首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 192 毫秒
1.
四川二叠纪峨眉山玄武岩的古地磁极性研究   总被引:4,自引:0,他引:4  
本文通过攀枝花-西昌地区二叠纪岩层的古地磁测定,给出了两组对跖的磁性方向,一组在NE象限,一组在SW象限。并进一步根据国际上的地磁极性间隔年表与峨眉山玄武岩的同位素地质年龄测定数据,提出NE象限的磁性方向是地磁正极性期形成的,而SW象限的磁性方向是地磁反极性期形成的。  相似文献   

2.
申维  房丛卉  张德会 《地学前缘》2009,16(5):201-206
地球磁场多次发生南北(正负)磁极位置的变换,这已为大家所公认。但造成这种异常现象的原因,则是迄今未能很好解答的一个难题。应用分形混沌理论对地球磁极倒转进行了分析,认为发生地球磁极倒转时间段在时间轴上具有分形分布的性质;地球磁场系统通过不断与外界交换物质和能量,维持一种空间或时间的有序结构。地球磁场极性的随机倒转具有混沌运动的自逆转特性,混沌理论给地磁极性倒转提出了一个简明的动力机制解释。  相似文献   

3.
通过对昆明滇池湖盆三个钻孔较密集的古地磁采样和系统的测量,获得了该区沉积500余米厚新生代地层的较为完整的磁极性剖面。自上至下测定出了三个极性带(布容、松山、高斯)。在松山反极性带内判别出了4个极性亚带(贾拉米洛、滇池、奥杜威、留泥汪);高斯正极性带内判别出了2个极性亚带(凯纳、猛犸);布容正极性带内分辨出了6~9个短暂的地磁极性变化。根据本文研究结果,参考孢粉、介形虫,腹足类化石及碳14测年资料,对照国际地磁极性年表,确定出滇池湖盆晚新生代地层包括了整个第四系和上新统晚期部分,并对该套地层进行了具体的划分和粗略的对比。  相似文献   

4.
地球磁极倒转的星地碰撞成因   总被引:4,自引:2,他引:2  
刘广润  张宏泰 《地球科学》2005,30(3):371-376
地球磁场多次发生南北(正负)磁极位置的变换, 即极性倒转, 这已为大家所公认; 但造成这种极性倒转的原因, 则是迄今未能很好解答的一个难题.基于地球磁场的发电机效应理论和星地碰撞的动力效应研究, 探讨了外星撞击地球造成地磁场极性倒转的可能性.研究表明, 当外星沿与地球自转的正逆不同方向撞击地球时引起的地球转速快慢变化, 可导致地球内部核、幔圈层之间的转速相对快慢关系(相对运动方向)发生改变, 从而受其控制的液核涡旋方向及相应的地磁场方向也会随之改变, 于是就形成地磁极性倒转.这是一个新的思路, 它给地磁极性倒转提出了一个简明的动力机制解释.   相似文献   

5.
孙知明  许坤等 《地质学报》2002,76(3):317-324
本文通过对辽西朝阳地区含鸟化石层附近侏罗-白垩系蓝旗组、土城子组、义县组地层共1252块古地磁样吕的测试与分析,建立了以上沉积地层的磁极性序列,发现蓝旗组、土城子组地层的磁极性序列具有频繁的正、反极性、而义县组则为单一正极性,结合现有古生物和同位素年龄资料,对比国际中生代地磁极性年表,表明土城子组的磁极性序列相当于提塘期、基末里期、牛津期和卡洛期,其主体的地质时代应属晚侏罗世(J3),土城子组底部的地质时代应属中侏罗世(J2);并且根据义县组含鸟化石层以上层位的磁性地层研究结果,认为义县组含鸟化石的正极性带可与M16正极性时相对应,义县组含鸟类化石层的时代应属早白垩世早期,辽西白垩系/侏罗系界线很有可能位于义县组/土城子组之间。  相似文献   

6.
运用磁性地层学研究岩石单元磁性特征,是一种有效的地层对比方法。上马剖面按地层序列磁性特征的分异把磁极性一致或极性反向频率大致相当的区段组合在一起,由此划分了33个磁性地层极性带,3个极性亚超带,2个极性超带,可与国际标准磁极性年表对比。  相似文献   

7.
通过对吉木萨尔县大龙口非海相二叠系-三叠系界线上下地层磁性特征的研究,在梧桐沟组-锅底坑组共发现78个极性异常,其中以负极性为主,间隔了一系列的正极性和过渡极性.梧桐沟组上部以负极性为主,间隔了2个正极性和过渡极性.这可与巴基斯坦盐岭和四川广元上寺的大隆组下部对比,即相当于Da段.梧桐沟组顶部和锅底坑组底部,正、负极性变化频繁,极性特征可与巴基斯坦盐岭和四川广元上寺大隆组中部对比,即相当于Db段.锅底坑组下部以负极性为主,间隔了2个正极性段,可与四川广元上寺大隆组中上部对比,即相当于Dc段.锅底坑组中下部以负极性为主,上部夹1个正极性段,可与四川广元上寺大隆组上部磁性特征对比,即相当于Dd段.锅底坑组中上部以负极性为主,间隔了4个正极性段,可与四川广元上寺飞仙关组下部对比,即相当于Fa段.根据磁性段的划分对比,将二叠系三叠系界线置于Fa和Dd之间,即本次研究测制剖面的41层和42层之间.根据各岩组的古地磁特征求得岩组形成时的古地磁极:梧桐沟组79.1°N,238.1°;锅底坑组72.3°N,322.2°;下三叠统77.5°N,320.8°.古纬度基本一致,为32°~35°N.  相似文献   

8.
地磁极性年表的发展回顾   总被引:1,自引:0,他引:1  
磁性地层研究是对新生代乃至中生代沉积序列定年的重要方法之一。地磁极性年表作为磁性地层定年的标准,其精度对地层学、古生物学、古气候学等领域的研究有重要影响。回顾了地磁极性年表的发展历史,并着重介绍了当前天文极性年表的发展现状。按照地磁极性年表不同时期的发展特点,可将其发展大致归纳为3个阶段:①早期阶段:20世纪60年代末,主要基于火山岩剩磁测量和K/Ar测年建立了最近约5Ma以来的地磁极性年表;②中期阶段:20世纪60年代末到90年代初,基于大量海底磁异常条带相对宽度建立了中中生代以来完整的地磁极性年表;③现今阶段:20世纪90年代以来,基于天文学和古气候学研究对极性界限的轨道调谐,正在构建高精度的天文极性年表。在天文学和古气候学发展的推动下,高精度的天文极性年表有望取代传统的CK95年表而被广泛应用并促进相关领域的发展。  相似文献   

9.
布容-松山(B/M)极性倒转事件是第四纪发生的最近一次地磁极性倒转,研究地磁极性倒转的特征不仅对理解地磁场演化规律具有重要意义,同时极性倒转通常具有全球等时性,因此常被视为地层划分和全球气候对比的关键时间标记物。然而古地磁研究表明,布容-松山事件在海洋与中国黄土沉积物中的记录存在着“错位”现象,使得基于磁性地层年代框架...  相似文献   

10.
探讨了湖南前寒武纪地层的地磁学特征,利用其古磁极论证了湖南前寒武纪武陵运动、雪峰运动与冷家溪群、板溪群(高涧群)、震旦系之间的时空关系。古地磁极移轨迹曲线表明:湖南微陆块与扬子古陆有密切的亲缘性,它们都是在寒武纪之前就已漂移定位在现今的位置  相似文献   

11.
The history of geomagnetic polarity reversals in the Cenozoic and Late Mesozoic is well known since the Late Jurassic (Oxfordian). A continuous record of polarity has been derived for this time interval from the interpretation of oceanic magnetic anomalies. Most of the polarity chrons in this oceanic record have been verified and dated in coordinated magnetostratigraphic and biostratigraphic studies. This has led to the generation of progressively refined and improved geomagnetic reversal time-scales that provide a framework for absolute dating of palaeontological zonations. By serving as a basis for statistical analysis of reversal frequency they provide information relevant to processes in the Earth's core. The rate of reversals since the Late Cretaceous shows a steady increase on which a cyclical variation appears to be superposed. A stochastic model for reversals predicts a Poisson distribution of polarity interval lengths. The polarity time scales contain many fewer short (± 50 kyr) polarity chrons than a Poisson distribution, and it has been suggested that a gamma renewal process with index greater than unity is a more appropriate statistical model. The statistical arguments give no convincing reason for abandoning the model and other, physical reasons must be sought to explain the incompleteness of the reversal record. The discovery and verification of short chrons in the oceanic record may best be investigated by deep-tow magnetometer surveys. The reversal history before the Late Jurassic is not well known. Magnetostratigraphy in coeval Early Jurassic sections has not given correlatable records and it has not been possible to compile a definitive polarity sequence. Evaluation of geomagnetic polarity history for the Early Mesozoic and the Palaeozoic will require unambiguous magnetostratigraphy in well-dated sections where verification of the polarity pattern is possible at the fossil zone or stage level.  相似文献   

12.
地磁倒转和漂移不仅是研究地球动力学的重要手段之一,也能使地磁年代框架更加准确。通过对洛川黄土剖面L1、S1进行详细的岩石磁学、古地磁研究,结果表明:L1、S1中主要的载磁矿物是磁铁矿,但赤铁矿也可能携带稳定的特征剩磁;洛川黄土剖面能够记录Blake漂移,并发生于(123±2)ka。通过S1中1 092~1 240cm处6套平行样品的古地磁结果,表明洛川黄土难以记录Blake漂移的形态学特征;L1未记录到Mono Lake和Laschamp漂移,但是在175cm处识别出1次明显的地磁异常事件,年代约17.9ka。我们认为该地磁异常事件应为Hilina Pali/Tianchi漂移。此外,导致同一极性事件在不同地区记录产生差异的可能原因有中国黄土存在千年尺度的沉积间断、较低的沉积速率及黄土剖面所处地理位置的不同。同一剖面平行样品间地磁漂移形态学存在差异,可能是由于极性漂移期间较低的古地磁场强度抑制了黄土剩磁记录能力所致。  相似文献   

13.
E. Irving  G. Pullaiah 《Earth》1976,12(1):35-64
The percentage of normal and reversed magnetization in land-based paleomagnetic studies of Phanerozoic rocks (0 to ? 570 m.y.) have been compiled in order to determine the long-term variation in polarity bias of the geomagnetic field. Where possible the results are compared with the record from marine magnetic anomalies. Only rarely is there an even balance between normal and reversed polarity. During the past 350 m.y. two quiet intervals can be recognized when few reversals occurred, the Cretaceous (KN about ? 81 to ? 110 m.y.) and Permo-Carboniferous (PCR about ? 227 to ? 313 m.y.). Less firmly established are two other quiet intervals, one in the Jurassic (JN about ? 145 to ? 165 m.y.), and one in the Triassic (TRN about ? 205 to ? 220 m.y.). Between these quiet intervals there are disturbed intervals when reversals were comparatively frequent. From ? 680 to ? 350 m.y. the paleomagnetic record is inadequate to delineate a succession of quiet and disturbed intervals although one is probably present. Maximum entropy spectral analysis reveals three periodicities, a dominant one at about 300 m.y. and others, less well-defined, at 113 and 57 m.y. The variations in polarity bias are compared with the paleosecular variation, and it is shown that the magnitude of the paleosecular variation is greater in disturbed than in quiet intervals. This indicates that the magnitude of paleosecular variation and polarity bias are governed by variations in the balance between non-dipole and dipole components of the field, and that these variations probably had their origin in processes near the core—mantle interface. The correspondence between the dominant periods of 300 m.y. and plate tectonics is noted and a causal relationship suggested.  相似文献   

14.
It is generally acknowledged that geomagnetic polarity has reversed many times in geological history and an abnormal geologic phenomenon is the Cretaceous normal superchron. However, the causes have been unknown up to now. The nonlinear theory has been applied to analyze the phenomenon in geomagnetic polarity reversal and the Cretaceous normal superchron. The Cretaceous normal superchron implies that interaction of the Earth’s core-mantle and liquid movement in the outer core may be the lowest energy state and the system of Earth magnetic field maintains a sort of temporal or spatial order structure by exchanging substance and energy in the outside continuously. During 121-83 Ma, there was no impact of a celestial body that would result in a geomagnetic polarity reversal, which may be a cause for occurrence of the Cretaceous normal superchron.The randomness of geomagnetic polarity reversal has the self-reversion characteristic of chaos and the chaos theory gives a simple and clear explanation for the dynamic cause of the geomagnetic polarity reversal.  相似文献   

15.
Magnetostratigraphy involves the study of changes in the Earth's magnetic field that are recorded in sediments and rocks. These include short-term fluctuations (secular variation), polarity transitions and magnetic reversal sequences. All have important applications in the Earth sciences. They can be used to calculate the rates of sea-floor spreading and sediment deposition rates, and for time-correlation of rock sequences, especially when no other means are available.  相似文献   

16.
杨合群 《西北地质》2002,35(3):126-130
地球磁场极性在地质历史中发生过相当频繁的倒转。作者将地球内部划分为岩石圈-软流圈-中圈-液圈-固核等5个动力学圈层,认为中圈与固核间可异步旋转;地球偶极磁场由中圈与固核异步旋转时所驱动的液圈中的封闭涡流与系磁场作用产生;该偶极子场极性由地球所通过的银道面上侧或下侧磁场方向及液圈涡流的方向共同决定,二者之一反向,极性发生倒转。  相似文献   

17.
本文介绍了地球磁场的成因、极性变化以及运用极性倒转划分对比地层和指示环境。在实际应用中,运用古地磁极性变化和古纬度方法对二连盆地某地区地层定年和地层界面进行识别。  相似文献   

18.
We present new paleomagnetic data for continental flood basalts (Siberian traps) obtained from cores of two boreholes in the northwestern Noril'sk area, within the Kharaelakh and Vologochan basins. Paleomagnetic measurements of lava and tuff samples from KhS-59 and SSV-19 boreholes allowed reconstructing and correlating the polarity patterns. Thus multiple paleomagnetic anomalies (PMA) have been discovered as brief polarity changes in narrow intervals of the magnetostratigraphic section above the principle reversal at the boundary between the Ivakin and Syverma Formations.The most prominent anomalies are observed at the bases of the Morongo and Mokulai Formations. The samples from the anomalous intervals differ from those of other intervals neither in rock magnetic properties, nor in mineralogy and magnetic grain sizes. Therefore, the revealed PMA record excursions of the geomagnetic field. Comparison of the results with the Meishan Global Stratotype Section and Point (GSSP) of the Permian–Triassic boundary implies a revision to the P–T position in the trap basalt succession of the Noril'sk area. Judging by the EMF behavior, basalts in this part of the trap province erupted for at least 500 kyr during an interval of stable normal polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号