首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
蒙古—贝加尔裂谷的演化及其形成的动力学机制一直是地学界争论的焦点。至今,对其地热学的相关研究一直比较匮乏。本文根据前人对蒙古—贝加尔及邻区的独特地貌、构造和玄武岩火山岩浆作用的研究,并结合现今地表大地热流特征共同探讨了其地球动力学机制。根据最新大地热流分布特征表明:蒙古地区的高热流区(120 mW/m~2)主要集中在蒙古Hangay穹窿北部Hovsgol裂谷及其周围裂谷内;贝加尔裂谷整体热流都较高,且贝加尔东北部热流达160 mW/m~2以上(比前人报道的更高),其中部热流也高(120 mW/m~2)。综合地热、地质与地球物理成果,本文认为晚新生代的地幔柱对蒙古—贝加尔地区的形成起着重要作用。  相似文献   

2.
滇西南晚古生代火山岩与裂谷作用及区域构造演化   总被引:10,自引:1,他引:10       下载免费PDF全文
特提斯构造东南带的滇西南地区发育三个系列的晚古生代火山岩:碱性橄榄玄武岩系列,大陆拉斑玄武岩系列和类似MORB拉斑玄武岩系列。地质、地球化学特征反映它们可能是保山—掸邦地块东缘昌宁—孟连晚古生代裂谷(局部向初始洋盆转化),而不大可能是宽阔洋底和洋岛的火山作用产物。逐渐增强的前进式裂谷作用伴随陆壳的减薄(局部分离,洋壳诞生)和软流圈顶面的抬升,可能导致不同深度地幔产生不同程度熔融作用,形成本区三个系列岩浆。地幔对流可能引导陆缘裂谷、洋壳扩张、俯冲、微陆块碰撞以及岩石圈深部剪切作用,制约区域晚古生代至中生代早期的构造岩浆演化。  相似文献   

3.
本文应用岩浆岩地球化学图解对东非裂谷系统(EARS)火山岩的岩石地球化学数据进行处理,重点回顾和讨论埃塞俄比亚大裂谷(MER)、阿法(Afar)盆地及肯尼亚裂谷火山作用的构造环境和地幔柱成因。MER火山岩的岩石类型具双峰式火山岩套特征,以高Ti的大陆溢流玄武岩(CFB)-大陆洋岛玄武岩(OIB)-流纹岩系列为主,缺少中性岩,是来自地幔柱岩浆分异的结果,与板块俯冲作用无关。阿法(Afar)盆地和红海为CFB-MORB系列。肯尼亚裂谷(KR)及埃塞俄比亚大裂谷最南端图尔卡纳盆地只见以大陆OIB,缺乏流纹岩。EARS是一个主动型地幔柱,由地幔上涌冲击地壳底部而成,其火山岩以富集常量元素Ti、Fe和Mg,富集高场强元素Nb、Ta和相容元素V、Cr、Co和Ni为特征。绝大多数EARS火山岩的Nb/Zr0.04和Ta/Hf比值0.1,在地球化学-构造环境判别图上落在板内火山岩的范围内(大洋板内和地幔柱),集中在Nb/Zr0.15和Ta/Hf比值0.3范围内的火山岩样品可能为主动地幔柱成因。根据La/Nb、Ce/Pb和Ba/La比值,地幔柱成因的MER火山岩可分为受地壳混染地幔和未受地壳混染的原始地幔两种类型。La/Nb(≤1)、Ce/Pb(30~50)、Ba/Nb比值(10)和La/Yb≤12是来源于未受地壳混染原始地幔的重要判别标志。地球化学证据(微量元素,Sr-Nd-Pb-He同位素)表明,MER-阿拉伯-也门地幔柱起源于深部核-幔边界的HIMU。MER-Afar的前裂谷和同裂谷火山岩(50-12 Ma)具有高的3He同位素标志(R/Ra比值16.4)说明其非洲板块之下存在一个深藏的地幔岩浆源深度大于670 km,位于石榴子石-尖晶石橄榄岩过渡带(图6b、c、d)。MER-Afar大火山岩省及其最南端图尔卡纳湖和肯尼亚地体(克拉通,改造的克拉通边缘和活动带)深部地壳底部之下的HIMU地幔可能是导致裂谷型的OIB和CFB异常发育的岩浆源区,而Afar洼地(吉布提)、红海和亚丁湾形成于后裂谷期(5~0 Ma)的MORB和亏损LREE玄武岩则归因于HIMU、富集地幔(EM1-EM2)与DM混合地幔源的熔融,其岩浆源区位地壳拉张减薄带之下的尖晶石橄榄岩区。  相似文献   

4.
林广春  董俊超 《中国地质》2013,40(6):1793-1805
提要:扬子地块西缘新元古代岩浆岩分布广泛,目前对其成因和构造背景的认识还存在很大争议。本文报道了川西康滇裂谷北段康定—丹巴地区新元古代基性岩墙的岩石学、元素地球化学和Sm-Nd同位素特征,探讨其岩石成因、岩浆源区性质和岩浆熔融深度。结果表明岩石样品属拉斑系列,形成于板内裂谷环境,岩浆在上升侵位过程中受到了初生岛弧地壳物质不同程度的混染。岩浆起源于亏损地幔源区,是尖晶石地幔橄榄岩部分熔融的产物,很可能与导致Rodinia超级大陆裂解的新元古代地幔柱事件有关。  相似文献   

5.
内蒙古阿巴嘎旗地区新生代玄武岩基本特征及成因   总被引:9,自引:0,他引:9  
内蒙古阿巴嘎旗及其以北地区新生代玄武岩是更新世中心式火山活动产生的大陆溢流玄武岩,该区玄武岩以高碱、富钛、贫铝为特征,属于钠质碱性玄武岩系列.源区是软流圈上地幔,玄武岩是部分熔融和分离结晶两种作用的结果.地幔橄榄岩部分熔融产生玄武质岩浆,部分原始地幔岩浆未经变异沿构造通道直接喷出地表形成碧玄岩、碱性橄榄玄武岩;部分原始地幔岩浆在上升过程中因停顿,原始地幔岩浆发生橄榄石分离结晶作用,部分橄榄石从岩浆中析出,最终岩浆喷出地表形成橄榄拉斑玄武岩.研究该区新生代玄武岩基本特征,探讨岩浆起源和岩石产生的构造环境对认识该区岩石圈地幔和软流圈性质具有重要意义.  相似文献   

6.
地球化学急变带与地幔柱资源系统   总被引:7,自引:2,他引:7  
地幔柱产生大面积软流圈上涌,沿深断裂形成岩浆房,导致大规模溢流玄武岩裂隙式喷发。良好的地幔柱成矿系统常出现在岩石圈不连续界面和三叉拼接裂谷,表现为地球化学急变带。地幔柱资源系统包括以下几方面:(1)地幔柱岩浆分异成矿系统,从封闭到开放环境的岩浆分异形成了富钛、富镁和低钛三个岩浆端员,构成了Cu—Ni(PGE)硫化物、Fe—Ti—V氧化物和Cu—Ag自然金属三个成矿体系;(2)地幔柱同生火山热液成矿系统,包括赤铁矿—阳起石—硅化氧化铜,沥青化—绿泥石—浊沸石化自然铜和碳酸盐化硫化物三个成矿体系;(3)地幔柱同构造盆地油气系统,巨量岩浆的快速成溢流导致地壳的快速沉降,形成同构造热盆地,具有油气前景;(4)地幔柱火山岩、硅质岩和富有机质砂页岩组合为优势生态体系提供了地质环境。  相似文献   

7.
攀西裂谷存在吗?   总被引:12,自引:0,他引:12  
大陆裂谷以地幔上隆、岩石圈伸展、减薄、断陷和沉降为特征,伸展构造环境是大陆裂谷形成的必要条件和本质特征。中国学者以前所认为攀枝花-西昌裂谷的主要标志是海西期层状堆晶杂岩、晚二叠世峨眉山玄武岩、印支期环状碱性杂岩和晚三叠世裂谷盆地沉积。最近一系列研究成果表明攀西地区海西期-印支期构造岩浆热事件是地幔柱和岩石圈相互作用的结果,不是裂谷作用的产物。进一步对上扬子西缘二叠纪-三叠纪的沉积作用和构造特征综合分析表明攀西地区不存在裂谷盆地沉积。该区晚二叠世-中三叠世为古陆隆起遭受剥蚀,晚三叠世断陷型类磨拉石建造是前陆走滑复合盆地的产物。本文根据对攀西地区二叠纪-三叠纪的岩浆活动、沉积作用、构造特征和地球物理资料等方面综合研究对攀西裂谷的存在提出质疑,并以峨眉山地幔柱活动为主线探讨了攀西地区古生代和中生代的地质构造演化历史。  相似文献   

8.
俄罗斯贝加尔湖区伸展构造及与中国东部伸展构造对比   总被引:4,自引:0,他引:4  
在晚白垩世-始新世夷平面基础上,由于断裂作用形成了贝加尔裂谷系。断裂作用最大幅度超过10 km。在裂谷系中心部位发育的断层长度最大、最深、最早,并以准对称形式向四周扩展。贝加尔裂谷系是在地幔隆起和印度-欧亚大陆碰撞双重作用下形成。贝加尔裂谷系与中国东部新生代断陷盆地和汾渭裂谷系同时形成,并有密切的成因联系。它们的形成不仅受太平洋板块的俯冲和印度-欧亚大陆碰撞的制约和影响,而且位于中国西南部的地幔流发散中心,呈扇状向太平洋区流动,可能是它们在更深层次上的共同场源基础。  相似文献   

9.
通过系统分析西滨太平洋带中、新生代的构造演化,结合作者以往对汾渭地区、贝加尔—东萨彦岭地区的一些观察,还综合分析了近年来我国及苏联地质学者有关本区的研究成果,本文拟从比较构造学角度出发,试对东亚地区喜马拉雅期深部作用的两个窗口——汾渭地堑与贝加尔裂谷系的相似特征及其意义,进行初步剖析*。  相似文献   

10.
本文主要讨论穹窿-火山型攀西裂谷的成因,岩浆深成作用与火山作用过程;穹窿构造的发生、发展的演化历史;岩浆分异趋势及双峰式岩浆演化系列及其成因。 攀西裂谷曾经历了岩石圈穹窿—陆壳穹窿一次火山穹窿三个发展演化阶段。碱性岩浆作用与地壳隆升、地幔去气、热流汇聚作用有着密切的成因联系,成穹作用最盛,岩浆碱度最高。随着陆壳破裂、开放、挥发分散逸,岩浆性质从强碱质—弱碱质—碱酸性转化。 穹窿构造的发展演化阶段有机地控制了岩浆源和二次岩浆房的深度和岩浆演化特点,随着穹窿构造的发展演化,岩浆活动由深成幔源→中浅成幔源加陆壳轻微混染→超浅成壳幔混合源逐渐演化,因而可以认为:穹窿-火山型裂谷发育的各个阶段,存在有低位→中位→高位的二次岩浆房。 攀西裂谷属不发育的夭折裂谷,以演化时间长为特点,有利于岩浆深源(二次岩浆房内)结晶分异、液体不混容性分离作用和陆壳的同化混染作用等得以彻底进行,最终形成“双峰式”岩浆组合。  相似文献   

11.
A model for continental uplift at a convergent margin (Damon, 1979) is further developed. The model assumes the necessity of isostatic compensation of the subducted lithospheric plate. It predicts a continental declivity that reaches its maximum uplift and extent at the time of trench-spreading center collision. As a result of the passage of the subducted plate eastward the region of maximum uplift increases and migrates eastward behind the eastward migrating declivity. The “gang plank” from the Front Range to the Mississippi River is the most obvious modern expression of the continental declivity whereas the Great Basin is an expression of the area of maximum uplift lowered somewhat by extension and crustal thinning. Compensation takes place by transfer of asthenosphere to the base of continental lithosphere. At the time of trench-spreading center collision a pressure gradient shunts the asthenospheric current from the quenched spreading center to the channel between the continental lithosphere and the subducted plate. Sinking of the subducted plate causes upwelling of asthenosphere feeding the laminar flow between the two plates. The model is in accord with the physiography of North America and the geologic record.  相似文献   

12.
通过中国及邻近陆海地区天然地震面波层析成像三维Vs速度结构的系统地质构造解析,笔者论述了中国及邻近陆海地区软流圈三维结构特征,发现该区软流圈内既有高速块体,又有低速异常体,显示软流圈内存在纵向与横向上的不均匀性,研究软流圈内低速异常体三维几何结构表明,南海低速异常体呈复蘑菇状,结合地幔体波层析成像研究显示,南海地区存在巨型复蘑菇状地幔低速柱头。笔者还探讨了软流圈对岩石圈结构的影响及其相互作用问题。  相似文献   

13.
L. E. Levin 《Geotectonics》2006,40(5):357-366
The lithosphere and asthenosphere make up a common geodynamic system but are characterized by different physical parameters. The former has a temperature of 1200–1300°C, a density of 3.3 g/cm3, and a viscosity of 1022 poise, while the latter has a density of 3.23 g/cm3, a viscosity in the range 1021-1018–19 poise, and a temperature from 1200–1300°C to 1600–1700°C. The asthenosphere is distinguished by a great variability of its physical state in the lateral and vertical directions. This circumstance necessitates the recognition of the different types of the asthenosphere: seismic (LVZ zone), electrical, thermal, and seismological. The structure and the physical state of the thermal asthenosphere is considered in this paper on the basis of P-T parameters. Its state normally fits viscous Newtonian liquid beneath the continents and provides partial (5–20%) melting in spreading zones and along continental margins. No partial melting is detected beneath the main portion of the continents. The interaction between the asthenosphere and lithosphere is characterized by spatiotemporal migration of partial melting zones and asthenosphere upwelling, and such interaction determines the entire range of geodynamic processes from spreading and rifting to collision and vertical motions of different senses.  相似文献   

14.
Stresses and effective viscosities in the asthenosphere to a depth of 400 km are calculated on the basis of Weertmans “temperature method” i.e., on relating viscosity to the ratio of the temperature to the melting point (=homologous temperature). Some oceanic and continental geotherms and two melting point—depth curves, the dry pyrolite solidus and the forsterite90 melting curve are used for the conversion of the homologous temperature to the effective viscosity. Two creep laws are considered, the linear, grain-size-dependent Nabarro—Herring (NH) creep law, and a power creep law, in which the creep rate is proportional to the third power of the stress. A plate tectonic model yields creep rates of 2 · 10−14 s−1 for the oceanic and 3 · 10−15 s−1 for the continental asthenosphere. These values are held constant for the calculations and may be valid for regions inside plates.The dry pyrolite mantle model results in high homologous temperatures in the asthenosphere below oceans (0.9), very low stresses (a few bars and lower) and shows a low viscosity “layer” of about 200-km thickness. Below continental shields the homologous temperature has a maximum value of 0.73, stresses are around 5–20 bar and the low-viscosity region is thicker and less pronounced than in the oceanic case. The Fo90 mantle model generally gives lower homologous temperatures (maximum value below oceans beside active ridges 0.75). The stresses in the asthenosphere beneath oceans vary from a few bars to about 50 bar and below continents to about 100 bar. The low-viscosity region seems to reach great depths without forming a “channel”. The Figs. 1 and 2 show the approximate viscosity—depth distribution for the two mantle models under study.Assuming a completely dry mantle and a mean grain size of 5 mm, power law creep will be the dominating creep process in the asthenosphere. However, grains may grow in a high-temperature—low-stress regime (i.e., below younger oceans), an effect which will further diminish the influence of NH creep. In the upper 100–150 km of the earth some fluid phases may affect considerably creep processes.  相似文献   

15.
以深部地球物理资料为基础,结合大地构造环境、岩浆岩同位素示踪及矿产资源分布规律,加以综合分析.通过热力学计算可知,中国东部近2亿年来的上地幔岩石圈/软流圈构造可以存留至今,且能区分出中、新生代.软流圈上涌与矿集区:(1)中生代金属矿:(a)克拉通区,软流圈沿柱身上涌,其柱头上方形成幔壳混熔花岗质岩及相应Au、Cu、Mo、Pb-Zn等矿集区,并于柱身与岩石圈块体陡接触带,形成中基性杂岩及相应富Fe矿集区;(b)褶皱带区,在软流圈上涌柱上方形成近幔源型花岗质岩,相应为Cu、Au、Pb-Zn、Mo、Ag矿集区;(c)南岭带,软流圈层在适当深度、热量充足、较大范围内"平卧",因热传导而致使地壳内物质部分重熔,形成壳源型花岗质岩及相应的W、Sn、稀有元素矿集区;(2)新生代油气田:(a)与太平洋板块俯冲有关的软流圈上涌,其上方出露玄武岩,形成较大型油田;(b)与裂陷盆地有关的软流圈上涌,其上方形成大型油田,也有中小型油田.软流圈上涌与大地构造:中生代J-K时期,通过构造力特征等的综合分析,阐明燕山运动的根源及其影响;新生代侧重剖析大陆裂谷相关特征.总之,软流圈上涌是岩石圈减薄,以及中、新生代构造-岩浆-矿集区形成的根源.  相似文献   

16.
燕山-喜马拉雅期构造运动,引起印度板块与欧亚板块剧烈碰撞、太平洋板块向东俯冲与美洲大陆向西漂移,产生了"加厚旋涌"效应,即下地壳的加厚并深插上地幔软流圈,改变了软流圈运动方式而上涌,伴随强烈的岩浆活动和成矿物质上涌,完成了大规模成矿作用,在特提斯-喜马拉雅地区和太平洋东部边缘产出世界级超大型斑岩铜矿系列.初步提出太平洋东部边缘成矿作用明显超过特提斯-喜马拉雅地区原因.  相似文献   

17.
全球超大型斑岩铜矿浅析   总被引:5,自引:0,他引:5  
燕山-喜马拉雅期构造运动,引起印度板块与欧亚板块剧烈碰撞、太平洋板块向东俯冲与美洲大陆向西漂移,产生了"加厚旋涌"效应,即下地壳的加厚并深插上地幔软流圈,改变了软流圈运动方式而上涌,伴随强烈的岩浆活动和成矿物质上涌,完成了大规模成矿作用,在特提斯-喜马拉雅地区和太平洋东部边缘产出世界级超大型斑岩铜矿系列.初步提出太平洋东部边缘成矿作用明显超过特提斯-喜马拉雅地区原因.  相似文献   

18.
We present results of the study of a three-layer tectonosphere model of the West Pacific Transition Zone based on modeling of a piecewise inhomogeneous medium caused by local density reduction of the asthenosphere, whose viscosity decreases due to fluid accumulation. We used the viscous liquid motion equation in the Stokes approximation. It was shown that the anomalous asthenosphere in the back-arc basins can move as a convective cell with an uprising flow in the zone of maximum density reduction and extension of the lithosphere above it. At the initial stages, this process causes formation of the central crustal uplift, which is transformed into a system of depressions as the asthenosphere viscosity decreases to values of the order of 4.0 × 1019 Pa s and lower. The modeling results satisfactorily agree with the reconstructions of the Cretaceous Cenozoic lithotectonic evolution of the Okhotsk Sea region.  相似文献   

19.
青藏高原分布有羌塘—囊谦—滇西和冈底斯两条新生代钾质-超钾质火山岩带。羌塘—囊谦—滇西超钾质岩浆活动的峰值时间为40~30Ma,主体岩石具有Ⅰ型超钾质岩的高MgO和低CaO、Al2O3含量特征;30~24Ma期间羌塘中、西部出现Ⅲ型钾质-超钾质岩浆活动,主体岩石以贫SiO2、高CaO、Al2O3和低MgO/CaO为特征。冈底斯新生代超钾质火山岩也显示I型超钾质岩的高MgO和低CaO、Al2O3含量特征,其形成时间为25~12Ma。综合超钾质岩石的实验资料,可知区内I型超钾质岩的源区以富硅、富钾流(熔)体交代形成的金云母方辉橄榄岩为主;Ⅲ型钾质-超钾质岩浆源区则以斜辉橄榄岩地幔为主。囊谦—滇西Ⅰ型超钾质岩带空间上严格受红河走滑构造带所控制,40~28Ma出现I型超钾质岩浆活动,16Ma转变为OIB型钾质火山岩。岩浆源区从岩石圈地幔向软流圈演变,暗示大型走滑断裂引起的岩石圈地幔减薄和软流圈上涌是导致交代岩石圈地幔金云母分解熔融产生区内I型超钾质岩浆的主控因素。羌塘中部35~34Ma有软流圈来源为主的钠质碱性玄武岩岩浆的喷发,30~24Ma转变为以岩石圈地幔为主要来源的Ⅲ型钾质-超钾质岩浆活动,岩浆源区从软流圈向岩石圈迁移,指示软流圈上涌伴随的富CO2流(熔)体活动是导致古交代岩石圈地幔升温熔融产生Ⅲ型钾质-超钾质岩浆的主控因素,软流圈上涌可能是俯冲板片断离或岩石圈地幔拆沉作用的结果。  相似文献   

20.
Imaging the continental upper mantle using electromagnetic methods   总被引:9,自引:0,他引:9  
Alan G. Jones 《Lithos》1999,48(1-4):57-80
The internal structure of the continental lithosphere holds the key to its creation and development, and this internal structure can be determined using appropriate seismic and electromagnetic methods. These two are complementary in that the seismic parameters usually represent bulk properties of the rock, whereas electrical conductivity is primarily a function of the connectivity of a minor constituent of the rock matrix, such as the presence of a conducting mineral phase, e.g. carbon in graphite form, or of a fluid phase, e.g. partial melt or volatiles. In particular, conductivity is especially sensitive to the top of the asthenosphere, generally considered to be a region of interconnected partial melt. Knowledge of the geometry of the lithosphere/asthenosphere boundary is important as this boundary partially controls the geodynamic processes that create, modify, and destroy the lithosphere. Accordingly, collocated seismic and electromagnetic experiments result in superior knowledge than would be obtained from using each on its own. This paper describes the state of knowledge of the continental upper mantle obtained primarily from the natural-source magnetotelluric technique, and outlines how hypotheses and models regarding the development of cratonic lithosphere can be tested using deep-probing electromagnetic surveying. The resolution properties of the method show the difficulties that can be encountered if there is conducting material in the crust. Examples of data and interpretations from various regions around the globe are discussed to demonstrate the correlation of electromagnetic and seismic observations of the lithosphere–asthenosphere boundary. Also, the observations from laboratory measurements on candidate mineralogies representative of the mantle, such as olivine, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号