首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
滇东南老君山南秧田钨矿床的成矿流体和成矿作用   总被引:7,自引:2,他引:5  
南秧田钨矿床位于滇东南老君山钨锡多金属成矿区.矿体形态简单,主要呈层状和似层状,在空间上与矽卡岩密切相关.该矿床的形成经历了矽卡岩期和石英硫化物期,前者可分为矽卡岩阶段和退化蚀变阶段,后者可分为石英硫化物阶段和方解石硫化物阶段.白钨矿主要形成于退化蚀变阶段.文章对南秧田矽卡岩型钨矿床内不同成矿阶段的石榴子石、绿帘石、石...  相似文献   

2.
西藏马牧普铜多金属矿床是玉龙铜矿带南段的重要组成部分,最新勘查进展揭示其铜、金资源量均已达到中型规模,但理论研究工作仍十分薄弱。本文基于系统的镜下鉴定和电子探针分析,对马牧普铜多金属矿床矿物学进行详细研究,进而探究矿床成因。马牧普矿床主矿体为中—厚层板状的角砾岩型矿体,矿石类型以角砾状为主,局部矿体呈透镜状产于角岩中。矿区发育广泛的绿泥石化、角岩化、金云母化和弱绢云母化蚀变。电子探针分析结果表明,矿区内矽卡岩矿物中辉石主要为透辉石,云母主要为金云母,角闪石则以透闪石为主。马牧普矿床成矿阶段和矿物组合为:Ⅰ进变质阶段,矿物组合为透辉石- 石榴子石- 磁铁矿±白钨矿;Ⅱ退变质阶段,矿物组合为透闪石- 金云母±磁铁矿±绿泥石±绿帘石±白钨矿;Ⅲ硫化物阶段,矿物组合为黄铁矿- 黄铜矿±辉钼矿±磁黄铁矿±辉铋矿±方铅矿±闪锌矿±萤石±石英,为主成矿阶段;Ⅳ碳酸盐阶段,矿物组合为赤铁矿±萤石±方解石±石英±玉髓。矿物学特征表明,矽卡岩演化经历了岩浆期后高温—中低温演化的过程,随着温度的降低,镁质矽卡岩矿物从进变质阶段的透辉石转变为退变质阶段的金云母;矽卡岩形成过程中经历了早期相对较为氧化的环境到晚期相对较为还原环境的转变。矿区角砾岩层为原沉积地层中存在的白云质、钙质碳酸盐夹层,广泛的热液交代作用使得大部分碳酸盐呈角砾状。含矿岩浆热液流体沿着碳酸盐岩产状侵位并发生交代作用,使得金属矿物在角砾岩层中沉淀并富集成矿。  相似文献   

3.
内蒙古黄岗锡铁矿床流体包裹体特征及成矿机制研究   总被引:7,自引:3,他引:4  
周振华  王挨顺  李涛 《矿床地质》2011,30(5):867-889
黄岗锡铁矿床是大兴安岭南段多金属成矿带内的一个重要的矽卡岩型矿床.下二叠统大石寨组及黄岗梁组是矿区的主体含矿层位,矿体总体顺层分布,空间上与矽卡岩密切相关.矿床的形成经历了矽卡盐阶段、退化蚀变阶段、石英硫化物阶段和碳酸盐阶段.对不同成矿阶段的石榴子石、绿帘石、角闪石、石英、方解石和萤石中流体包裹体所进行的岩相学和显微测...  相似文献   

4.
秦岭造山带内的山阳-柞水古生代弧前盆地中出露有池沟、小河口、冷水沟、园子街、下官坊及双元沟等CuMo、CuFe(Au)矿床,与这些矿床具有成因联系的岩体为形成于150~140Ma的高钾钙碱性和钾玄岩系列花岗岩,为华北和扬子大陆碰撞后伸展阶段壳、幔混合岩浆的产物。矿化主要发生在岩体与泥盆、石炭纪地层中碳酸盐岩的接触带附近,主要类型为矽卡岩型,少量为斑岩型,部分矿床具有统一的矽卡岩-斑岩型成矿系统,矿化组合主要为CuMo、CuFe(Au)和Cu矿化。外接触带主要发育有矽卡岩和角岩化蚀变,内接触带主要为岩体内部的硅化、钾化、绢云母化、绿泥石化及粘土化,内矽卡岩不发育。矽卡岩矿物主要有石榴石、透辉石、绿帘石、透闪石,阳起石等,其中石榴子石主要为钙铁榴石和钙铝榴石,透辉石是辉石的主体,早期形成的石榴石和透辉石等无水矿物组合常被后期的绿帘石、透闪石和阳起石等含水矿物及石英、方解石等所交代。金属矿物比较简单,最主要的含铜矿物为黄铜矿和斑铜矿,铁矿化主要为磁铁矿和镜铁矿。尽管这些矿床以矽卡岩型矿化为主,但部分矿床中已发现有斑岩型矿化和蚀变特征,这可能暗示了该区可能具有统一的矽卡岩-斑岩型成矿系统,进而表明山阳-柞水矿集区深部具有寻找斑岩型矿床的巨大潜力。  相似文献   

5.
龙玛拉铅锌矿床是位于冈底斯成矿带之念青唐古拉铅锌成矿亚带东段的一个典型矽卡岩型矿床。前人对矿床成矿物质来源及演化、成岩-成矿时代、矿床形成动力学背景等方面进行过一定的研究, 但对矽卡岩矿物学及分带模式还缺乏系统的研究。为此, 本文通过详细的野外地质编录、系统的镜下鉴定和电子探针分析, 开展矽卡岩矿物组合、矿物成分及其分带特征研究。矿床矽卡岩矿物主要包括石榴子石、辉石、硅灰石、绿泥石和绿帘石等。矽卡岩矿物组合和化学成分在空间上具有明显的分带性。矽卡岩主要发育在角岩与大理岩接触带, 或沿裂隙充填在围岩中, 横向上显示了从褪色角岩→石榴子石矽卡岩→深色角岩→透辉石矽卡岩(矿体)→大理岩→角岩的分带特征。垂向上由顶板至底板表现出从角岩→石榴子石矽卡岩→透辉石矽卡岩→大理岩→石榴子石矽卡岩→透辉石矽卡岩→角岩的岩性分带特征。矿床石榴子石为钙铁-钙铝榴石类质同象系列(And7.92~88.63Gro5.92~86.46Pyr+Spe1.04~5.11), 端员组分变化范围较大, 表明矽卡岩的形成环境并不是完全封闭的体系。通过对铅锌主矿体的赋矿矽卡岩中石榴子石进行研究, 表明成矿流体是从矿区南西方向向北东方向运移就位形成主矿体, 为矿区寻找成矿岩体及深部找矿提供指导。  相似文献   

6.
新疆阿尔泰巴斯铁列克钨多金属矿矿物特征及其地质意义   总被引:2,自引:1,他引:1  
巴斯铁列克是在新疆阿尔泰发现的首例中型钨多金属矿床。该矿床赋存于黑云二长花岗岩外接触带的上志留统—下泥盆统康布铁堡组火山沉积岩系中。矿体呈似层状和透镜状分布于矽卡岩中。矽卡岩及金属矿物特征关系到成矿机制研究和矿床模型的构建。文章对矽卡岩矿物和矿石中金属矿物进行了研究,电子探针分析表明,辉石端员组分以透辉石为主,少量钙铁辉石(w(Wo)为49.14%~50.71%,w(En)为24.38%~27.76%,w(Fs)为22.29%~24.27%);石榴子石以钙铝榴石为主;黑云母为铁云母,长石为正长石,绿帘石具有富Ca、Al、贫Fe特征。闪锌矿为铁闪锌矿,磁黄铁矿、黄铜矿、黝锡矿、毒砂、自然铋、辉银矿分子式与标准矿物基本一致。研究表明,矿区矽卡岩为交代成因的钙质矽卡岩,是岩浆热液交代大理岩的产物。通过对矿床地质特征、矽卡岩矿物组合、矽卡岩与矿化关系和矿物成因研究,提出成矿过程经历了早期矽卡岩阶段、退化蚀变阶段和石英硫化物阶段,钨矿化主要形成于退化蚀变阶段,铜锌矿化则形成于石英硫化物阶段。  相似文献   

7.
哈萨克斯坦萨亚克大型铜矿田中, 矽卡岩型矿床的矿体赋存于石炭系灰岩与花岗岩类的接触带上, 矿体及其周围发育大量矽卡岩。矽卡岩矿物主要由石榴子石、辉石、绿帘石、绿泥石等组成, 矿石矿物主要发育黄铜矿、斑铜矿、黄铁矿、磁黄铁矿、辉钴矿等。萨亚克矽卡岩型矿床成矿作用分为5个阶段: 透辉石-石榴子石矽卡岩阶段、石榴子石矽卡岩阶段、绿帘石-磁铁矿阶段、石英-硫化物阶段和碳酸盐阶段。电子探针分析结果表明, 矿区矽卡岩属典型的钙质矽卡岩。 其中石榴子石发育3种类型, 均属钙铝-钙铁榴石固溶体系列, 自早期透辉石-石榴子石矽卡岩阶段至晚期石榴子石矽卡岩阶段, 由钙铁榴石向钙铝-钙铁榴石转变, 并且钙铁-钙铝榴石与矿化关系最为密切。其中具环带结构的石榴子石中钙铁与钙铝含量随环带呈韵律性变化, 表明生长过程中成分具震荡性变化, 形成于不完全封闭的平衡条件, 指示流体的多期次多阶段性; 辉石以透辉石为主; 绿帘石属绿帘石族中绿帘石范畴; 磁铁矿TFeO含量高, 与其他氧化物成分呈负相关关系。石英硫化物阶段早期发育黄铜矿-黄铁矿-磁黄铁矿-白铁矿、黄铜矿-辉钴矿矿物组合; 晚期为主要矿化阶段, 发育大量致密块状黄铜矿。黄铜矿显示贫硫富铜、铁特征; 黄铁矿为亏硫型; 磁黄铁矿属贫钴富镍型。矽卡岩矿物共生组合及石榴子石成分演化等矿物学特征显示, 成矿过程中随着温度及氧逸度的降低, 成矿热液由弱碱性向酸性演化, 伴随热液在接触带的中和作用, 以黄铜矿为主的金属硫化物富集沉淀。  相似文献   

8.
金厂河铁铜铅锌多金属矿床是位于“三江”地区保山地块北部的隐伏多金属矿床,矿体呈层状、似层状产于上寒武统核桃坪组大理岩化灰岩与矽卡岩内,受NW向F2断裂和NE向F10断裂控制明显。本文根据野外穿切关系及矿物共生组合,将矿床划分为4个成矿阶段,即矽卡岩阶段、退化蚀变阶段、石英-硫化物阶段、碳酸盐阶段。矿区脉石矿物包括石榴子石、辉石、角闪石、绿帘石、绿泥石、黑柱石、石英、方解石、萤石等,矿石矿物主要包括磁铁矿、黄铜矿、磁黄铁矿、黄铁矿、方铅矿和闪锌矿。本文以矽卡岩矿物为研究对象,利用电子探针技术对其矿物学特征进行研究,结果表明:该矿床矽卡岩矿物主要为钙矽卡岩,石榴子石以钙铁榴石为主,辉石为透辉石-钙铁辉石过渡系列,角闪石主要为阳起石、铁阳起石和铁闪石,黑柱石含铁较高,多与磁铁矿相伴生;本矿床含少量锰质矽卡岩,包括锰铝榴石、含锰钙铁辉石、含锰阳起石、含锰黑柱石。矿床从深至浅的垂向分带以及自东向西的水平分带具有相似性:含Fe钙质矽卡岩→含Cu钙质矽卡岩→含Pb-Zn锰质矽卡岩→大理岩化灰岩,表明由矿床中部至两侧,自东向西,均有明显高温氧化环境向低温还原环境演化趋势。通过与已有矽卡岩Pb-Zn矿床矿物分带模型对比,推测存在深部岩浆热液以断裂交汇部位侵入交代围岩成矿,该矿床应为远接触带的矽卡岩型隐伏铁铜铅锌多金属矿床。  相似文献   

9.
铜绿山铜铁金矿床是长江中下游铜铁多金属成矿带最重要的矽卡岩型矿床之一,矿床的形成与铜绿山石英闪长岩株体密切相关,矿体主要沿北北东向断裂产于石英闪长岩与大理岩/白云质大理岩的接触带,形成钙-镁复合型矽卡岩铜多金属矿化。围岩蚀变由致矿岩体到接触-蚀变矿化中心为:绢云母-绿泥石-钾化带、高岭石-绿泥石-弱矽卡岩化带、皂石-绿泥石-强矽卡岩化带。蚀变矿化期次可分为岩浆-热液期和表生期,其中,岩浆-热液期可分为矽卡岩阶段、退化蚀变阶段、氧化物阶段、硫化物阶段和碳酸盐阶段。绿泥石是钻孔岩芯中出现最多且分布最为广泛的蚀变矿物之一。经短波红外光谱(SWIR)研究发现,从蚀变矿化中心到外围,绿泥石出现由铁绿泥石/铁镁绿泥石逐渐转变为镁绿泥石,且绿泥石Fe-OH特征吸收峰位值(Pos2250)显示出从高值变为低值的趋势。结合其他蚀变矿物的空间分布特征,文章提出绿泥石的高Fe-OH特征吸收峰位值(Pos22502253 nm)与金云母、蛇纹石、绿帘石、皂石和高岭石的大量出现,对指示铜绿山矽卡岩型矿床的矿化中心具有一定的作用。  相似文献   

10.
金厂河铁铜铅锌多金属矿床是位于"三江"地区保山地块北部的隐伏多金属矿床,矿体呈层状、似层状产于上寒武统核桃坪组大理岩化灰岩与矽卡岩内,受NW向F2断裂和NE向F10断裂控制明显。本文根据野外穿切关系及矿物共生组合,将矿床划分为4个成矿阶段,即矽卡岩阶段、退化蚀变阶段、石英-硫化物阶段、碳酸盐阶段。矿区脉石矿物包括石榴子石、辉石、角闪石、绿帘石、绿泥石、黑柱石、石英、方解石、萤石等,矿石矿物主要包括磁铁矿、黄铜矿、磁黄铁矿、黄铁矿、方铅矿和闪锌矿。本文以矽卡岩矿物为研究对象,利用电子探针技术对其矿物学特征进行研究,结果表明:该矿床矽卡岩矿物主要为钙矽卡岩,石榴子石以钙铁榴石为主,辉石为透辉石-钙铁辉石过渡系列,角闪石主要为阳起石、铁阳起石和铁闪石,黑柱石含铁较高,多与磁铁矿相伴生;本矿床含少量锰质矽卡岩,包括锰铝榴石、含锰钙铁辉石、含锰阳起石、含锰黑柱石。矿床从深至浅的垂向分带以及自东向西的水平分带具有相似性:含Fe钙质矽卡岩※含Cu钙质矽卡岩※含Pb-Zn锰质矽卡岩※大理岩化灰岩,表明由矿床中部至两侧,自东向西,均有明显高温氧化环境向低温还原环境演化趋势。通过与已有矽卡岩Pb-Zn矿床矿物分带模型对比,推测存在深部岩浆热液以断裂交汇部位侵入交代围岩成矿,该矿床应为远接触带的矽卡岩型隐伏铁铜铅锌多金属矿床。  相似文献   

11.
《International Geology Review》2012,54(11):1020-1039
The Shizhuyuan deposit is the largest among the economically important polymetallic tungsten deposits in China. The deposit occurs within the thermal aureole of Yanshanian felsic intrusions that were emplaced into Devonian carbonates and marls. The mineralization can be divided into three phases that are genetically associated with three episodes of granitic emplacement-pseudoporphyritic biotite granite, equigranular biotite granite, and granite porphyry. During the emplacement of pseudoporphyritic biotite granite, thermal metamorphism and subsequent skarnization developed around the stock. The pure limestone was transformed to marble, whereas marls and argillite interlayers were changed to a series of metamorphic rocks such as grossular-diopside hornfels, wollastonite hornfels, diopside hornfels, wollastonite-vesuvianite hornfels, muscovite-K-feldspar-anorthite hornfels, and prehnitevermiculite hornfels. Because of the subsequent strong skarn development, most hornfelses later were transformed into skarns. The skarns distributed around the granite stock are mainly calcic. They are massive in structure, and are composed mainly of garnet, pyroxene, vesuvianite, and wollastonite, with interstitial fluorite, scheelite, and bismuthinite. Although there is no cassiterite in the early skarns, their tin contents average 0.1%. The distribution and compositional and mineralogical relationships of skarn minerals suggest that they formed as a result of progressive reactions of a hydrothermal solution with a limestone of generally constant composition, and that the dominant process was progressive removal of Ca and addition of other constituents to the rocks.

Following the primary skarn formation, some of the assemblages were retrograded to new assemblages such as fluorite-magnetite-salite rock, magnetite-fluorite-amphibole rock, and magnetite-fluorite-chlorite rock. The retrograde alteration of the skarns is characterized by a progressive addition of fluorine, alkali components, silica, tin, tungsten, and bismuth. A zonation from garnet-pyroxene skarn or garnet skarn, through fluorite-magnetite-salite rock, to magnetite-fluorite-chlorite rock frequently can be recognized in the deposit. All retrograde-altered rocks contain scheelite, cassiterite, molybdenite, and bismuthinite.

During the emplacement of equigranular biotite granite, skarn veins several tens of centimeters wide were developed; they contain large crystals of garnet and vesuvianite, and interstitial scheelite, wolframite, cassiterite, and molybdenite. This second stage of mineralization occurs predominantly as coarse and fine stockwork greisens, which were superimposed on the massive skarns and surrounding marble. Such W-Sn-Mo-Bi-bearing greisens can be divided into topaz greisen, protolithionite greisen, muscovite greisen, and margarite greisen. Besides calcic skarn veins and greisens, manganese skarn veinlets also were developed; they consist of rhodonite, spessartine-almandine solid solution, spessartine, and helvite. The distribution of greisens is responsible for a metal zonation—i.e., W-Sn-Mo-Bi and Sn-Be-Cu-F zones from the contact boundary between the granite stock and skarns outward in the deposit. A third stage of mineralization is represented by lead-zinc veins, which also are accompanied by manganese skarns consisting of spessartine, rhodonite, manganese-rich pyroxene, helvite, tephroite, fluorite, tourmaline, and manganese-rich phlogopite.  相似文献   

12.
湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用   总被引:7,自引:2,他引:7  
柿竹园钨多金属矿床由三个阶段不同成矿作用复合叠加而形成。它们分别与似斑状黑云母花岗岩、等粒黑云母花岗岩和花岗斑岩脉有着成因联系。第一阶段矿化包括含矿块状外质矽卡岩和含矿退化蚀变岩;第二阶段为云英岩矿化,在空间上叠加于块状矽卡岩及外部的大理岩;第三阶段为与锰质矽卡岩相伴生的铅锌银矿化。本文详细地描述了前两阶段矿化的地质和成矿地球化学特征,并探讨了其成矿过程。在此基础上,建立了柿竹园矿床的多阶段成矿模  相似文献   

13.
湖南杮竹园是世界著名的大型矽卡岩型锡钨多金属矿床,产于千里山碱长花岗岩岩体南部接触带。矽卡岩中广泛发育网脉状碱交代脉和少量花岗岩脉、云英岩脉等各类脉体。碱交代脉主体由钾长石、萤石、少量石英、磁铁矿、黑钨矿、白钨矿及花岗岩构成,以往被统称为"云英岩脉"。其中早阶段碱交代脉中央发育花岗岩,边部为钾长石-萤石-黑钨矿,脉体两侧发育石榴子石透辉石矽卡岩化,对应矽卡岩阶段。晚阶段碱交代脉主要成分为钾长石、萤石,脉体及两侧出现大量阳起石、绿帘石、磁铁矿、白钨矿及辉钼矿、辉铋矿、自然铋等,对应退变质氧化物阶段。空间上,碱交代脉分布于矽卡岩和矽卡岩化大理岩中,不进入岩体。自花岗岩体→岩脉→碱交代脉→矽卡岩,Ca O、Ti O2、成矿元素W、Bi、Mo、Cu、Pb、Zn以及Sr、Ba等元素含量增高,显示出成矿元素向热液中富集,且岩浆和矽卡岩受到碳酸盐岩围岩的影响。碱交代脉的组构显示出其形成于富含成矿物质和挥发份流体的岩浆,其中广泛发育熔融包裹体和熔流包裹体,显示其浆液过渡态流体的成因性质。从岩浆晚期分异演化→热液阶段是连续演化的过程,块状云英岩和矽卡岩阶段,岩浆并未完全固结,成矿作用自岩浆固结之前已经开始。总结了杮竹园矿床成矿模型:碱长花岗岩岩浆演化晚期分异出的高度富含挥发份的熔浆,在岩体顶部聚集,部分形成似伟晶岩(壳)和块状云英岩以及条带状硅灰石符山石矽卡岩。进一步聚集以及矽卡岩化产生大量CO2引起大规模隐爆,富含挥发份的岩浆或浆液过渡态流体沿隐爆形成的碎裂裂隙进入碳酸盐岩围岩,与碳酸盐岩不断发生反应,在脉体边部形成钾长石化以及大范围的石榴子石透辉石矽卡岩化。至退变质氧化物阶段,随着岩浆冷凝和温度、压力的降低,地下水大范围参与,成矿流体逐渐转变为热液性质,形成大量阳起石、磁铁矿、白钨矿及钼、铋硫化物。硫化物阶段,大量的大气降水参与成矿,温度、盐度进一步降低,在矽卡岩及其外侧的碳酸盐岩中形成铅锌硫化物矿石。  相似文献   

14.
The Damoshan deposit is a small B-F-Sn Bi exoskarn deposit and contains a distinctive mineral assemblage comprising andradite,vesuvianite,calcite,diopside,magnetite,hematite,nordenskioldine,cassiterite,varlamoffite,schenfliesite,native bismuth,eulytite,bismite and bismuthite,in which the occurrence of eulytite is the first reported in China.Textures of the mineral paragenses show that andradite,vesuvianite and diopside were the earliest phases formed during metasomatism,i.e.,the skarn forming stage.Then nordenskioldine,magnetite and native bismuth,perhaps together with eulytite,were precipitated at the stage of retrograde alteration.The minerals varlamoffite,schoenfliesite,hematite ,bismite and bismuthite were probably the product of supergene alteration.The minerals were analyzed by means of electron microprobe.The data on the ,coexisting phases and their compositons show that during the metasomatism reduced F-and Sn-rich primary mineralizing solutions reacted with highly oxidized carbonated of the Gejie Formation,producing a high Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(andradite skarn)in the outer zone of the skarn body in which andradite is extremely tin-bearing up to 5.14 wt% SnO2),In the retrograde alteration stage ,B-rich,but F-and Si-deficient mineralizing solutions replaced the tin-bearing andradite,forming an association of nordenskioldine and magnetite,No sulphides were deposited at this stage because of the oxidization ambient conditions in the andradite skarn.In the spergene oxidation zone,the nordenskioldine was dissolved into varlmoffite and calcite,the native bismuth was transformed into bismite or bismuthite ,and the magnetite was altered into hematite under the action of the CO2-rich supergene solutions.  相似文献   

15.
江西朱溪铜钨矿床成因:来自矿物学和年代学的启示   总被引:1,自引:0,他引:1  
江西景德镇朱溪铜钨矿床是近年来发现的一个世界级超大型铜钨矿床。矿床地质特征、矽卡岩矿物学和成矿岩体年代学的研究表明,矿体赋存于上石炭统黄龙组大理岩与新元古界双桥山群变质岩之间的不整合界面之上,空间上具有明显的矿物组合分带特征。根据矽卡岩产状、矿物共生组合和相互关系,把成矿作用划分为矽卡岩阶段、退化蚀变阶段、石英-硫化物阶段、碳酸盐-萤石阶段。代表性的矽卡岩矿物组合有石榴子石、透辉石、透闪石、硅灰石、符山石、蛇纹石、绿泥石等。电子探针分析表明,石榴子石为钙铝榴石—钙铁榴石系列,辉石为透辉石—钙铁辉石系列。同位素年代学及岩浆与成矿关系的研究表明:花岗闪长岩与早期矽卡岩型矿化相关,矿化范围较小,矿石品位较低;黑云母花岗岩与云英岩型和晚期矽卡岩型的矿化相关,矿化范围较广,矿石品位较高,并获得黑云母花岗岩LA-ICP-MS锆石U-Pb年龄为(147.7±2.2)Ma。综合分析指出,朱溪铜钨矿床为晚侏罗世花岗岩浆有关的热液与晚古生代碳酸盐岩发生多阶段交代作用而形成,成矿作用以矽卡岩型和云英岩型为主。  相似文献   

16.
It remains poorly constrained whether remobilization of Sn from granites and prograde skarns plays an essential role in forming economic (skarn-type) tin mineralization. Using both electron probe microanalysis and laser ablation–inductively coupled plasma–mass spectrometry methods, in-situ Sn contents, as well as major elements, were analyzed for numerous silicates and magnetite from fresh granite, altered granite, and skarn at the large Furong Sn deposit (530,000 t Sn @ 0.8% Sn) in the Nanling Range, South China. Hornblende and biotite in fresh granite are the main Sn-bearing phases (Sn = 44–321 ppm), while plagioclase and K-feldspar are poor in Sn (< 5 ppm). In altered granite, tin is hosted mainly by hydrothermal muscovite (299–583 ppm) replacing plagioclase, but rarely by chlorite (mostly <10 ppm) replacing hornblende and biotite. In contrast, most silicates (garnet, diopside, vesuvianite, pargasite and epidote) and magnetite from tin skarn are Sn-rich (47–44,241 ppm), except for Sn-poor phlogopite and scapolite (< 10 ppm). In particular, garnet, pargasite, and epidote reach tin concentrations in the percent range. Tin generally enters the stannous silicates and magnetite through substitutions for octahedral Alvi and Fe3+. Comparisons of Sn contents between magmatic and hydrothermal minerals in granite, prograde and retrograde minerals related to tin skarn indicate that remobilization of Sn from granite and prograde skarn is not a pre-requisite to form tin mineralization.  相似文献   

17.
苏家铁多金属矿床位于黑龙江省张广才岭成矿带内,受一撮毛碱长花岗岩体及相关花岗斑岩岩体控制。矿体产出于花岗斑岩和大理岩的接触带及层间破裂带内,主要为矽卡岩型铁锌矿体。组成矿体的主要矿石矿物为磁铁矿和闪锌矿; 围岩蚀变类型主要有矽卡岩化、矽化、角岩化、碳酸盐化和绿泥石化,其中矽卡岩化与矿化关系密切,是区内的主要找矿标志。矿床地球化学特征研究表明成矿物质来自壳源岩浆演化和上部热液交代碳酸岩地层,并在矽卡岩带内形成矿化体和矿体。结合成矿地质背景,确定苏家铁多金属矿床为矽卡岩型矿床。  相似文献   

18.
吉伯特铁矿是新疆阿勒泰地区产于泥盆纪海相火山岩中的小型矿床。本文对吉伯特铁矿床的包裹体开展了研究,识别了熔体包裹体、熔体-流体包裹体以及富晶体的流体包裹体,并对其进行了初步的显微测温、激光拉曼光谱和电子探针等研究。熔体包裹体中含有富Si玻璃质、贫Si富Fe熔体、石英、萤石、方解石、磁铁矿等多种成分,它们分别组成不同的包裹体组合。熔体包裹体、熔体-流体包裹体和流体包裹体的存在表明它们被捕获时是一种熔体与流体共存的不混溶状态,这充分说明了吉伯特铁矿床的形成与岩浆熔体、岩浆-热液过渡性流体有直接的成因联系。吉伯特铁矿床中Fe的矿化是一个熔体相逐渐减少,流体相逐渐增加的连续演化过程,它受岩浆作用、岩浆-热液过渡性流体以及矽卡岩作用的共同制约。  相似文献   

19.
The Makeng iron deposit is located in the Yong’an-Meizhou depression belt in Fujian Province, eastern China. Both skarn alteration and iron mineralization are mainly hosted within middle Carboniferous-lower Permian limestone. Five paragenetic stages of skarn formation and ore deposition have been recognized: Stage 1, early skarn (andradite–grossular assemblage); Stage 2, magnetite mineralization (diopside–magnetite assemblage); Stage 3, late skarn (amphibole–chlorite–epidote–johannsenite–hedenbergite–magnetite assemblage); Stage 4, sulfide mineralization (quartz–calcite–fluorite–chlorite–pyrite–galena–sphalerite assemblage); and Stage 5, carbonate (quartz–calcite assemblage). Fluid inclusion studies were carried out on inclusions in diopside from Stage 2 and in quartz, calcite, and fluorite from Stage 4.Halite-bearing (Type 1) and coexisting two-phase vapor-rich aqueous (Type 3) inclusions in the magnetite stage display homogenization temperatures of 448–564 °C and 501–594 °C, respectively. Salinities range from 26.5 to 48.4 and 2.4 to 6.9 wt% NaCl equivalent, respectively. Two-phase liquid-rich aqueous (Type 2b) inclusions in the sulfide stage yield homogenization temperatures and salinities of 182–343 °C and 1.9–20.1 wt% NaCl equivalent. These fluid inclusion data indicate that fluid boiling occurred during the magnetite stage and that fluid mixing took place during the sulfide stage. The former triggered the precipitation of magnetite, and the latter resulted in the deposition of Pb, Zn, and Fe sulfides. The fluids related to magnetite mineralization have δ18Ofluid-VSMOW of 6.7–9.6‰ and δD of −96 to −128‰, which are interpreted to indicate residual magmatic water from magma degassing. In contrast, the fluids related to the sulfide mineralization show δ18Ofluid-VSMOW of −0.85 to −1.04‰ and δD of −110 to −124‰, indicating that they were generated by the mixing of magmatic water with meteoric water. Magnetite grains from Stage 2 exhibit oscillatory zoning with compositional variations in major elements (e.g., SiO2, Al2O3, CaO, MgO, and MnO) from core to rim, which is interpreted as a self-organizing process rather than a dissolution-reprecipitation process. Magnetite from Stage 3 replaces or crosscuts early magnetite, suggesting that later hydrothermal fluid overprinted and caused dissolution and reprecipitation of Stage 2 magnetite. Trace element data (e.g., Ti, V, Ca, Al, and Mn) of magnetite from Stages 2 and 3 indicate a typical skarn origin.  相似文献   

20.
The Ayazmant Fe–Cu skarn deposit is located approximately 20 km SE of Ayval?k or 140 km N of Izmir in western Turkey. The skarn occurs at the contact between metapelites and the metabasites of the Early Triassic K?n?k Formation and the porphyritic hypabyssal intrusive rocks of the Late Oligocene Kozak Intrusive Complex. The major, trace, and rare earth-element geochemical analysis of the igneous rocks indicate that they are I-type, subalkaline, calc-alkaline, metaluminous, I-type products of a high-level magma chamber, generated in a continental arc setting. The 40Ar–39Ar isochron age obtained from biotite of hornfels is 20.3 ± 0.1 Ma, probably reflecting the age of metamorphic–bimetasomatic alteration which commenced shortly after intrusion into impure carbonates. Three stages of skarn formation and ore development are recognized: (1) Early skarn stage (Stage I) consisting mainly of garnet with grossular-rich (Gr75–79) cores and andradite-rich (Gr36–38) rims, diopside (Di94–97), scapolite and magnetite; (2) sulfide-rich skarn (Stage II), dominated by chalcopyrite with magnetite, andraditic garnet (Ad8489), diopside (Di6575) and actinolite; and (3) retrograde alteration (Stage III) dominated by actinolite, epidote, orthoclase, phlogopite and chlorite in which sulfides are the main ore phases. 40Ar–39Ar age data indicate that potassic alteration, synchronous or postdating magnetite–pyroxene–amphibole skarn, occurred at 20.0 ± 0.1 Ma. The high pyroxene/garnet ratio, plus the presence of scapolite in calc-silicate and associated ore paragenesis characterized by magnetite (± hematite), chalcopyrite and bornite, suggests that the bulk of the Ayazmant skarns were formed under oxidized conditions. Oxygen isotope compositions of pyroxene, magnetite and garnet of prograde skarn alteration indicate a magmatic fluid with δ18O values between 5.4 and 9.5‰. On the basis of oxygen isotope data from mineral pairs, the early stage of prograde skarn formation is characterized by pyroxene (Di94–97)-magnetite assemblage formed at an upper temperature limit of 576 °C. The lower temperature limit for magnetite precipitation is estimated below 300 °C, on the basis of magnetite–calcite pairs either as fracture-fillings or massive ore in recrystallized limestone-marble. The sulfide assemblage is dominated by chalcopyrite with subordinate molybdenite, pyrite, cubanite, bornite, pyrrhotite, galena, sphalerite and idaite. Gold–copper mineralization formed adjacent to andradite-dominated skarn which occurs in close proximity to the intrusion contacts. Native gold and electrum are most abundant in sulfides, as fine-grained inclusions; grain size with varying from 5 to 20 µm. Sulfur isotope compositions obtained from pyrrhotite, pyrite, chalcopyrite, sphalerite and galena form a narrow range between ? 4.8 and 1.6‰, suggesting the sulfur was probably mantle-derived or leached from magmatic rocks. Geochemical data from Ayazmant shows that Cu is strongly associated with Au, Bi, Te, Se, Cd, Zn, Pb, Ni and Co. The Ayazmant mineralizing system possesses all the ingredients of a skarn system either cogenetic with, or formed prior to a porphyry Cu(Au–Mo) system. The results of this study indicate that the Aegean Region of Turkey has considerable exploration potential for both porphyry-related skarns and porphyry Cu and Au mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号