首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reduce loss of life and injury resulting from earthquakes, the relationship between earthquake-induced building failure and injury severity and distribution needs to be clarified. For this purpose, a series of data collection forms were developed to collect pertinent data for post-event analysis and to provide a basis for structural triage in the field shortly following an earthquake for search and rescue purposes. A companion paper described the identification of variables affecting the outcome of an occupant of a damaged building and the classification of these variables into three levels of priority for data collection. This paper continues the development by describing the design of the data collection forms and the application of the forms to damaged buildings from past earthquakes. These forms represent a significant departure from existing forms in that they consider both casualties and building damage jointly, and in a consistent format.  相似文献   

2.
Hengjian  Lu  Kohiyama  Masayuki  Horie  Kei  Maki  Norio  Hayashi  Haruo  Tanaka  Satoshi 《Natural Hazards》2003,29(3):387-403
The relationship between building damage patterns and human casualties in Nishinomiya City – one of the most heavily damaged cities in the 1995 Hanshin-Awaji Earthquake Disaster – was investigated using photographs of damaged buildings. First, the photographs of buildings in which casualties occurred were identified, and the building damage patterns were judged based on the photographs considering the existence of survival space. Then the relationship between the building damage pattern and casualty occurrence, and the characteristics of casualty distribution, were investigated. The main findings were as follows: Most casualties occurred in relatively old two-story wooden buildings in which the ground floor completely collapsed without survival space; casualties occurred at all building damage levels including ``no damage', and it can be seen that building damage is the major, but not the sole cause, of casualties in an earthquake; in Nishinomiya City, the regional distributions of casualties due to the collapse of buildings that left no survival space is similar to that of casualties due to other types of building damage.  相似文献   

3.
Building Damage Extraction from Post-earthquake Airborne LiDAR Data   总被引:1,自引:0,他引:1  
Building collapse is a significant cause of earthquake-related casualties; therefore, the rapid assessment of buildings damage is important for emergency management and rescue. Airborne light detection and ranging(Li DAR) can acquire point cloud data in combination with height values, which in turn provides detailed information on building damage. However, the most previous approaches have used optical images and LiDAR data, or pre- and post-earthquake LiDAR data, to derive building damage information. This study applied surface normal algorithms to extract the degree of building damage. In this method, the angle between the surface normal and zenith(θ) is used to identify damaged parts of a building, while the ratio of the standard deviation to the mean absolute deviation(σ/δ) of θ is used to obtain the degree of building damage. Quantitative analysis of 85 individual buildings with different roof types(i.e., flat top or pitched roofs) was conducted, and the results confirm that post-earthquake single LiDAR data are not affected by roof shape. Furthermore, the results confirm that θ is correlated to building damage, and that σ/δ represents an effective index to identify the degree of building damage.  相似文献   

4.
This study aims to carry out a seismic risk assessment for a typical mid-size city based on building inventory from a field study. Contributions were made to existing loss estimation methods for buildings. In particular, a procedure was introduced to estimate the seismic quality of buildings using a scoring scheme for the effective parameters in seismic behavior. Denizli, a typical mid-size city in Turkey, was used as a case study. The building inventory was conducted by trained observers in a selected region of Denizli that had the potential to be damaged from expected future earthquakes according to geological and geotechnical studies. Parameters that are known to have some effect on the seismic performance of the buildings during past earthquakes were collected during the inventory studies. The inventory includes data of about 3,466 buildings on 4,226 parcels. The evaluation of inventory data provided information about the distribution of building stock according to structural system, construction year, and vertical and plan irregularities. The inventory data and the proposed procedure were used to assess the building damage, and to determine casualty and shelter needs during the M6.3 and 7.0 scenario earthquakes, representing the most probable and maximum earthquakes in Denizli, respectively. The damage assessment and loss studies showed that significant casualties and economic losses can be expected in future earthquakes. Seismic risk assessment of reinforced concrete buildings also revealed the priorities among building groups. The vulnerability in decreasing order is: (1) buildings with 6 or more stories, (2) pre-1975 constructed buildings, and (3) buildings with 3–5 stories. The future studies for evaluating and reducing seismic risk for buildings should follow this priority order. All data of inventory, damage, and loss estimates were assembled in a Geographical Information System (GIS) database.  相似文献   

5.
Iran is one of the most seismically active countries of the world located on the Alpine-Himalayan earthquake belt. More than 180,000 people were killed due to earthquakes in Iran during the last five decades. Considering the fact that most Iranians live in masonry and non-engineered houses, having a comprehensive program for decreasing the vulnerability of society holds considerable importance. For this reason, loss estimation should be done before an earthquake strikes to prepare proper information for designing and selection of emergency plans and the retrofitting strategies prior to occurrence of earthquake. The loss estimation process consists of two principal steps of hazard analysis and vulnerability assessment. After identifying the earthquake hazard, the first step is to evaluate the vulnerability of residential buildings and lifelines and also the social and economic impacts of the earthquake scenarios. Among these, residential buildings have specific importance, because their destruction will disturb the daily life and result in casualties. Consequently, the vulnerability assessment of the buildings in Iran is important to identify the weak points in the built environment structure. The aim of this research is to prepare vulnerability curves for the residential buildings of Iran to provide a proper base for estimating probable damage features by future earthquakes. The estimation may contribute fundamentally for better seismic performance of Iranian societies. After a brief review of the vulnerability assessment methods in Iran and other countries, through the use of the European Macroseismic method, a model for evaluating the vulnerability of the Iranian buildings is proposed. This method allows the vulnerability assessment for numerous sets of buildings by defining the vulnerability curves for each building type based on the damage observations of previous earthquakes. For defining the vulnerability curves, a building typology classification is presented in this article, which is representative of Iranian building characteristics. The hazard is described in terms of the macroseismic intensity and the EMS-98 damage grades have been considered for classifying the physical damage to the buildings. The calculated vulnerability indexes and vulnerability curves show that for engineered houses there is not any notable difference between the vulnerability of Iranian and Risk-UE building types. For the non-engineered houses, the vulnerability index of brick and steel structures is less than the corresponding values of the other unreinforced masonry buildings of Iran. The vulnerability index of unreinforced and masonry buildings of Iran are larger than the values of the similar types in Risk-UE and so the Iranian buildings are more vulnerable in this regard.  相似文献   

6.
Earthquake casualty prediction is crucial for efficient and effective emergency management and response. In order to improve prediction reliability of earthquake casualties, correlation analysis and principal component analysis are used to select prediction covariates. Finally, five key indexes, including magnitude, epicenter intensity, population density, earthquake occurrence time and damaged building area, are chosen. According to the “two-stage” rule of earthquake casualties, a prediction model based on the modified partial Gaussian curve is proposed. In order to improve its prediction accuracy, the paper looked epicenter intensity and the casualty as the variables. And the partial Gaussian curve prediction model is modified by using the magnitude coefficient, population density coefficient, earthquake occurrence time coefficient and damaged building coefficient. The cross-validation experimental results show that the modified partial Gaussian curve has the advantages of good stability and high prediction accuracy comparing with the high-order nonlinearity, logarithmic curve, multivariate linearity, artificial neural network and so on. It can be used in practice from earthquake casualty prediction.  相似文献   

7.
8.
地震灾害中95%的人员伤亡是由建筑物倒塌造成的,因此,提高和改进建筑物抗震性能对减少地震造成的人员伤亡和财产损失意义重大。本文通过地震对建筑的破坏机理,根据国家有关建筑抗震设计技术规范对建筑场地和地基选择、施工质量检验等提出的相关要求,结合物探技术简介,阐述了物探方法在建筑抗震设计及施工质检等方面的作用。  相似文献   

9.
This paper presents a new optimization model to help cities in seismically active developing countries decide (1) How much to spend on pre-earthquake mitigation versus waiting until after an event and paying for reconstruction or simply not rebuilding damaged buildings? (2) Which buildings to mitigate and how? and (3) Which buildings to reconstruct and how? It extends previously developed optimization models to consider the particular issues that arise in such countries. First, the model allows for the possibility that some damaged buildings will not be reconstructed immediately and keeps track of any lost building inventory. Second, buildings can be mitigated to, or when damaged, reconstructed to, any appropriate structural type and seismic design level. Finally, the model objectives include minimizing the chance of an extremely high death toll in any one earthquake and minimizing the average annual death toll across earthquakes. The model is illustrated through a case study analysis for Tehran, Iran.  相似文献   

10.
After the earthquake occurrence, collecting correct information about the extent of damage is essential for managing critical conditions and allocating limited resources. The prepared building damage maps sometimes bring about waste of time required for rescuing individuals under the rubble by wrongly conducting rescue teams toward regions with a lower rescue priority. In this research, an algorithm based on using a proposed standard at database level was developed to prioritize damaged buildings by considering five key elements of land use type, the degree of damage to buildings, the land use differentiation index, time of the highest population density in each land use, and time of disaster’s incidence. The steps of the proposed method which was implemented in the MATLAB environment include: detecting buildings on the pre- and post-event imagery, implementing texture features for each candidate building, choosing the optimal features by genetic algorithm, determining the degree of building damage in three classes of negligible damage, substantial damage, and heavy damage by using the difference between chosen features as inputs of the designed neurofuzzy inference system. Data collected from field observations were compared to the output obtained from the proposed algorithm. This comparison presented a general accuracy of 88% and Kappa coefficient of 79% in the classification of buildings into three damage classes. The proposed standard then was used for classifying damaged buildings into relief priorities of high, medium, and low. Findings revealed that the relief priority map could be a basis for correct guidance of relief and rescue teams during crucial times following earthquakes.  相似文献   

11.
This article presents a sensitivity analysis investigating the impact of using high-resolution site conditions databases in portfolio earthquake loss estimation. This article also estimates the effects of variability in the site condition databases on probabilistic earthquake loss ratios and their geographical pattern with respect to structural characteristics of different building types. To perform the earthquake loss estimation here, the OpenQuake software developed by Global Earthquake Model is implemented in Clemson University’s supercomputer. The probabilistic event-based risk analysis is employed considering several notional portfolios of different building types in the San Francisco area as the inventory exposure. This analysis produces the stochastic event sets worth for 10,000 years including almost 8000 synthetically simulated earthquakes. Then, the ground motion prediction equations are used to calculate the ground motion per event and incorporate the effect of five site conditions, on amplifying or de-amplifying the ground motions on notional building exposure locations. Notional buildings are used to account for various building characteristics in conformance with the building taxonomy represented in HAZUS software. The HAZUS damage functions are applied to model the vulnerability of various structural types of buildings. Finally, the 50-year average mean loss and probabilistic loss for multiple values for probability of exceedance (2, 10, 20, and 40%) in 50 years are calculated, and the impact of different site condition databases on portfolio loss ratios is investigated for different structural types and heights of buildings. The results show the aggregated and geographical variation of loss and loss ratio throughout the region for various site conditions. Comparing the aggregated loss and loss ratio, while considering different databases, represents normalized differences that are limited to 6% for all building taxonomy with various heights and for all PoEs. However, site-specific loss ratio errors are significantly greater and in some cases are more than 20%.  相似文献   

12.
The Canterbury (New Zealand) earthquake sequence of 2010–2012 caused unexpectedly extreme levels of damage and disruption, being an unparalleled event in New Zealand in terms of the damage extent. Christchurch’s heritage buildings were seriously damaged during these events, with churches especially affected in 22 February 2011 M w 6.2 earthquake. During this earthquake, a total of 84% of the heritage unreinforced stone and 81% of the clay brick masonry churches in the Canterbury region were either considered unsafe (receiving red placards) or with restricted access (yellow placards). Following the earthquakes, authorities across New Zealand are reassessing the capacity of older buildings to resist earthquakes. Current legislation requires that a building judged as earthquake prone either be strengthened by retrofitting or be demolished within a legislated number of years. Many building owners are facing the problems of owning earthquake-prone buildings and lacking the funding to upgrade. This affects both community and heritage buildings, resulting in the likely abandonment or demolition of some buildings. To address the problem of the balance between life safety and preservation in the Wellington Region, this project gathered and compared the perspectives of the general public, church communities, heritage specialists, professional engineers, and local authorities to assist in balancing the interests of these stakeholders. As a result of the findings, several recommendations have been provided that include standardizing structural assessment processes and training, feasibility of additional public funding to upgrade buildings, new signage to increase public awareness of earthquake-prone buildings, and regular communication among stakeholders to understand and resolve differences.  相似文献   

13.
In Canada, Montreal is the second city with the highest seismic risk. This is due to its relatively high seismic hazard, old infrastructures and high population density. The region is characterised by moderate seismic activity with no recent record of a major earthquake. The lack of historical strong ground motion records for the region contributes to large uncertainties in the estimation of hazards. Among the sources of uncertainty, the attenuation function is the main contributor and its effect on estimates of risks is investigated. Epistemic uncertainty was considered by obtaining damage estimates for three attenuation functions that were developed for Eastern North America. The results indicate that loss estimates are highly sensitive to the choice of the attenuation function and suggest that epistemic uncertainty should be considered both for the definition of the hazard function and in loss estimation methodologies. Seismic loss estimates are performed for a 2% in 50 years seismic threat, which corresponds to the design level earthquake in the national building code of Canada, using HAZUS-MH4 for the Montreal region over 522 census tracts. The study estimated that for the average scenario roughly 5% of the building stock would be damaged with direct economic losses evaluated at 1.4 billion dollars for such a scenario. The maximum number of casualties would result in approximately 500 people being injured or dead at a calculated time of occurrence of 2?pm.  相似文献   

14.
The situation after earthquake disasters is for a large part of the deployed field units very exceptional. Expert and information systems offer the possibility to support the decisions of the field personnel in such complex and unfamiliar situations. They can be used for training purposes and to support the operations in real cases. Two different expert and information systems were created. The first system supports the onsite search and rescue (SAR) personnel at building collapses and the second supports inspectors evaluating the buildings' states after earthquakes. In both cases, after the input of information related to a certain situation, the expert system poses context-sensitive subsequent questions and gives assistance for the site inspection. The expert and information system for rescue operations then generates advice concerning suitable SAR procedures and equipment for the given situation. Additionally, basic information, checklists and calculation components are offered as support. The expert and information system for the buildings’ state evaluation will assist the inspectors to decide reliably and in short time whether the buildings are safe to be further used or not after an earthquake. Interactive checklists depending on the building type as well as further auxiliary material will support the inspectors in classifying the buildings. Both systems are part of the also developed Disaster Management Tool (DMT). The presentation will include an overview of the knowledge collection and evaluation process, the development stage of both expert and information systems, their integration into the DMT and their use when coping with an earthquake disaster.  相似文献   

15.
The aim of this paper is to present earthquake loss estimations for a portion of downtown Ottawa, Canada, using the HAZUS-MH (Hazards United States Multi-Hazard) software tool. The assessment is performed for a scenario earthquake of moment magnitude 6.5, at an epicentral distance of 15 km, occurring during business hours. A level 2 HAZUS-MH analysis was performed where the building inventory, microzonation studies, and site-specific ground motion hazard maps (2% exceedence probability in 50 years) were all improved based on local information. All collected data were assembled into a set of standard geodatabases that are compatible with the HAZUS-MH software using a GIS-specific procedure. The results indicate that the greatest losses are expected in unreinforced masonry buildings and commercial buildings. Sensitivity studies show that soil classes, the vulnerability of schools, and the spatial scale of loss estimations are also important factors to take into account.  相似文献   

16.
Data concerning this earthquake and the seismicity of the surrounding area have been examined. Large historical earthquakes before 1884 show that destructive shocks in the area have a recurrence period of about two hundred years. Recent seismic activity has been high from 1910 to 1955 and lower thereafter. Total number of casualties for the 1884 earthquake is estimated at 745 dead and 1475 wounded. Damage to buildings extended to 4399 houses totally destroyed and 6316 partially damaged. A new intensity map has been drawn from the original reports fron which the approximate location of the epicenter, depth of focus, attenuation of energy and source dimensions have been determined. The aftershock sequence of felt events lasted for nearly a year with an increase of activity at the second month.  相似文献   

17.
The aim of this study is the comparison between the fundamental periods identified experimentally and those calculated using the formulas given in the Algerian Seismic Code (RPA 99) for vulnerability assessment and for experimental data collection of selected sample of old buildings. The results obtained for vulnerability assessment will then be extrapolated to buildings of the same typology built during the 1949 to 1954 period in the northern part of Algeria. From 1949 to 1954, the reinforced concrete constructions in Algeria were built before the first generation of the Algerian Seismic Code. These buildings being old are certainly weakened by the occupancy activities and seismic event loads. Hence, the evaluation of their vulnerability with respect to the regional seismic hazard requires the knowledge of their structure on a site capacity. The empirical formulas to calculate the fundamental period of a building are based on the Algerian Earthquake Code (RPA 99) .These formulas consider only the geometrical dimension (length, width and height) and the structural design of the buildings. The fundamental periods of vibration of twenty-two buildings, located in Algiers, calculated using the empirical formulas given in the RPA 99 are lower than those identified experimentally. A question then rises, do these tested buildings present any damage or not? As five of these buildings were tested before the 21 May 2003 earthquake, the experimental testing highlighted a decrease in the fundamental frequency which means that these buildings are damaged. Hence, for vulnerability assessment, the empirical formulas given in the Algerian Seismic Code (RPA 99) may not be appropriate for vulnerability assessment of the old buildings built during the 1949 to 1954 period.  相似文献   

18.
We performed large-scale earthquake economic loss estimations for France and cost–benefit analyses for several French cities by developing a semiempirical, intensity-based approach. The proposed methodology is inexpensive and easily applicable in case of a paucity of detailed information regarding the specific regional seismic hazard and the structural characteristics of the building stock, which is of particular importance in moderate-to-low seismic hazard regions. The exposure model is derived from census datasets, and the seismic vulnerability distribution of buildings is calculated using data mining techniques. Several hypothetical, large-scale retrofit scenarios are proposed, with increasing levels of investment. These cities, in their respective reinforced states, are then subjected to a series of hazard scenarios. Seismic hazard data for different return periods are calculated from regulatory accelerations from French seismic zoning. Loss estimations for the original (non-reinforced) configuration show high levels of expected building repair and replacement costs for all time spans. Finally, the benefits in terms of damage avoidance are compared with the costs of each retrofit measure. Relatively limited strengthening investments reduce the probability of building collapse, which is the main cause of human casualties. However, the results of this study suggest that retrofitting is, on average, only cost-effective in the parts of France with the highest seismicity and over the longest time horizons.  相似文献   

19.
汶川地震北川县城地质灾害调查与初步分析   总被引:6,自引:0,他引:6  
汶川8.0级地震造成了北川县巨大的破坏,导致上万人死亡,整个北川县城变为废墟。现场地震科考分析显示,造成北川县城区建筑物和道路严重损毁,以及人员重大伤亡的三个主要原因为:①强地震产生的振动破坏效应;②活断层错动产生的地表破裂效应;③地震引发的次生地质灾害(崩塌、滑坡和泥石流)。地震次生地质灾害造成了北川县城区上千人死亡、大量房屋被埋、多处路段被毁。在分析地震地质构造背景基础上,对地震引发的北川县城崩塌、滑坡和泥石流次生地质进行了现场调查,查明了地质灾害分布和发育特征,初步分析了王家岩滑坡和景家山崩塌的地震地质灾害破坏机理。  相似文献   

20.
On October 23, 2011, a magnitude of Mw 7.2 earthquake struck the Van province in eastern Turkey which caused approximately 600 life loss and 4,000 injured people. Although the recorded peak ground accelerations were relatively low (0.15–0.2 g) compared with that of other recent destructive Turkish earthquakes and the code-based design response spectrum, a large number of reinforced concrete buildings with 4–6 stories and non-engineered masonry buildings were either heavily damaged or collapsed in the region. Based on the post-earthquake technical inspections, the goal of this paper is to introduce major reasons for structural damages in the disaster area and to discuss these failures along with the approaches given in the design code which is renewed after August 17, 1999 Marmara Earthquake. Some remarkable lessons learned from earthquake-induced failures and damages specific to building construction techniques are presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号