首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Summary The Shillong Plateau of northeastern India hosts four Early Cretaceous (105–107Ma) ultramafic-alkaline-carbonatite complexes (UACC), which have been associated with the Kerguelen plume igneous activity. Petrological and geochemical characteristics of one of these UACC, the Sung Valley, are presented. The Sung Valley UACC was emplaced in to the Proterozoic Shillong Group of rocks and consists of ultramafics (serpentinized peridotite, pyroxenite, and melilitolite), alkaline rocks (ijolite and nepheline syenite), and carbonatites. Serpentinized peridotite, pyroxenite, and ijolitic rocks form the major part of the complex, the others constitute less than 5% of the total volume. Ijolite and melilitolite intrude peridotite and pyroxenite, while nepheline syenite and carbonatite intrude the ultramafic rocks as well as ijolite. Mineralogically, the carbonatites are classified as calcite carbonatite with minor apatite, phlogopite, pyrochlore and ilmenite. The serpentinized peridotites are wehrlitic. Chemical compositions of the silicate rocks do not show a distinct co-genetic relationship amongst them, nor do they show any geochemical relationships with the carbonatites. No noticeable fractionation trend is observed on the chemical variation diagrams of these rocks. It is difficult to establish the genetic evolution of the Sung Valley UACC through fractional crystallization of nephelinitic magma or through immiscible liquids. On the basis of petrological and geochemical data and previously published isotopic results from these rocks, it is suggested that they have been derived from a primary carbonate magma generated by the low-degree melting of a metasomatized mantle peridotite.  相似文献   

2.
The Early Cretaceous Sung Valley Ultramafic-Alkaline-Carbonatite (SUAC) complex intruded the Proterozoic Shillong Group of rocks and located in the East Khasi Hills and West Jaintia Hills districts of Meghalaya. The SUAC complex is a bowl-shaped depression covering an area of about 26 km2 and is comprised serpentinised peridotite forming the core of the complex with pyroxenite rim. Alkaline rocks are dominantly ijolite and nepheline syenite, occur as ring-shaped bodies as well as dykes. Carbonatites are, the youngest intrusive phase in the complex, where they form oval-shaped bodies, small dykes and veins. During the course of large scale mapping in parts of the Sung Valley complex, eleven carbonatite bodies were delineated. These isolated carbonatite bodies have a general NW-SE and E-W trend and vary from 20–125 m long and 10–40 m wide. Calcite carbonatite is the dominant variety and comprises minor dolomite and apatite and accessory olivine, magnetite, pyrochlore and phlogopite. The REE-bearing minerals identified in the Sung Valley carbonatites are bastnäsite-(Ce), ancylite-(Ce), belovite-(Ce), britholite-(Ce) and pyrochlore that are associated with calcite and apatite. The presence of REE carbonates and phosphates associated with REE-Nb bearing pyrochlore enhances the economic potential of the Sung Valley carbonatites. Trace-element geochemistry also reveals an enrichment of LREEs in the carbonatites and average ΣREE value of 0.102% in 26 bed rock samples. Channel samples shows average ΣREE values of 0.103 wt%. Moreover, few samples from carbonatite bodies has indicated relatively higher values for Sn, Hf, Ta and U. Since the present study focuses surface evaluation of REE, therefore, detailed subsurface exploration will be of immense help to determine the REE and other associated mineralization of the Sung Valley carbonatite prospect.  相似文献   

3.
Summary The eastern part of the agpaitic Khibina complex is characterized by the occurrence of dykes of various alkali silicate rocks and carbonatites. Of these, picrite, monchiquite, nephelinite and phonolite have been studied here. Whole rock and mineral geochemical data indicate that monchiquites evolved from a picritic primary magma by olivine+ magnetite fractionation and subsequent steps involving magma mixing at crustal levels. None of these processes or assimilation/magma mixing of wall rocks or other plutonic rocks within the complex can entirely explain the geochemical and Nd–Sr-isotopic characteristics of the monchiquites (i.e. a covariant alignment between (87Sr/86Sr)370=0.70367, (143Nd/144Nd)370=0.51237 and (87Sr/86Sr)370=0.70400, (143Nd/144Nd)370=0.51225 representing the end points of the array). This signature points to isotopic heterogeneities of the mantle source of the dyke-producing magma. The four mantle components (i.e. depleted mantle, lower mantle plume component, EMI-like component and EMII-like component) must occur in different proportions on a small scale in order to explain the isotopic variations of the dyke rocks. The EMII-like component might be incorporated into the source area of the primary magma by carbonatitic fluids involving subducted crustal material. The most likely model to explain the small-scale isotopic heterogeneity is plume activity. The results of this study do not provide any support to a cogenetic origin (e.g. fractionation or liquid immiscibility) for carbonatite and monchiquite or other alkali-silicate dyke rocks occurring in spatial proximity. Instead, we propose that both, carbonatite and picrite/monchiquite, originated by low-degree partial melting of peridotite. Textural observations, mineralogical data, and C and O isotopic compositions suggest incorporation of calcite from carbonatite in monchiquite and the occurrence of late-stage carbothermal fluids.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s00710-003-0016-2  相似文献   

4.
      大陆碱性玄武岩在地球化学特征上与洋岛玄武岩高度相似,被看做是板内玄武岩在大陆上的典型代表。本文以山东 新生代碱性玄武岩为例,探讨大陆碱性玄武岩的成因。山东新生代碱性玄武岩按时空分布特征可以分为两类:早期定向分 布、相互平行的三个火山群(包括鲁西的潍坊火山群、沂水火山群和胶东的蓬莱火山群)和晚期杂乱分布的孤立小火山。 早期火山群碱性较弱,以碱性橄榄玄武岩和碧玄岩为主,微量元素特征和同位素组成变化大;晚期孤立小火山碱性强,以 碧玄岩和霞石岩为主,微量元素特征和同位素组成较均一。因此,从岩性组成和时空分布特征看,山东的火山群相当于洋 岛/海山的造盾期玄武岩,而孤立小火山接近于洋岛/海山上的复苏期玄武岩。潍坊火山群和沂水火山群在Sr-Nd,Nd-Hf同位 素相关图上都存在从亏损到富集的两端元混合排列趋势,但两者的排列趋势有一点区别。其中同位素富集的端元相对于原 始地幔具有偏低的Ce/Pb比和偏高的Ba/Th比,指示其为大陆下地壳物质。同时,这种富集端元的Th/La比值明显低于大陆下 地壳的平均值,其放射成因Hf相对于放射成因Nd过剩(即Nd-Hf同位素解耦),说明这种富集端元不是岩浆上升过程中混染 的下地壳物质,而是经历过早期熔融的再循环大陆下地壳(榴辉岩或者石榴辉石岩)。鲁西两个平行火山群在同位素排列上 的区别类似于夏威夷玄武岩中的KEA链和LOA链,因此,山东的平行火山群的深部动力学背景可能是地幔柱,再循环大陆 下地壳物质可能是这种地幔柱的重要组成物质。晚期的孤立小火山在地球化学特征上与火成碳酸岩非常相似,如在原始地 幔标准化图上都具有K,Pb,Zr,Hf,Ti的负异常等特征,因此我们认为其地幔源区为碳酸盐化的橄榄岩。孤立小火山中等亏损 的Sr,Nd,Hf同位素特征支持碳酸岩熔体来自年轻的(中生代?)再循环洋壳。  相似文献   

5.
In the southern part of the Indian Peninsula, there are a number of alkaline plutons of Proterozoic age. In the northern part of the South Indian granulite terrain, the Yelagiri (syenite, pyroxenite) and Sevattur (syenite, pyroxenite, carbonatite) plutons intrude Archaean epidote-hornblende gneisses. Geochemical and isotopic characteristics of the Yelagiri and Sevattur plutons indicate that the syenitic magmas formed from highly differentiated mantle-derived alkali basalts. The Yelagiri and Sevattur syenites are characterized by evolved Sr and Nd isotopic compositions, pronounced enrichment in LILE and large negative Nb anomalies. Trace element and Sr-Nd isotope characteristics of the Yelagiri and Sevattur syenites are similar to those of the subduction-related alkaline rocks. The scarcity of geological evidence for subduction activity at the time of syenite intrusion during Neoproterozoic does not support a link between the alkaline magmatism and subduction. However, our data are consistent with the model of derivation of the Yelagiri and Sevattur syenites from the subcontinental lithospheric mantle, which was previously enriched by slab derived component. The geochemical and isotopic signatures of other mantle-derived intrusive rocks in the northern part of the South Indian granulite terrain with ages ranging from ca. 2.5 Ga to 0.75 Ga also support the above idea.  相似文献   

6.
韩江伟  熊小林  朱照宇 《岩石学报》2009,25(12):3208-3220
对雷琼地区21个晚新生代玄武岩样品的主量、微量元素和Sr、Nd、Pb同位素分别用湿化学法、ICP-MS和MC-ICPMS进行了测定.这些玄武岩主要为石英拉斑玄武岩,其次为橄榄拉斑玄武岩和碱性玄武岩.大多数样品的微量元素和同位素成分与洋岛玄武岩(OIBs)相似,而且随着SiO_2不饱和度增加,不相容元素含量也增加.除R4-1可能受到地壳混染外,其他样品相对均一的Nd同位素(ε_(Nd)=2.5-6.0)以及变化明显但范围有限的Sr同位素(0.703106~0.704481),可能继承了地幔源区的特征.~(87)Sr/~(86)Sr与~(206)Pb/~(204)Pb的正相关和~(143)Nd/~(144)Nd与~(206)Pb/~(204)Pb的负相关特征暗示DM(软流圈地幔)与EM2(岩石圈地幔)的混合.地幔捕虏体的同位素特征暗示EM2成分不可能存在于尖晶石橄榄岩地幔,而La/Yb和Sm/Yb系统表明岩浆由石榴石橄榄岩部分熔融产生,这意味着EM2成分可能存在于石榴石橄榄岩地幔.雷琼地区玄武岩的地球化学变化可以用软流圈地幔为主的熔体加入不同比例石榴石橄榄岩地幔不同程度熔融产生的熔体来解释:碱性玄武岩和橄榄拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较低程度(7%~9%)熔融体混合,而石英拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较高程度(10%~20%)熔融体的混合.  相似文献   

7.
赵正  漆亮  黄智龙  严再飞  许成 《岩石学报》2012,28(6):1915-1927
鸡街碱性超基性杂岩体产出于攀西古裂谷南段,地处云南省境内的罗茨地区,空间上与峨嵋山玄武岩紧密伴生。岩体的主体由霞霓钠辉岩、霓霞岩和磷霞岩组成,三类岩石具有相似的微量元素和稀土元素(REE)配分,富集大离子亲石元素K、Rb、Sr、Ba,过渡族元素Sc、Cr和Ni相对亏损,Nb/Ta、Zr/Hf比值在幔源岩的范围内,Sr-Nd同位素沿"幔源趋势"线分布。鸡街碱性超基性岩中不相容元素总体亏损,含量与EMORB相当,稀土总量ΣREE=32.86~70.07偏低,(La/Yb)N=3.03~4.47,HREE亏损,指示源区的适度亏损。微量元素和同位素信息共同指示鸡街碱性超基性岩为地幔岩高压条件下低程度部分熔融的产物(<10%),岩浆演化过程中经历了橄榄石、辉石和少量磁铁矿的结晶分异。霞霓钠辉岩、霓霞岩与磷霞岩来自同一地幔源区,岩浆源区的相对亏损,可能与中-晚二叠纪大量的玄武质岩浆从深部地幔抽取有关。攀西古裂谷的多期次活动为峨嵋地幔柱提供了岩浆通道,地幔柱活动的早期阶段或晚期阶段岩石圈地幔(或混合地幔)低程度部分熔融的碱性岩浆沿此构造薄弱带上侵,形成了攀西古裂谷内呈带状分布的各碱性杂岩体。  相似文献   

8.
An early Cretaceous alkaline ultramafic-mafic complex is emplaced within the Proterozoic rocks of Shillong plateau at Jasra, Karbi Anglong district of Assam. It is associated to the fracture system of Barapani-Tyrsad shear zone, Kopali faults, and Um Ngot lineaments and mainly comprises pyroxenite, gabbro and nepheline syenite. Few small mafic dykes, emplaced within pyroxenitic and granitic plutons, are also reported. No such dyke is reported to cut gabbros or nepheline syenites. Nepheline syenites occur either in the form of small dykes in pyroxenites or as differentiated bodies in the gabbros. Mineralogical and chemical composition of pyroxenite and gabbro clearly indicate their affinity to the alkaline magmatism. Syenitic samples show miaskitic character (agpaitic index <1), also indicates affinity with alkaline-carbonatite magmatism. Calcite is encountered in a number of pyroxenite samples. From the presented petrological and geochemical data it is difficult to establish any significant genetic relationship through simple differentiation process between these rocks. These data probably suggest that these rocks are derived from a primary carbonatite magma, generated by the low-degree melting of a metasomatized mantle peridotite. CO2 released by this process also progressively metasomatizes the lherzolite to an alkaline wehrlite and melts derived from alkaline wehrlite (ultrabasic alkaline silicate magma) may be responsible for crystallization of Jasra alkaline ultramafic-mafic rocks.  相似文献   

9.
辽西中生代玄武岩中幔源气榄岩捕虏体的岩石学、矿物学和地球化学研究表明,中生代岩石圈地幔是由古老富集型的岩石圈地幔和新增生的岩石圈地幔所组成。前者以角闪尖晶二辉橄榄岩为代表,它经历了富钠质的地幔交代作用。橄榄岩类捕虏体富含轻稀土元素,并具有较高的ω(^87Sr)/ω(^86Sr)比值;后者以二辉石岩为代表,具典型堆积结构,与本区尖晶石二辉橄榄岩相比,具有较高的稀土元素丰度。在矿物成分和稀土元素丰度上,本区辉石岩捕虏体类似于中国东部新生代玄武岩中幔源辉石岩捕虏体,这意味着辉石岩捕虏体可能是上地幔中更早期的岩浆堆积体。  相似文献   

10.
托云盆地晚白垩世--早第三纪碱性橄榄玄武岩Sr、Nd、Pb同位素组成表明,本区玄武岩以低Sr、Pb和相对高的Nd同位素值(^87Sr/^86Sr为0.703554 ̄0.703884;^143Nd/^144Nd为0.512838 ̄0.512904;^206Pb/^204Pb为18.0063 ̄18.4720;^207Pb/^204Pb为15.4411 ̄15.5060;^208Pb/^204Pb为37.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号