首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Detrital zircon (DZ) U‐Pb laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) has revolutionised the way geologists approach many Earth science questions. Although recent research has focused on rapid sample throughput, acquisition rates are limited to 100–300 analyses h?1. We present a method to acquire zircon U‐Pb dates at rates of 120, 300, 600 and 1200 analyses h?1 (30, 12, 6 and 3 s per analysis) by multi‐collector LA‐ICP‐MS. We demonstrate the efficacy of this method by analysing twelve zircon reference materials with dates from ~ 3465 to ~ 28 Ma. Mean offset from high‐precision dates increases with faster rates from 0.9% to 1.1%; mean random 1s uncertainty increases from 0.6% to 1.3%. We tested this new method on a sandstone sample previously characterised by large‐n DZ geochronology. Quantitative comparison shows increased correspondence among age distributions comprising > 300 dates. This new method holds promise for DZ geochronology because (a) it requires no major changes to hardware, but rather modifications to software; (b) it yields robust age distributions well‐suited for quantitative analysis and maximum depositional age calculations; (c) there is only a minor sacrifice of accuracy and measurement uncertainty; and (d) there is less burden to researchers in terms of time investment and analytical cost.  相似文献   

2.
LA‐ICP‐MS U–Pb detrital zircon studies typically analyse 50–200 grains per sample, with the consequent risk that minor but geologically important age components (e.g., the youngest detrital zircon population) are not detected, and higher abundance age components are misrepresented, rendering quantitative comparisons between samples impossible. This study undertook rapid U–Pb LA‐ICP‐MS analyses (8 s per 18–47 μm diameter spot including baseline and ablation) of zircon, apatite, rutile and titanite using an aerosol rapid introduction system (ARIS). As the ARIS resolves individual single pulses at fast sampling rates, spot analyses require a high repetition rate (> 50 Hz) so the signal does not return to baseline and mass sweep times (> 80 ms) that span several laser pulses (i.e., major undersampling of the signal). All rapid U–Pb spot analyses employed 250–300 pulses, repetition rates of 53–65 Hz (total ablation times of 4.1–5.7 s) and low fluence (1.75–2.5 J cm?2), resulting in pit depths of ca. 15 μm. Zircon, apatite, rutile and titanite reference material data yield an accuracy and precision (2s) of < 1% for pre‐Cenozoic reference materials and < 2% for younger reference materials. We present a detrital zircon data set from a Neoproterozoic tillite where > 1000 grains were analysed in < 3 h with a precision and accuracy comparable to conventional LA‐ICP‐MS analytical protocols, demonstrating the rapid acquisition of huge detrital data sets.  相似文献   

3.
Inter‐laboratory comparison of laser ablation ICP‐MS and SIMS U‐Pb dating of synthetic detrital zircon samples provides an insight into the state‐of‐the art of sedimentary provenance studies. Here, we report results obtained from ten laboratories that routinely perform this type of work. The achieved level of bias was mostly within ± 2% relative to the ID‐TIMS U‐Pb ages of zircons in the detrital sample, and the variation is likely to be attributed to variable Pb/U elemental fractionation due to zircon matrix differences between the samples and the reference materials used for standardisation. It has been determined that ~ 5% age difference between adjacent age peaks is currently at the limit of what can be routinely resolved by the in situ dating of detrital zircon samples. Precision of individual zircon age determination mostly reflects the data reduction and procedures of measurement uncertainty propagation, and it is largely independent of the instrumentation, analytical technique and reference samples used for standardisation. All laboratories showed a bias towards selection of larger zircon grains for analysis. The experiment confirms the previously published estimates of the minimum number of grains that have to be analysed in order to detect minor zircon age populations in detrital samples.  相似文献   

4.
Dating of young (<1 Ma) geological events has long been a challenge for geochronologists. Combining (U‐Th)/He with U‐Pb or U‐Th‐disequilibrium dating methods offers a unique dating tool that can address this important period. We present a new methodology that combines U‐Pb LA‐ICP‐MS and (U‐Th)/He dating of zircon and use it to date two Pleistocene marker tephras (A1Pm and DPm) from the Omachi Tephra suite (Japan). A1Pm and DPm yield U‐Pb ages in the range of 350–850 and ~140–630 ka, respectively, documenting protracted periods of zircon crystallisation (100's of k.y.) prior to eruption. (U‐Th)/He ages constrain the eruption ages of the A1Pm and DPm tephras to 375 ± 13 and 97.1 ± 7.3 ka, respectively, and are in agreement with published estimates. This study demonstrates the potential of combined zircon U‐Pb LA‐ICP‐MS and (U‐Th)/He dating to constrain magmatic and eruption events in the critical ~100 ka–1 Ma interval.  相似文献   

5.
A measurement procedure for the rapid acquisition of U‐Pb dates for detrital zircons by quadrupole LA‐ICP‐MS was developed. The procedure achieves a threefold increase in measurement efficiency compared with the most commonly used methods. Utilising reduced background counting times and a shortened ablation period, a throughput of ~ 130 measurements/h can be achieved. The measurement procedure was characterised and validated using data from thirty‐nine sessions acquired over a twelve‐month period. Systematic measurement error in 206Pb/238U dates for reference materials used for quality control with ages between 28.2 and 2672 Ma was < 1.5%. Average measurement uncertainty, including both random and systematic components, was 1–4% (2s). Interrogation of time‐resolved calculated dates and signal intensities for each measurement allows for the detection and elimination of portions of measurements exhibiting age heterogeneities, zoning, lead loss and contamination by common lead. The measurement procedure diminishes the need to acquire cathodoluminescence imagery for routine detrital zircon applications further increasing throughput and reducing cost. The utility of the measurement procedure is demonstrated by the measurement of samples previously characterised by LA‐MC‐ICP‐MS.  相似文献   

6.
In both nature and synthetic experiments, the common iron oxide haematite (α‐Fe2O3) can incorporate significant amounts of U into its crystal structure and retain radiogenic Pb over geological time. Haematite is a ubiquitous component of many ore deposit types and, therefore, represents a valuable hydrothermal mineral geochronometer, allowing direct constraints to be placed on the timing of ore formation and upgrading. However, to date, no suitable natural haematite reference material has been identified. Here, a synthetic haematite U‐Pb reference material (MR‐HFO) is characterised using LA‐ICP‐MS and ID‐TIMS. Centimetre‐scale ‘chips’ of synthesised α‐Fe2O3 were randomly microsampled via laser ablation‐extraction and analysed using ID‐TIMS. Reproducible U/Pb and Pb/Pb measurements were obtained across four separate chips (n = 13). Subsequently, an evaluation of the suitability MR‐HFO in constraining U‐Pb data via LA‐ICP‐MS is presented using a selection of natural samples ranging from Cenozoic to Proterozoic in age. The MR‐HFO normalised U‐Pb ratios are more concordant and ages more accurate versus the same LA‐ICP‐MS spot analyses normalised to zircon reference material, when compared with independently acquired ID‐TIMS data from the same natural haematite grains. Results establish MR‐HFO as a suitable reference material for LA‐ICP‐MS haematite U‐Pb geochronology.  相似文献   

7.
VizualAge, a new computer software tool for analysing U‐Pb data obtained by laser ablation‐inductively coupled plasma‐mass spectrometry, was developed. It consists of a data reduction scheme (DRS) for Iolite (a general mass spectrometry data analysis tool) as well as visualisation routines. In addition to the U/Pb and Th/Pb ages calculated by Iolite’s U‐Pb geochronology DRS, VizualAge also calculates 207Pb/206Pb ages and common Pb corrections for each time‐slice of raw data. Importantly, VizualAge allows one to display a live concordia diagram for visualising data on such a diagram as an integration interval is being adjusted. This provides instantaneous feedback regarding discordance, uncertainty, error correlation and common Pb. Several zircon data sets were used to illustrate how the live concordia could be used as a powerful inspection tool, revealing a single analysis to consist of zones of concordance, metamict areas, as well as inherited cores or younger overgrowths. VizualAge also constructs histograms, conventional and Tera‐Wasserburg type concordia diagrams, as well as 3D U‐Th‐Pb and total U‐Pb concordia diagrams. The precision and accuracy of data reduced with VizualAge are demonstrated with examples of the Ple?ovice, Temora‐2 and Penglai zircon reference materials. Data for zircon from the Long Lake Batholith (Wyoming craton) were used to illustrate how VizualAge calculated common Pb corrections and helped to expose as yet unexplained difficulties with accurately determining 204Pb.  相似文献   

8.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

9.
正Objective Quaternary saline lakes are significant for paleoclimatic reconstruction due to the high sensitivity of salt minerals to environmental changes.However,salts in these areas with great thickness such as halite or potash representing extreme environments have severely blocked the application of traditional chronological methods.This is typified by Lop Nur,since accurate age to constrain salt  相似文献   

10.
正Objective The Himalayan leucograite,which is typical production of continent-continent collision orogenic belt,has become a research hotspot of the Tibetan Plateau.The research on the leucogranite would help to verify and improve the continent-continent collision orogenic theory.(Huang et al.,2017;Fig.1a).Previous studies show the Himalayan leucogranite was mainly melted from crust materials(Guo  相似文献   

11.
The (U‐Th)/He dating technique has been widely used for several decades to constrain the timing of low temperature geological processes. Recent research has shown that the commonly used reference material (the Durango apatite) often yields dispersed fragment dates that are beyond analytical uncertainties. Here, we report a new apatite (U‐Th)/He dating reference material, MK‐1, which was collected from the Mogok metamorphic belt in Burma. Electron probe microanalysis and backscattered electron images of two randomly selected fragments indicate that this apatite is chemically and structurally homogeneous. We performed single‐grain (U‐Th)/He dating on thirty randomly selected fragments of this material. (U‐Th)/He dating results from multiple laboratories show that fragments of the MK‐1 apatite megacryst yielded reproducible results, with a mean date of 18.0 ± 0.2 Ma. The Th/U ratio of this apatite is homogeneous. Nine randomly selected fragments registered a narrow range of effective uranium (eU) mass fractions (326–354 μg g?1), with a mean value of 336.6 ± 10.3 μg g?1. Twenty‐four in situ (U‐Th)/He dates yielded a mean value of 18.0 ± 0.2 Ma (MSWD = 0.41), indistinguishable from the results obtained by the conventional method. All the results suggest that this apatite has the potential to become a new reference material for (U‐Th)/He geochronology.  相似文献   

12.
Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U‐Pb dating and Sm‐Nd isotopic measurement. Here, we present in situ U‐Pb ages and Sm‐Nd isotope measurement results for four well‐known titanite reference materials (Khan, BLR‐1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ‐82, T3, T4, TLS‐36, NW‐IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR‐1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm‐Nd isotopes and low common Pb and thus can serve as primary reference materials for U‐Pb and Sm‐Nd microanalysis. YQ‐82 and T4 titanite can be used as secondary reference materials for in situ U‐Pb analysis because of their low common Pb. However, internal structures and mineral inclusions in YQ‐82 will require careful selection of suitable target domains. Pakistan titanite is almost concordant with an age of 21 Ma and can be used as a reference material when dating Cenozoic titanite samples.  相似文献   

13.
Bastnäsite is the end member of a large group of carbonate–fluoride minerals with the common formula (REE) CO3F·CaCO3. This group is generally widespread and, despite never occurring in large quantities, represents the major economic light rare earth element (LREE) mineral in deposits related to carbonatite and alkaline intrusions. Since bastnäsite is easily altered and commonly contains inclusions of earlier‐crystallised minerals, in situ analysis is considered the most suitable method to measure its U‐Th‐Pb and Sr‐Nd isotopic compositions. Electron probe microanalysis and laser ablation (multi‐collector) inductively coupled plasma‐mass spectrometry of forty‐six bastnäsite samples from LREE deposits in China, Pakistan, Sweden, Mongolia, USA, Malawi and Madagascar indicate that this mineral typically has high Th and LREE and moderate U and Sr contents. Analysis of an in‐house bastnäsite reference material (K‐9) demonstrated that precise and accurate U‐Th‐Pb ages could be obtained after common Pb correction. Moreover, the Th‐Pb age with its high precision is preferable to the U‐Pb age because most bastnäsites have relatively high Th rather than U contents. These results will have significant implications for understanding the genesis of endogenous ore deposits and formation processes related to metallogenic geochronology research.  相似文献   

14.
15.
Zircon (U‐Th‐Sm)/He (ZHe) thermochronometry is a powerful tool that has been widely used in geology to constrain the exhumation histories of orogens. In this study, we present an alternative protocol for dissolving zircon grains for determination of parent nuclides. This new alkali fusion procedure developed at the SARM (Service d'Analyse des Roches et des Minéraux) in Nancy, France, is fast (requiring only 2 d, including cleaning steps) and offers several advantages over conventional methods by avoiding: (i) use of HF pressure dissolution and (ii) complete removing of grains from the metal microvials. After dissolution, U, Th and Sm were measured using an ICP‐MS. We tested the new procedure on two different ZHe reference materials, the Fish Canyon Tuff and Buluk Tuff; these provided precision values for ZHe‐age estimations of 9 and 6% (1s), respectively. In addition, using this method, zircons from the Buluk Tuff are shown to be chemically more homogenous and more suitable for assessing the uncertainty of the entire integrated procedure.  相似文献   

16.
The LA‐ICP‐MS U‐(Th‐)Pb geochronology international community has defined new standards for the determination of U‐(Th‐)Pb ages. A new workflow defines the appropriate propagation of uncertainties for these data, identifying random and systematic components. Only data with uncertainties relating to random error should be used in weighted mean calculations of population ages; uncertainty components for systematic errors are propagated after this stage, preventing their erroneous reduction. Following this improved uncertainty propagation protocol, data can be compared at different uncertainty levels to better resolve age differences. New reference values for commonly used zircon, monazite and titanite reference materials are defined (based on ID‐TIMS) after removing corrections for common lead and the effects of excess 230Th. These values more accurately reflect the material sampled during the determination of calibration factors by LA‐ICP‐MS analysis. Recommendations are made to graphically represent data only with uncertainty ellipses at 2s and to submit or cite validation data with sample data when submitting data for publication. New data‐reporting standards are defined to help improve the peer‐review process. With these improvements, LA‐ICP‐MS U‐(Th‐)Pb data can be considered more robust, accurate, better documented and quantified, directly contributing to their improved scientific interpretation.  相似文献   

17.
The Zhou’an PGE-Cu-Ni deposit was recently discovered in the Qinling orogenic belt bound by the Yangtze and the North China Cratons. It is a blind deposit thoroughly covered by the Cenozoic alluvial sediments in the Nanyang Basin. As the first large PGE-Cu-Ni deposit discovered in the Qinling-Dabie-Sulu orogenic belt, its geological and geochemical characteristic, isotope age, genesis and tectonic setting are of wide concern in both scientific studies and ore exploration. In this contribution, we report the results obtained from a pioneering study. The Zhou’an ultramafic complex is ferruginous, with m/f?=?4.79–5.08, and shows the nature of tholeiite series. It is rich in light rare earth elements, Rb, Th, U, La, Sm, Zr and Hf, and poor in heavy rare earth elements, Nd and Ta, suggesting an intraplate setting. It has high 87Sr/86Sr and low 143Nd/144Nd ratios. The ratios of Zr/Nb, La/Nb, Ba/Nb, Rb/Nb, Th/Nb, Th/La and Ba/La, suggest the magma originated from lithosphere mantle. The Fo values of olivine and Pd/Ir-Ni/Cu diagram suggest primary magma was High Mg basalt. The laser ablation inductively coupled plasma atomic emission spectroscopy zircon U-Pb age is 641.5?±?3.7 Ma.  相似文献   

18.
A new natural zircon reference material SA01 is introduced for U‐Pb geochronology as well as O and Hf isotope geochemistry by microbeam techniques. The zircon megacryst is homogeneous with respect to U‐Pb, O and Hf isotopes based on a large number of measurements by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS). Chemical abrasion isotope dilution thermal ionisation mass spectrometry (CA‐ID‐TIMS) U‐Pb isotopic analyses produced a mean 206Pb/238U age of 535.08 ± 0.32 Ma (2s, n = 10). Results of SIMS and LA‐ICP‐MS analyses on individual shards are consistent with the TIMS ages within uncertainty. The δ18O value determined by laser fluorination is 6.16 ± 0.26‰ (2s, n = 14), and the mean 176Hf/177Hf ratio determined by solution MC‐ICP‐MS is 0.282293 ± 0.000007 (2s, n = 30), which are in good agreement with the statistical mean of microbeam analyses. The megacryst is characterised by significant localised variations in Th/U ratio (0.328–4.269) and Li isotopic ratio (?5.5 to +7.9‰); the latter makes it unsuitable as a lithium isotope reference material.  相似文献   

19.
A potential zircon reference material (BB zircon) for laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U‐Pb geochronology and Hf isotope geochemistry is described. A batch of twenty zircon megacrysts (0.5–1.5 cm3) from Sri Lanka was studied. Within‐grain rare earth element (REE) compositions are largely homogeneous, albeit with some variation seen between fractured and homogeneous domains. Excluding fractured cathodoluminescence bright domains, the variation in U content for all analysed crystals ranged from 227 to 368 μg g?1 and the average Th/U ratios were between 0.20 and 0.47. The Hf isotope composition (0.56–0.84 g/100 g Hf) is homogeneous within and between the grains – mean 176Hf/177Hf of 0.281674 ± 0.000018 (2s). The calculated alpha dose of 0.59 × 1018 g?1 for a number of BB grains falls within the trend of previously studied, untreated zircon samples from Sri Lanka. Aliquots of the same crystal (analysed by ID‐TIMS in four different laboratories) gave consistent U‐Pb ages with excellent measurement reproducibility (0.1–0.4% RSD). Interlaboratory assessment (by LA‐ICP‐MS) from individual crystals returned results that are within uncertainty equivalent to the TIMS ages. Finally, we report on within‐ and between‐grain homogeneity of the oxygen isotope systematic of four BB crystals (13.16‰ VSMOW).  相似文献   

20.
We introduce and propose zircon M257 as a future reference material for the determination of zircon U‐Pb ages by means of secondary ion mass spectrometry. This light brownish, flawless, cut gemstone specimen from Sri Lanka weighed 5.14 g (25.7 carats). Zircon M257 has TIMS‐determined, mean isotopic ratios (2s uncertainties) of 0.09100 ± 0.00003 for 206pb/238U and 0.7392 ± 0.0003 for 207pb/235U. Its 206pb/238U age is 561.3 ± 0.3 Ma (unweighted mean, uncertainty quoted at the 95% confidence level); the U‐Pb system is concordant within uncertainty of decay constants. Zircon M257 contains ~ 840 μg g?1 U (Th/U ~ 0.27). The material exhibits remarkably low heterogeneity, with a virtual absence of any internal textures even in cathodoluminescence images. The uniform, moderate degree of radiation damage (estimated from the expansion of unit‐cell parameters, broadening of Raman spectral parameters and density) corresponds well, within the “Sri Lankan trends”, with actinide concentrations, U‐Pb age, and the calculated alpha fluence of 1.66 × 1018 g?1. This, and a (U+Th)/He age of 419 ± 9 Ma (2s), enables us to exclude any unusual thermal history or heat treatment, which could potentially have affected the retention of radiogenic Pb. The oxygen isotope ratio of this zircon is 13.9%o VSMOW suggesting a metamorphic genesis in a marble or calc‐silicate skarn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号