首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Geochemical analysis of the bottom sediments of Lakes Banryoko, Onbe, Hamahara and Kijima in Shimane prefecture of southwest Japan was carried out to determine their metal concentrations, and to assess the potential for ecological harm by comparison with sediment quality guidelines. The work conducted includes water quality measurement, and analyses of trace and major elements and rare earth element (REE) of sediments. Results showed that water quality of the lakes contrasts slightly between their upper and lower parts. Average abundances of As, Pb, Zn, Cu, Ni, and Cr in Banryoko sediments were 27, 33, 90, 27, 25, and 46 ppm, respectively, compared to 31, 52, 175, 44, 44, and 75 ppm at Onbe, 11, 26, 96, 13, 13, and 35 ppm at Hamahara, and 24, 43, 193, 31, 12, and 30 ppm at Kijima. These concentrations exceeded the lowest effect level that has moderate impact on aquatic organisms as proposed by the New York State Department of Environmental conservation. Pb and Cu abundances are comparable to the Coastal Ocean Sediment Database threshold, while As and Zn exceed this value, indicating the concentrations of these metals are potentially toxic. Increases in the abundances of these metals in lake sediments are probably related to the reducing condition of the sediments, anthropogenic sources and surface soil erosion. The REE patterns of sediments in the study areas are broadly comparable to the average upper continental crust, but show some contrast between lakes due to differing source litho type. Significant positive correlations between Fe2O3 and As, Pb, Zn, and Cu were found in the sediments, suggesting these metals may be adsorbed on Fe oxides in the lake sediments.  相似文献   

2.
In this study, the total concentration and speciation of trace elements (As, Cr, Cu, Cd, Pb, Zn, and Ni), in sediments of the Maharlu saline Lake, SW Iran are investigated. Comparison with sediment quality guidelines, calculation of the enrichment factors, and trace metal profiles in the Khoshk River inflow point indicate that Maharlu Lake is in the threat of contamination, especially with respect to Ni and Cd. Sequential extraction analysis reveals that elemental speciation in this lake is strongly affected by oxidizing condition of the lake water. The studied elements (except Cr) are mainly associated with oxide phases, as a result of prevailing oxidizing conditions of the lake and also probably due to the source of elements. The ratio of metals in mobile fractions to sum of fractions in lake sediments is very low. However, metal ratios (except for Cr) in mobile fractions are much higher in surface sediments, indicating the impact of anthropogenic loading of trace metals in the recent years.  相似文献   

3.
Sources and distribution of major and trace elements were investigated in the Plitvice Lakes, a pristine cascade hydrological system of sixteen karst lakes situated in a sparsely populated area of the central Croatia. Water and surface sediment samples from 17 locations, including springs, tributaries and lakes, were analyzed for the content of 22 elements by high-resolution inductively coupled mass spectrometry. Principal component analysis of the collected data set showed that different springs and tributaries displayed distinct multielemental compositions, reflecting primarily the differences in their corresponding geological backgrounds. It was shown that the springs situated in the Upper and Middle Jurassic dolomite bedrock represented the main source of several trace elements, including some toxic metals (Cd, Zn, Ni and Tl), to the Plitvice Lakes system. The concentrations of most of the trace elements (Mn, Fe, Al, Cd, Zn, Cu, Ni, Pb, Co, Cr and Tl) showed decreasing spatial trends in the downstream direction, from sources to the lakes. Such a distribution was interpreted to be a consequence of an efficient removal of the dissolved elements in the lentic parts of the system, mainly by co-precipitation with authigenic calcite and Mn oxides. Nevertheless, most of the elements in the lake sediments were highly correlated with Al, which indicated their prevalent association with terrigenic material. It was shown that the multicascade system of the Plitvice Lakes had an enhanced autopurification efficiency regarding the elimination of most of the trace metals from the aqueous phase.  相似文献   

4.
Eighteen sediment samples and six water-column samples were collected in a small (6 km2), coastal embayment (Port Jefferson Harbor, New York) to define a high-resolution spatial distribution of metals and to elucidate sources of contaminants to the harbor. Sediment metal (Ag, Cu, Fe, Ni, Pb, V, and Zn) concentrations varied widely, reflecting differences in sediment grain size, with higher metal concentrations located in the fine-grained inner harbor sediments. Calculated enrichment factors for these sediments show that Ag, Pb, Cu, and Zn are elevated relative to both crustal abundances and their respective abundances in sediments in central Long Island Sound. Metal concentrations were 1.2 to 10 fold greater in water from the inner harbor compared to water from Long Island Sound collected outside the mouth of the harbor. Spatial variations in trace metals in surface waters within the bay parallel the spatial variations of trace metals in sediments within the harbor. Elevated water-column metal concentrations appear to be partially derived from a combination of diagenetic remobilization from contaminated sediments (e.g., Ag) and anthropogenic sources (e.g., Cu and Zn) within the southern portions of the harbor. Although the National Status and Trends Program had reported previously that sediment metal concentrations in Port Jefferson Harbor were low, the results of this study show sediment metals have high spatial variability and are enriched in the inner harbor sediments at levels comparable to more urbanized western north shore Long Island harbors.  相似文献   

5.
The concentration of metals (Pb, As, Co, Cu, Ni, Zn, Fe and Mn) was investigated in water and sediment samples of E?irdir Lake. The Lake is the second largest fresh water lake of Turkey and it is used as drinking water in the region. The anthropogenic pollutants are primary sources of trace metals which are negatively affected lake water quality. These negative effects were observed in both lake water and bottom sediments. According to obtained data, Pb, Cu, Ni, Fe and Zn have significant enrichment in sediments samples. In addition, the hydrodynamic model of the lake was determined as effectively for Pb, Co, Cu, Ni, Zn, Fe and Mn accumulations. Also, the effect of anthropogenic pollutants was found to be more dominant than geogenic effect in metal accumulation of the lake bottom sediments. Therefore, anthropogenic pollutants within the lake basin should be consistently controlled for the sustainable usage of the lake.  相似文献   

6.
长江中下游地区浅水湖泊密布,全新世该区湖泊沉积的模式还不清晰。本研究在长江中下游的南漪湖、升金湖和菜子湖这3个湖泊开展了多钻孔AMS^14C测年工作,测年结果显示这些湖泊沉积地层中广泛出现长时间尺度的沉积物缺失。南漪湖湖泊钻孔的沉积物14C年龄介于5668~7828cal.aB.P.,菜子湖湖泊钻孔的沉积物^14C年龄介于6221~7929cal.aB.P.,升金湖围垦区钻孔14C年龄介于6302~7049cal.aB.P.。结合该地区以往湖泊钻孔研究资料,发现全新世长江中下游两岸洼地湖泊存在较广泛的6~3ka的沉积间断。结合长江水位重建资料,笔者提出关于全新世湖泊沉积存有长期间断的新认识:即6~3ka,长江水位相对平稳,湖泊沉积物虽有堆积,但易于被侵蚀搬运造成沉积间断;与此对应的是,在约8~7ka,海面上升造成长江水位较快上升,由于顶托作用,湖泊沉积物持续堆积;在约3ka以来,由于人类活动的影响,以及长江水位的进一步上升,湖泊沉积物也易于堆积,但在一些湖区沉积物也会被侵蚀。在6~3ka之间湖泊沉积物易于被侵蚀的一个可能原因是该时段长江上游来沙来水减少,自然堤易被破坏,对两岸湖泊洼地的封堵作用减少,使得湖泊泥沙易被侵蚀入江。  相似文献   

7.
Surface sediment samples from 17 sites in the Yantai coastal area, the northern Yellow Sea, China, combined with a sediment core were employed for geochemical and chronological analyses for the purpose of characterizing the temporal and spatial distribution of trace metals in sediments and their implications for anthropogenic processes. The results indicated that the spatial distribution of trace metals (Cr, Ni, Ti, Pb, As, Zn, Mn and Cu) in surface sediments was significantly contributed by the sewage discharges along the Yantai coast, and the coastal currents played a major role for transporting the pollutants to offshore. The temporal concentrations of trace metals in the sediment core based on the chronology determined by a combination of radionuclide 137Cs and 210Pb activity demonstrated that trace metal concentrations increased step-wisely over the last ca. 100 years, corresponding to the intensity of anthropogenic processes in the Yantai area. The high levels of Cu and As before the late 1970s indicated the agricultural emission from the application of pesticides. While, all the high-trace metal concentrations since the early 1980s could be seen as diagnostic indictors of increasing industrialization, urbanization and sewage discharge in the Yantai area. Although the potential ecological risk evaluation of trace metals in the coastal area suggests low-potential ecological risk at present, some trace metals, such as As and Pb need particular attention due to their slight contamination.  相似文献   

8.
 As, Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, V, Se and Zn concentrations were determined and compared in lake and overbank sediments from 33 catchments without local pollution sources in southern Norway. There were no significant differences in concentrations of Be, Co, Cr, Cu, Ni, and V in overbank and pre-industrial lake sediments. In areas with shallow overburden, and significant influence from long-range atmospheric pollution, concentrations of As, Cd, Hg, Pb, Se, and Zn in overbank sediments were probably modified by vertical percolating water. In such areas, we suggest using lake sediments as a better sampling medium for mapping pre-industrial concentrations. Pre-industrial lake sediments yield natural concentrations of Hg and Se, which consist of both geogenic and natural atmospheric deposition. Important covariables like organic carbon content, Fe oxides, and fine mineral fraction were generally higher in pre-industrial lake sediments as compared to overbank sediments. By adjusting for such differences overbank sediments could be used as an alternative in mapping background concentrations of trace metals in regions with few lakes. Received: 19 February 1999 · Accepted: 17 April 1999  相似文献   

9.
Damming of the North Anna River in 1972 created Lake Anna, a cooling water source for the Dominion nuclear power plant as well as a popular recreation site in Spotsylvania and Orange counties, Virginia, USA. Previously dated (210-Pb) sediment cores from seven locations within the lake and three locations in the adjoining Waste Heat Treatment Facilities (WHTF) were analyzed for trace metals (Al, Ba, Zn, Cd, Cu, Fe, Mn and Pb) and polychlorinated biphenyls (PCBs) to examine the environmental evolution of the reservoir system. The reservoir has a history of mining activities in its watershed and unusually elevated concentrations of PCBs were found in fish tissues from previous studies. Therefore, dated sediment cores provided the framework for both the temporal and spatial analysis of possible sources and flux histories for both trace metals and PCBs. The trace metals results suggest that, though the upper reaches are relatively less impacted, the old mine tailings from the now ceased mining activities in the watershed of Contrary Creek tributary continue to dominate the sediment chemistry of the lower portion of the lake basin, signified by sediment enrichment of Pb, Cd, Cu, and Zn. Lagoon-2 of the WHTF also seems to be receiving unusually high loadings of Cd (12.5 ± 1.07 μg/g) that is probably associated with waste materials from the nuclear power plant that maintains the lagoons. PCB sediment concentrations were relatively low in the lower sections of the basins with values typically being <3.5 ng/g. The upper reaches of the basin had several PCB hotspots, with the surface sediments of Terry’s Run tributary having values as high as 53.13 ng/g. The spatial distribution of PCBs seems to suggest the upper reaches of the basin as the probable source, with the unusually high concentrations near bridges suggesting a possible link between the PCBs and old bridge fill materials. The oldest lacustrine sediments also had relatively high trace metals and PCB values signifying a probable role of soil disruption and sediment reconcentration during reservoir construction.  相似文献   

10.
General geochemical parameters of water, superficial sediments, and suspended particulate matter (SPM) were determined from small shallow saline lakes (soda ponds) as well as from lake Neusiedlersee in eastern Austria. Additionally, instrumental neutron activation analysis (INAA) was used to determine the distribution of major, rare earth and other trace elements in superficial sediments and SPM. Chemical results show remarkable differences in salinity and ionic strength between the investigated ponds. Anthropogenic effects, such as drawdown of ground water level and a loss of lake water due to drainage, are clearly reflected in obtained chemical and geological data. Due to a strong dependence of the complexation and scavenging behavior of the rare earth elements (REE) on ionic strength, a significant difference between REE concentrations in soda ponds with different anthropogenic impact was found. The content and composition of authigenic evaporitic minerals in superficial sediments and SPM clearly differ with a fluctuating water level and salt concentration. Furthermore, we determined the distribution of major and trace elements in superficial sediments of a nearby fluvial system. Our results show a clear correlation between REE superficial sediment concentrations in anthropogenically degraded soda ponds and fluvial system. Therefore, we assume that REE concentrations of sediments and SPM are suitable for the study of geochemical changes of inland saline lakes due to anthropogenic impacts on water balance.  相似文献   

11.
《Applied Geochemistry》2006,21(2):318-334
To evaluate the extent of human impact on a pristine Antarctic environment, natural baseline levels of trace metals have been established in the basement rocks of the Larsemann Hills, East Antarctica.From a mineralogical and geochemical point of view the Larsemann Hills basement is relatively homogeneous, and contains high levels of Pb, Th and U. These may become soluble during the relatively mild Antarctic summer and be transported to lake waters by surface and subsurface melt water. Melt waters may also be locally enriched in V, Cr, Co, Ni, Zn and Sn derived from weathering of metabasite pods. With a few notable exceptions, the trace metal concentrations measured in the Larsemann Hills lake waters can be entirely accounted for by natural processes such as sea spray and surface melt water input. Thus, the amount of trace metals released by weathering of basement lithologies and dispersed into the Larsemann Hills environment, and presumably in similar Antarctic environments, is, in general, not negligible, and may locally be substantial.The Larsemann Hills sediments are coarse-grained and contain minute amounts of clay-size particles, although human activities have contributed to the generation of fine-grained material at the most impacted sites. Irrespective of their origin, these small amounts of fine-grained clastic sediments have a relatively small surface area and charge, and are not as effective metal sinks as the abundant, thick cyanobacterial algal mats that cover the lake floors. Thus, the concentration of trace metals in the Larsemann Hills lake waters is regulated by biological activity and thawing–freezing cycles, rather than by the type and amount of clastic sediment supply.  相似文献   

12.
This study reports a multi-parameter geochemical investigation in water and sediments of a shallow hyper-eutrophic urban freshwater coastal lake, Zeekoevlei, in South Africa. Zeekoevlei receives a greater fraction of dissolved major and trace elements from natural sources (e.g., chemical weathering and sea salt). Fertilizers, agricultural wastes, raw sewage effluents and road runoff in contrast, constitute the predominant anthropogenic sources, which supply As, Cd, Cu, Pb and Zn in this lake. The overall low dissolved metal load results from negligible industrial pollution, high pH and elevated metal uptake by phytoplankton. However, the surface sediments are highly polluted with Pb, Cd and Zn. Wind-induced sediment resuspension results in increased particulate and dissolved element concentrations in bottom waters. Low C/N ratio (10) indicates primarily an algal source for the sedimentary organic matter. Variation in sedimentary organic C content with depth indicates a change in primary productivity in response to historical events (e.g., seepage from wastewater treatment plant, dredging and urbanization). Primary productivity controls the enrichment of most of the metals in sediments, and elevated productivity with higher accumulation of planktonic debris (and siltation) results in increased element concentration in surface and deeper sediments. Aluminium, Fe and/or Mn oxy-hydroxides, clay minerals and calcareous sediments also play an important role in adsorbing metals in Zeekoevlei sediments.  相似文献   

13.
Factors controlling the distribution of mining-derived Cu, Pb and Zn in the waters and bottom sediments of a large Andean lake (Lago Junin, Peru) have been assessed based on sample collections in May/June 1997 (dry season) and February/March 1998 (wet season). Relatively low levels of trace metals detected in surface waters of the lake during the dry season contrasted greatly with the high values observed during the wet period. Dry season concentrations of total Zn, Cu and Pb in the central lake basin averaged 41, 4.4 and 0.24 µg/L, respectively. In contrast, the respective wet season concentrations of total Zn, Cu and Pb in areas of the main basin ranged up to 387, 52 and 40 µg/L. The seasonal variability in metal concentrations largely reflects an increase in the concentration of particulate metal phases during the wet season. Such observations can be attributed to changes in sediment loadings associated with mining-derived river inputs and changes in lake circulation resulting from hydroelectric dam operations. Surface sediments are characterized by lake-wide enrichments of Zn, Cu and Pb, with maximum concentrations reaching as high as 5, 0.25 and 0.7 wt%, respectively. Estimated rates of authigenic metal accumulation are not sufficient to account for the elevated metal concentrations in the main basin of the lake, indicating that metal distributions are governed by the accumulation of metal-rich particulates. Variations in the spatial distributions of Zn, Cu and Pb are suggested to be a function of varying host phases and textural sorting.  相似文献   

14.
Trace metal dynamics in a seasonally anoxic lake   总被引:1,自引:0,他引:1  
Selected results are presented from a detailed 12-month study of trace metals in a seasonally anoxic lake. Dissolved concentrations of Fe, Mn, organic carbon, Cd, Cu, Pb, Zn, and pH were determined in the water column and the interstitial waters on 39 occasions. Trace metal concentrations remained low throughout the year in both water column and pore waters. There was evidence for some remobilization at the sediment-water interface but sediments deeper than 3 cm acted as a sink throughout the year. Variations in the water concentrations were largely associated with increased loading during periods of heavy rainfall. During the summer, concentrations of Cu and Zn in the waters overlying the sediments were enhanced by release from decomposing algal material. Similarly, enhanced concentrations of Cd, Cu, Pb, and Zn were observed during periods of much reduced mixing during ice-cover. Although there were large seasonal variations in the concentrations of dissolved and particulate Fe and Mn, there were no comparable changes in the concentrations of trace metals.  相似文献   

15.
武汉市墨水湖沉积物重金属污染特征与防治对策   总被引:8,自引:2,他引:8  
苏春利  王焰新 《矿物岩石》2006,26(2):111-116
武汉市墨水湖重金属污染严重,其污染特征在我国城市湖泊中具代表性。在对墨水湖不同湖区沉积物中重金属污染物空间分布特征进行分析的基础上,应用地积累指数法探讨不同重金属元素含量随深度变化的规律和原因,并对墨水湖沉积物中重金属的污染程度进行评价表明:墨水湖沉积物中重金属元素锌和汞污染最为严重,污染程度由高到低依次为:Zn>Hg>Cu>C r>Pb>A s;从整个湖区来看,分布有排污口的周边湖区污染严重,湖心污染程度较低;沉积物中主要重金属元素含量随深度增加而降低,其变化规律主要受污染状况的影响,沉积物颗粒粒径的变化和早期成岩作用的影响不大。为了改善墨水湖水质条件和重金属污染严重的现状,必须在截污、疏浚和引水工程等基本治理措施保护下,重建和恢复沉水植物系统,才能从根本上改善湖泊水质。  相似文献   

16.
吉林省部分河流与湖泊表层沉积物中重金属的分布规律   总被引:13,自引:2,他引:13  
河流的水化学组成具有多样性和易变性,而湖泊水则因其交换缓慢,即使与河流所在地区的气候条件和地球化学条件相似,其化学组成也明显区别于河流,沉积物中重金属的分布也不同.利用形态分析、相关分析和地累积指数法研究了吉林省境内部分河流、湖泊沉积物重金属分布规律.研究结果表明,伊通河和南湖重金属元素生物可利用态含量都很高,存在较大的、潜在的生态危害,Pb、Cu在有机物态中表现出明显的赋存趋势;河流沉积物中Cu、Pb、Zn与pH值显著相关,但湖泊中却相关性不显著.河流沉积物受重金属污染较严重,污染程度最高达到4级,属强污染,湖泊污染程度较轻.  相似文献   

17.
沉积物微量金属元素在重建水体环境变化中的意义   总被引:7,自引:0,他引:7  
沉积物所记录的微量金属含量与形态的变化是指示人类活动影响下水体环境变化的有效指标,主要用于指示沉积物重金属污染、水体初级生产力变化和氧化还原条件等方面的水体环境状况。总体而言,沉积物中微量金属含量在近一个世纪以来显著上升,反映了采矿、冶金、污水排放、化肥使用、煤炭和石油燃烧等各种人类活动造成水体和沉积物重金属污染的记录作为浮游植物微量营养元素,Cu、Zn、Ni、Ba、Cd等在沉积物中的记录可以指示水体初级生产力水平。U、Mo、V、Cu、Cd、Mn等氧化还原敏感元素在沉积物中的富集或贫化,及其比值(如Re/Mo、Cd/U、Th/U和V/Sc)的变化,是指示水体和沉积物氧化还原环境的有效指标。但需要指出的是,在受人类活动影响的水体中,这些生产力和氧化还原指标很少能指示水体生产力或氧化还原状况,可能主要与人类活动同时造成这些金属元素大量污染输入而掩盖了其自生来源和内在变化的沉积记录有关。所以,对沉积物中微量金属元素来源的判别(陆源碎屑输入、人为输入和水体自生来源)是重建水体环境变化的重要前提。本文总结了多种化学和统计学方法(包括同位素示踪法、化学提取法、富集因子法和主成分分析法等)在沉积物金属来源判别中的应用另外,成岩作用等多种因素会干扰沉积物金属记录对环境变化的指示作用,所以构建多元素指标来综合判断沉积物记录所反映的环境信息是今后的研究所必须关注的  相似文献   

18.
《Applied Geochemistry》2000,15(6):807-817
The concentrations of major and trace elements were determined (aqua regia leach and ICP-AES analyses) in stream, lake and dredged sediments downstream of the historical Antskog iron- and copperworks, S.Finland. The levels of Ag, Cd, Cu, Pb and Zn are highly elevated in all studied sediment types: roughly half of the studied lake-sediment samples contain >5 ppm Ag, >15 ppm Cd, >0.1% Cu, >0.1% Pb and >0.3% Zn. In the dredged sediment material located onshore, the concentrations of Ag, Cu and Pb are comparable to those in the polluted lake-sediment samples, while in stream sediments elevated metal concentrations are found especially in samples characterised by high concentrations of organic material. The source of the elevated metal concentrations is the historical metalworks at Antskog, mainly the copperworks of the 19th century. Compared to the limit values for contaminated soils in Finland, the concentrations of Cu, Pb and Zn are on average elevated by factors >10 in the polluted horizons of lake sediments, >5 in the dredged sediment located onshore and >2 at the most heavily contaminated site in the stream. Since the surface waters in the area are used for agricultural purposes and for various leisure activities, it is necessary to make further detailed investigations into the extent of the metal pollution and to determine species, mobility and bioavailability of the metals.  相似文献   

19.
《Chemical Geology》2002,182(2-4):377-394
Bulk heavy metal (Fe, Mn, Zn, Cu, Pb, Cd), Al, organic carbon and carbonate concentrations, grain sizes, and δC13 of the organic carbon distributions were studied in sediments collected throughout the East China Sea continental shelf and the Yangtze River Delta. The results demonstrated that terrigenous sediments from the Yangtze River is a dominating factor controlling the spatial variations of heavy metals and organic carbon concentrations on the East China Sea continental shelf. In addition, grain size and recent anthropogenic influences are also major factors modifying the spatial and vertical variations of heavy metals.Large spatial variations with a band type distribution of heavy metals, grain size, organic carbon and carbonate were observed. Higher concentrations of heavy metal and light δC13 of the organic carbon were found primarily in the Deltaic and inner shelf sediments. The band type distribution generally followed the coastline with little variations in the north–south direction. Away from the Delta and inner shelf (west–east direction), most heavy metal concentrations decreased rapidly with the exception of Cd where high concentrations of Cd were also found in the carbonate-rich shelf break sediments. Coarse-grained relict sediments and biogenic carbonate are two primary diluting agents for the fine-grained aluminosilicate sediments from the Yangtze River with high concentrations of heavy metals.Unusually high concentrations of Cu, Pb, and Cd showed both spatially and vertically that more pollution prevention measures are needed in the Yangtze River drainage basin in order to prevent further heavy metal pollution of the East China Sea inner continental shelf.  相似文献   

20.
Three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe. The speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques. The concentrations of dissolved major and trace elements (anions, cations, sulfides, dissolved organic C, Cd, Co, Fe, Mn, Ni, Pb and Zn) were used to calculate the thermodynamic equilibrium speciation in pore waters and to evaluate the saturation of minerals (Visual Minteq software). A sequential extraction procedure was applied on anoxic sediment particles in order to assess the main host phases of trace elements. Manganese was the most labile metal in pore waters and was mainly associated with carbonates in particles. In contrast, a weak affinity of Cd, Co, Ni, Pb and Zn with carbonates was established because: (1) a systematic under-saturation was noticed in pore waters and (2) less than 10% of these elements were extracted in the exchangeable and carbonate sedimentary fraction. In the studied anoxic sediments, the mobility and the lability of trace metals, apart from Mn, seemed to be controlled through the competition between sulfidic and organic ligands. In particular, the necessity of taking into account organic matter in the modelling of thermodynamic equilibrium was demonstrated for Cd, Ni, Zn and Pb, the latter element exhibiting the strongest affinity with humic substances. Consequently, dissolved organic matter could favour the stabilization of trace metals in the liquid phase. Conversely, sulfide minerals played a key role in the scavenging of trace metals in sediment particles. Finally, similar trace metal lability rankings were obtained for the liquid and solid phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号