential law correction method for Tl normalisation with optimum adjusted Tl ratio was utilised to obtain Pb isotopic data with good precision and accuracy. The Pb isotopic ratios of the glass reference materials NIST SRM 610, 612, 614; USGS BHVO‐2G, BCR‐2G, GSD‐1G, BIR‐1G; and MPI‐DING GOR132‐G, KL2‐G, T1‐G, StHs60/80‐G, ATHO‐G and ML3B‐G were determined using fLA‐MC‐ICP‐MS. The measured Pb isotopic ratios were in good agreement with the reference or published values within 2s measurement uncertainties. We also present the first high‐precision Pb isotopic data for GSE‐1G, GSC‐1G, GSA‐1G and CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5 glass reference materials obtained using the femtosecond laser ablation MC‐ICP‐MS analysis technique.  相似文献   

3.
Here, we present determinations of thallium (Tl) concentrations in the USGS reference materials BIR‐1G, BHVO‐2G and BCR‐2G measured by solution ICP‐MS. The Tl content in these three glasses spans a range of about 2–230 ng g?1, which is similar to the values published for the respective powder materials. The determined range of Tl concentrations in these three glass reference materials makes them ideal for investigating Tl concentrations in basaltic and andesitic volcanic glasses. We also performed a series of laser ablation ICP‐MS measurements on the three samples, which show that this technique is able to determine Tl concentrations in glass samples with concentrations as low as 2 ng g?1.  相似文献   

4.
We present an open‐source algorithm in Mathematica application (Wolfram Research) with a transparent data reduction and Monte Carlo simulation of systematic and random uncertainties for U‐Th geochronometry by multi‐collector ICP‐MS. Uranium and thorium were quantitatively separated from matrix elements through a single U/TEVA extraction chromatography step. A rigorous calibrator‐sample bracketing routine was adopted using CRM‐112A and IRMM‐035 standard solutions, doped with an IRMM‐3636a 233U/236U ‘double‐spike’ to account for instrumental mass bias and deviations of measured isotope ratios from certified values. The mean of 234U/238U and 230Th/232Th in the standard solutions varied within 0.42 and 0.25‰ (permil) of certified ratios, respectively, and were consistent with literature values within uncertainties. Based on multiple dissolutions with lithium metaborate flux fusion, U and Th concentrations in USGS BCR‐2 CRM were updated to 1739 ± 2 and 5987 ± 50 ng g?1 (95% CI), respectively. The measurement reproducibility of our analytical technique was evaluated by analysing six aliquots of an in‐house reference material, prepared by homogenising a piece of speleothem (CC3A) from Cathedral Cave, Utah, which returned a mean age of 21483 ± 63 years (95% CI, 2.9‰). Replicate analysis of ten samples from CC3A was consistent with ages previously measured at the University of Minnesota by single‐collector ICP‐MS within uncertainties.  相似文献   

5.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

6.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   

7.
This work presents an evaluation of various methods for in situ high‐precision Sr and Pb isotopic determination in archaeological glass (containing 100–500 μg g?1 target element) by nanosecond laser ablation multi‐collector‐inductively coupled plasma‐mass spectrometry (ns‐LA‐MC‐ICP‐MS). A set of four soda‐lime silicate glasses, Corning A–D, mimicking the composition of archaeological glass and produced by the Corning Museum of Glass (Corning, New York, USA), were investigated as candidates for matrix‐matched reference materials for use in the analysis of archaeological glass. Common geological reference materials with known isotopic compositions (USGS basalt glasses BHVO‐2G, GSE‐1G and NKT‐1G, soda‐lime silicate glass NIST SRM 610 and several archaeological glass samples with known Sr isotopic composition) were used to evaluate the ns‐LA‐MC‐ICP‐MS analytical procedures. When available, ns‐LA‐MC‐ICP‐MS results for the Corning glasses are reported. These were found to be in good agreement with results obtained via pneumatic nebulisation (pn) MC‐ICP‐MS after digestion of the glass matrix and target element isolation. The presence of potential spectral interference from doubly charged rare earth element (REE) ions affecting Sr isotopic determination was investigated by admixing Er and Yb aerosols by means of pneumatic nebulisation into the gas flow from the laser ablation system. It was shown that doubly charged REE ions affect the Sr isotope ratios, but that this could be circumvented by operating the instrument at higher mass resolution. Multiple strategies to correct for instrumental mass discrimination in ns‐LA‐MC‐ICP‐MS and the effects of relevant interferences were evaluated. Application of common glass reference materials with basaltic matrices for correction of ns‐LA‐MC‐ICP‐MS isotope data of archaeological glasses results in inaccurate Pb isotope ratios, rendering application of matrix‐matched reference materials indispensable. Correction for instrumental mass discrimination using the exponential law, with the application of Tl as an internal isotopic standard element introduced by pneumatic nebulisation and Corning D as bracketing isotopic calibrator, provided the most accurate results for Pb isotope ratio measurements in archaeological glass. Mass bias correction relying on the power law, combined with intra‐element internal correction, assuming a constant 88Sr/86Sr ratio, yielded the most accurate results for 87Sr/86Sr determination in archaeological glasses  相似文献   

8.
This work presents data for the radiogenic Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) in nine biogenic certified reference materials (NIST SRM 1515, 1566b, 1570a, 1573a, 1575a; BCR 100, BCR 101, BCR 670 and IAEA 359), which are suitable for analytical quality control in environmental research. The results were obtained using three different types of ICP‐based mass spectrometer (quadrupole‐based/magnetic sector field single‐collector ICP‐MS instruments and a multi‐collector ICP‐MS) and applying different mass bias correction procedures (calibrator‐sample bracketing and external Tl normalisation) with and without Pb separation from the matrix using ion exchange chromatography. In the majority of the samples, the measurements from all three of the ICP‐MS instruments were in agreement within ± 0.1%, despite the lower analytical precision of the single‐collector ICP‐MS instruments. We demonstrate that the presence of the sample matrix did not significantly influence the Pb isotopic ratios measured by magnetic sector field ICP‐MS, whereas the use of the two different mass bias corrections resulted in a systematic difference of 0.09% for the 208Pb/206Pb ratio.  相似文献   

9.
In this study, a technique for high precision in situ Fe and Mg isotope determinations by femtosecond‐laser ablation‐multi collector‐ICP‐MS (fs‐LA‐MC‐ICP‐MS) was developed. This technique was employed to determine reference values for a series of common reference glasses that may be used for external standardisation of in situ Fe and Mg isotope determinations in silicates. The analysed glasses are part of the MPI‐DING and United States Geological Survey (USGS) reference glass series, consisting of basaltic (BIR‐1G, BCR‐2G, BHVO‐2G, KL2‐G, ML3B‐G) and komatiitic (GOR128‐G and GOR132‐G) compositions. Their Fe and Mg isotope compositions were determined by in situ fs‐LA‐MC‐ICP‐MS and by conventional solution nebulisation multi‐collector ICP‐MS. We determined δ56Fe values for these glasses ranging between ‐0.04‰ and 0.10‰ (relative to IRMM‐014) and δ26Mg values ranging between ‐0.40‰ and ‐0.15‰ (relative to DSM‐3). Our fs‐LA‐MC‐ICP‐MS results for both Fe and Mg isotope compositions agreed with solution nebulisation analyses within analytical uncertainties. Furthermore, the results of three USGS reference glasses (BIR‐1G, BHVO‐2G and BCR‐2G) agreed with previous results for powdered and dissolved aliquots of the same reference materials. Measurement reproducibilities of the in situ determinations of δ56Fe and δ26Mg values were usually better than 0.12‰ and 0.13‰ (2s), respectively. We further demonstrate that our technique is a suitable tool to resolve isotopic zoning in chemically‐zoned olivine crystals. It may be used for a variety of different applications on isotopically‐zoned minerals, e.g., in magmatic or metamorphic rocks or meteorites, to unravel their formation or cooling rates.  相似文献   

10.
A HF‐free sample preparation method was used to purify silicon in twelve geological RMs. Silicon isotope compositions were determined using a Neptune instrument multi‐collector‐ICP‐MS in high‐resolution mode, which allowed separation of the silicon isotope plateaus from their interferences. A 1 μg g‐1 Mg spike was added to each sample and standard solution for online mass bias drift correction. δ30Si and δ29Si values are expressed in per mil (‰), relative to the NIST SRM 8546 (NBS‐28) international isotopic RM. The total variation of δ30Si in the geological reference samples analysed in this study ranged from ‐0.13‰ to ‐0.29‰. Comparison with δ29Si values shows that these isotopic fractionations were mass dependent. IRMM‐17 yielded a δ30Si value of ‐1.41 ± 0.07‰ (2s, n = 12) in agreement with previous data. The long‐term reproducibility for natural samples obtained on BHVO‐2 yielded δ30Si = ‐0.27 ± 0.08‰ (2s, n = 42) on a 12 month time scale. An in‐house Si reference sample was produced to check for the long‐term reproducibility of a mono‐elemental sample solution; this yielded a comparable uncertainty of ± 0.07‰ (2s, n = 24) over 5 months.  相似文献   

11.
This paper contains the results of an extensive isotopic study of United States Geological Survey GSD‐1G and MPI‐DING reference glasses. Thirteen different laboratories were involved using high‐precision bulk (TIMS, MC‐ICP‐MS) and microanalytical (LA‐MC‐ICP‐MS, LA‐ICP‐MS) techniques. Detailed studies were performed to demonstrate the large‐scale and small‐scale homogeneity of the reference glasses. Together with previously published isotopic data from ten other laboratories, preliminary reference and information values as well as their uncertainties at the 95% confidence level were determined for H, O, Li, B, Si, Ca, Sr, Nd, Hf, Pb, Th and U isotopes using the recommendations of the International Association of Geoanalysts for certification of reference materials. Our results indicate that GSD‐1G and the MPI‐DING glasses are suitable reference materials for microanalytical and bulk analytical purposes.  相似文献   

12.
We report an improved procedure for the determination of the platinum‐group elements (PGE) and Re, and Os isotopes from a single sample aliquot by isotope dilution (ID) using inductively coupled plasma‐mass spectrometry (ICP‐MS) and negative thermal ionisation mass spectrometry (N‐TIMS), respectively. A two‐stage column method was used to purify PGE‐Re from their sample matrix and interfering elements (e.g., Mo, Zr and Hf) after Os had been separated by CCl4 solvent extraction. The first column separation step used cation exchange resin (AG50W‐X8) to concentrate PGE‐Re and some potential interfering elements (e.g., Mo, Zr and Hf). In the second step, N‐benzoyl‐N‐phenylhydroxylamine (BPHA) extraction resin was used to separate PGE‐Re from the remaining interfering elements, which all remained strongly absorbed to the resin. The method was used to determine the PGE and rhenium, and Os isotope ratios in a range of geochemical reference materials (TDB‐1, WGB‐1, BHVO‐2 and UB‐N). The obtained results agree well with those previously published. This new method enables PGE‐Re abundances and Os isotopic ratios to be determined on the same sample digestion, and circumvents the problems created by sample heterogeneity when comparing PGE and Re‐Os isotope data.  相似文献   

13.
Halogen contents for the widely distributed reference glasses BHVO‐2G, BIR‐1G, BCR‐2G, GSD‐1G, GSE‐1G, NIST SRM 610 and NIST SRM 612 were investigated by pyrohydrolysis combined with ion chromatography, total reflection X‐ray fluorescence analysis, instrumental neutron activation analysis, the noble gas method, electron probe microanalysis and laser ablation‐inductively coupled plasma‐mass spectrometry. Glasses BHVO‐2G, GSD‐1G and GSE‐1G have halogen contents that can be reproduced at the 15% level by all bulk techniques and cover a significant range in halogen mass fractions for F (~ 20–300 μg g?1), Cl (~ 70–1220 μg g?1) and Br (~ 0.2–285 μg g?1) and I (~ 9–3560 ng g?1). The BIR‐1G glass has low F (< 15 μg g?1), Cl (~ 20 μg g?1), Br (15 ng g?1) and I (3 ng g?1). The halogen contents for the silica‐rich NIST SRM 610 and 612 glasses were poorly reproduced by the different techniques. The relatively high Cl, Br and I abundances in glasses GSD‐1G and GSE‐1G mean that these glasses are well suited for calibrating spatially resolved micro‐analytical studies on silicate glasses, melt and fluid inclusions. Combined EPMA and laser ablation‐inductively coupled plasma‐mass spectrometry data for glass GSE‐1G demonstrate homogeneity at the 10% level for Cl and Br.  相似文献   

14.
VizualAge, a new computer software tool for analysing U‐Pb data obtained by laser ablation‐inductively coupled plasma‐mass spectrometry, was developed. It consists of a data reduction scheme (DRS) for Iolite (a general mass spectrometry data analysis tool) as well as visualisation routines. In addition to the U/Pb and Th/Pb ages calculated by Iolite’s U‐Pb geochronology DRS, VizualAge also calculates 207Pb/206Pb ages and common Pb corrections for each time‐slice of raw data. Importantly, VizualAge allows one to display a live concordia diagram for visualising data on such a diagram as an integration interval is being adjusted. This provides instantaneous feedback regarding discordance, uncertainty, error correlation and common Pb. Several zircon data sets were used to illustrate how the live concordia could be used as a powerful inspection tool, revealing a single analysis to consist of zones of concordance, metamict areas, as well as inherited cores or younger overgrowths. VizualAge also constructs histograms, conventional and Tera‐Wasserburg type concordia diagrams, as well as 3D U‐Th‐Pb and total U‐Pb concordia diagrams. The precision and accuracy of data reduced with VizualAge are demonstrated with examples of the Ple?ovice, Temora‐2 and Penglai zircon reference materials. Data for zircon from the Long Lake Batholith (Wyoming craton) were used to illustrate how VizualAge calculated common Pb corrections and helped to expose as yet unexplained difficulties with accurately determining 204Pb.  相似文献   

15.
Here we describe high‐precision molybdenum isotopic composition measurements of geological reference materials, performed using multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS). Purification of Mo for isotopic measurements was achieved by ion exchange chromatography using Bio‐Rad AG® 1‐X8 anion exchange resin. Instrumental mass bias was corrected using 100Mo‐97Mo double spiking techniques. The precision under intermediate measurement conditions (eighteen measurement sessions over 20 months) in terms of δ98/95Mo was 0.10‰ (2s). The measurement output was approximately four times more efficient than previous techniques, with no compromise in precision. The Mo isotopic compositions of seven geochemical reference materials, seawater (IAPSO), manganese nodules (NOD‐P‐1 and NOD‐A‐1), copper‐molybdenum ore (HV‐2), basalt (BCR‐2) and shale (SGR‐1b and SCo‐1), were measured. δ98/95Mo values were obtained for IAPSO (2.25 ± 0.09‰), NOD‐P‐1 (?0.66 ± 0.05‰), NOD‐A‐1 (?0.48 ± 0.05‰), HV‐2 (?0.23 ± 0.10‰), BCR‐2 (0.21 ± 0.07‰), SCo‐1 (?0.24 ± 0.06‰) and SGR‐1b (0.63 ± 0.02‰) by calculating δ98/95Mo relative to NIST SRM 3134 (0.25‰, 2s). The molybdenum isotopic compositions of IAPSO, NOD‐A‐1 and NOD‐P‐1 obtained in this study are within error of the compositions reported previously. Molybdenum isotopic compositions for BCR‐2, SCo‐1 and SGR‐1b are reported for the first time.  相似文献   

16.
An in situ, medium‐resolution LA‐ICP‐MS method was developed to measure the abundances of the first‐row transition metals, Ga and Ge in a suite of geological materials, namely the MPI‐DING reference glasses. The analytical protocol established here hinged on maximising the ablation rate of the ultraviolet (UV) laser system and the sensitivity of the ICP‐MS, as well minimising the production of diatomic oxides and argides, which serve as the dominant sources of isobaric interferences. Non‐spectral matrix effects were accounted for by using multiple external calibrators, including NIST SRM 610 and the USGS basaltic glasses BHVO‐2G, BIR‐1G and BCR‐2G, and utilising 43Ca as an internal standard. Analyses of the MPI‐DING reference glasses, which represent geological matrices ranging from basaltic to rhyolitic in composition, included measurements of concentrations as low as < 100 μg g?1 and as high as > 104 μg g?1. The new data reported here were found to statistically correlate with the ‘preferred’ reference values for these materials at the 95% confidence level, though with significantly better precision, typically on the order of ≤ 3% (2sm). This analytical method may be extended to any matrix‐matched geological sample, particularly oceanic basalts, silicate minerals and meteoritic materials.  相似文献   

17.
A comprehensive method for the precise determination of Re, Os, Ir, Ru, Pt and Pd concentrations as well as Os isotopic compositions in geological samples is presented. Samples were digested by the Carius tube method, and the Os was extracted by conventional CCl4 method. The Re, Ir, Ru, Pt and Pd were first subgroup separated from the matrix elements into Re‐Ru, Ir‐Pt and Pd by a 2‐ml anion exchange column. Subsequently, the Re‐Ru was further purified by a secondary 0.25 ml anion exchange column or by microdistillation of Ru using CrO3‐H2SO4 as an oxidant followed by a secondary 0.25 ml anion exchange separation of Re. The Pd and Ir‐Pt were further successively purified by an Eichrom‐LN column to completely remove Zr and Hf, respectively. Rhenium, Ir, Ru, Pt and Pd were individually measured by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS), except for Ru after microdistillation purification was analysed by negative‐thermal ionisation mass spectrometry (N‐TIMS). The analytical results for peridotite reference material WPR‐1 agree well with the previously published data. Finally, several mafic rock reference materials including TDB‐1, WGB‐1, BHVO‐2, BCR‐2, BIR‐1a and DNC‐1a were analysed for Re‐Os isotopes and platinum‐group element concentrations to test their suitability for certification.  相似文献   

18.
The Lamont‐Doherty Earth Observatory radiogenic isotope group has been systematically measuring Sr‐Nd‐Pb‐Hf isotopes of USGS reference material BCR‐2 (Columbia River Basalt 2), as a chemical processing and instrumental quality control monitor for isotopic measurements. BCR‐2 is now a widely used geochemical inter‐laboratory reference material (RM), with its predecessor BCR‐1 no longer available. Recognising that precise and accurate data on RMs is important for ensuring analytical quality and for comparing data between different laboratories, we present a compilation of multiple digestions and analyses made on BCR‐2 during the first author's dissertation research. The best estimates of Sr, Nd and Hf isotope ratios and measurement reproducibilities, after filtering at the 2s level for outliers, were 87Sr/86Sr = 0.705000 ± 11 (2s, 16 ppm, n = 21, sixteen digestions, one outlier), 143Nd/144Nd = 0.512637 ± 13 (2s, 25 ppm, n = 27, thirteen digestions, one outlier) and 176Hf/177Hf = 0.282866 ± 11 (2s, 39 ppm, n = 25, thirteen digestions, no outliers). Mean Nd and Hf values were within error of those reported by Weis et al. (2006, 2007) in their studies of RMs; mean Sr values were just outside the 2s uncertainty range of both laboratories. Moreover, a survey of published Sr‐Nd‐Hf data shows that our results fall within the range of reported values, but with a smaller variability. Our Pb isotope results on acid leached BCR‐2 aliquots (n = 26, twelve digestions, two outliers) were 206Pb/204Pb = 18.8029 ± 10 (2s, 55 ppm), 207Pb/204Pb = 15.6239 ± 8 (2s, 52 ppm), 208Pb/204Pb = 38.8287 ± 25 (2s, 63 ppm). We confirm that unleached BCR‐2 powder is contaminated with Pb, and that sufficient leaching prior to digestion is required to achieve accurate values for the uncontaminated Pb isotopic compositions.  相似文献   

19.
We report homogeneity tests on large natural apatite crystals to evaluate their potential as U reference materials for apatite fission‐track (AFT) thermochronology by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS). The homogeneity tests include the measurements of major element concentrations by electron probe microanalysis (EPMA), whereas for U concentration, isotope dilution (ID) ICP‐MS and laser ablation (LA) ICP‐MS were employed. Two apatite crystals are potential reference materials for LA‐ICP‐MS analysis: a 1 cm3 fraction of a Durango crystal (7.5 μg g?1 U) and a 1 cm3 Mud Tank crystal (6.9 μg g?1 U). The relative standard deviation (1 RSD) of the U concentration determined by ID‐ICP‐MS of both apatite crystals was ≤ 1.5%, whereas 1 RSD for the LA‐ICP‐MS results was better than 4%, providing sufficient homogeneity for fission‐track dating. The results on the U homogeneity for two different apatite samples are an important step towards establishing in situ dating routines for AFT analysis by LA‐ICP‐MS.  相似文献   

20.
A new method for the simultaneous recovery of U, Th and Pb from ca. 0.5 g calcium carbonate samples for the purpose of U‐(Th)‐Pb geochronometry is presented. The protocol employs ion‐exchange chromatography. Standard anion exchange resin (AG 1‐X8 100–200 mesh) was used as the static phase, and 90% acetic acid was used as the mobile phase to elute the unwanted matrix components; dilute nitric acid was used to elute the U, Th and Pb. Blanks of 1.8 pg Th, 6.4 pg Pb and 8.4 pg U were obtained. The protocol was evaluated by determining the isotopic composition of U‐Th‐Pb separates obtained from an in‐house reference material (prepared from a natural speleothem) by MC‐ICP‐MS. An independently dated speleothem was also reanalysed. Based on these tests, the extraction protocol had an acceptable blank and produced a Pb separate sufficiently free of matrix‐induced instrumental biases to be appropriate for U‐Th‐Pb chronology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号