首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The West Mine of the Bayan Obo deposit, located in the northern‐central part of Inner Mongolia, China, is enriched in Nb, rare earth elements and iron (Nb‐REE‐Fe) mineral resources. This paper presents a combined method to explore metallogenic correlation of the Nb‐REE‐Fe mineralization at the Bayan Obo West Mine. The method integrates factor analysis and Back Propagation (BP) neural network technology into processing and modeling of geological data. In this study, the Nb and REE contents of samples were transformed into discrete values to analyze the correlations among the metallogenic elements. The results show weak mineralization correlations between Nb and REEs. Nb and U are closely related in the geochemical patterns, while Fe is closely related to both Th and Mn. LREEs are an important factor for the mineralization of the Bayan Obo deposit, while Fe and Nb can be considered as the results of passive mineralization. On the basis of a metallogenic correlation analysis, the factors affecting the Fe‐REE‐Nb mineralization were extracted, and the Nb mineralization model was established by the BP neural network. Based on the BP neural network data computing, the variability of the Nb concentration displays a coupled multi‐factor nonlinear relationship, which can be used to reveal the inherent metallogenic elemental regularities and predict the degree of element mineralization enrichment in the mining area.  相似文献   

2.
The Bayan Obo REE‐Nb‐Fe deposit in Inner Mongolia, China, consists of later REE‐mineralizing fluorocarbonate veins cutting the earlier banded and massive ores in the deposit. Samarium–neodymium dating using the minerals including huanghoite and rubidium–strontium dating using single‐grain biotites both from the later veins show concordant isochrons corresponding to 442 ± 42 Ma (2σ uncertainty) and 459 ± 41 Ma, respectively. The isochron ages suggest that the later REE vein mineralization took place during the middle Paleozoic at Bayan Obo, consistent with geological observations and age data previously reported.  相似文献   

3.
Geochemical characteristics of different dolomites in the Bayan Obo giant REE–Nb–Fe deposit in Inner Mongolia have been studied. Intensively REE-mineralized dolomites (total REE over 800 ppm) show similar geochemical characteristics to associated carbonatite dykes, with Ba, Th, REE enrichments and Sr, Nb, Ti, Cu depletions, which is different from those of dolomites in the deposit with low REE contents (total REE less than 800 ppm). The low REE dolomites display some transitional characteristics between carbonatite dyke and sedimentary carbonate, with La depletion and Nb enrichment. This indicates that the genesis of the REE-mineralized dolomites might be related to both carbonatite magma and sedimentary carbonates. Sulfur isotope data indicates two sulfur sources, a mantle source (δ34S c.a. 0‰) and seawater (δ34S c.a. +25‰). It is proposed that mineralized dolomites in the Bayan Obo giant REE–Nb–Fe deposit are the product of sedimentary carbonate hydrothermally metasomatised by carbonatite magma and/or associated fluids. These dolomites formed the large-scale rare earth mineralization in the unique Bayan Obo REE–Nb–Fe deposit.  相似文献   

4.
孙剑  朱祥坤  陈岳龙  房楠 《地质学报》2012,86(5):819-828
白云鄂博Fe-REE-Nb矿床是世界著名的巨型多金属矿床,它的成因一直是个激烈争论的问题,观点主要集中在沉积成因和岩浆成因上,而铁的物质来源问题是争论的焦点之一。近年来Fe同位素的快速发展为解决白云鄂博铁矿的成因提供了新思路。对白云鄂博地区发育的白云鄂博群尖山组铁质板岩、宽沟北沉积型铁矿、腮林忽洞微晶丘、灰绿岩墙这些相关地质单元的Fe同位素组成特征进行了研究,为白云鄂博矿床成因研究提供了最直接的参考。结果表明,尖山组铁质板岩的δ56Fe值为-0.49‰~0.48‰,平均值为-0.03‰±0.84‰,2SD,n=5;宽沟北沉积型铁矿的δ56Fe值为-0.68‰~0.23‰,平均值为-0.10‰±0.78‰,2SD,n=5;腮林忽洞微晶丘δ56Fe值为-0.64‰~0.12‰,平均值为-0.28‰±0.57‰,2SD,n=6;辉绿岩的Fe同位素组成δ56Fe值集中在0.11‰~0.16‰。腮林忽洞微晶丘总体上比白云鄂博赋矿白云岩富集Fe的轻同位素,Fe同位素组成变化也相对更大,表明两者可能有不同的成因。白云鄂博地区尖山组铁质板岩、宽沟北沉积型铁矿与世界其他地区含铁沉积建造的Fe同位素组成类似,其共同特征是,Fe同位素变化较大,总体上δ56Fe大于0‰。这一特征与白云鄂博铁矿的Fe同位素组成差别较大。白云鄂博矿床的δ56Fe集中在0‰附近,与白云鄂博地区灰绿岩、世界不同地区火成岩和岩浆型铁矿的Fe同位素组成特征一致。表明白云鄂博铁矿可能不是沉积成因的,更有可能与岩浆作用有关。  相似文献   

5.
Bayan Obo ore deposit is the largest rare-earth element(REE) resource,and the second largest niobium(Nb) resource in the world.Due to the complicated element/mineral compositions and involving several geological events,the REE enrichment mechanism and genesis of this giant deposit still remains intense debated.The deposit is hosted in the massive dolomite,and nearly one hundred carbonatite dykes occur in the vicinity of the deposit.The carbonatite dykes can be divided into three types from early to late:dolomite,co-existing dolomite-calcite and calcite type,corresponding to different evolutionary stages of carbonatite magmatism based on the REE and trace element data.The latter always has higher REE content.The origin of the ore-hosting dolomite at Bayan Obo has been addressed in various models,ranging from a normal sedimentary carbonate rocks to volcano-sedimentary sequence,and a large carbonatitic intrusion.More geochemical evidences show that the coarse-grained dolomite represents a Mesoproterozoic carbonatite pluton and the fine-grained dolomite resulted from the extensive REE mineralization and modification of the coarse-grained variety.The ore bodies,distributed along an E-W striking belt,occur as large lenses and underwent more intense fluoritization and fenitization.The first episode mineralization is characterized by disseminated mineralization in the dolomite.The second or main-episode is banded and/or massive mineralization,cut by the third episode consisting of aegirinerich veins.Various dating methods gave different mineralization ages at Bayan Obo,resulting in long and hot debates.Compilation of available data suggests that the mineralization is rather variable with two peaks at~1400 and 440 Ma.The early mineralization peak closes in time to the intrusion of the carbonatite dykes.A significant thermal event at ca.440 Ma resulted in the formation of late-stage veins with coarse crystals of REE minerals.Fluids involving in the REE-Nb-Fe mineralization at Bayan Obo might be REE-F-C02-NaCI-H20 system.The presence of REE-carbonates as an abundant solid in the ores shows that the original ore-forming fluids are very rich in REE,and therefore,have the potential to produce economic REE ores at Bayan Obo.the Bayan Obo deposit is a product of mantle-derived carbonatitic magmatism at ca.1400 Ma,which was likely related to the breakup of Columbia.Some remobilization of REE occurred due to subduction of the Palaeo-Asian oceanic plate during the Silurian,forming weak vein-like mineralization.  相似文献   

6.
The Bayan Obo Fe-REE-Nb deposit in northern China is the world's largest light REE deposit, and also contains considerable amounts of iron and niobium metals. Although there are numerous studies on the REE mineralization, the origin of the Fe mineralization is not well known. Laser ablation (LA) ICP-MS is used to obtain trace elements of Fe oxides in order to better understand the process involved in the formation of magnetite and hematite associated with the formation of the giant REE deposit. There are banded, disseminated and massive Fe ores with variable amounts of magnetite and hematite at Bayan Obo. Magnetite and hematite from the same ores show similar REE patterns and have similar Mg, Ti, V, Mn, Co, Ni, Zn, Ga, Sn, and Ba contents, indicating a similar origin. Magnetite grains from the banded ores have Al + Mn and Ti + V contents similar to those of banded iron formations (BIF), whereas those from the disseminated and massive ores have Al + Mn and Ti + V contents similar to those of skarn deposits and other types of magmatic-hydrothermal deposits. Magnetite grains from the banded ores with a major gangue mineral of barite have the highest REE contents and show slight moderate REE enrichment, whereas those from other types of ores show light REE enrichment, indicating two stages of REE mineralization associated with Fe mineralization. The Bayan Obo deposit had multiple sources for Fe and REEs. It is likely that sedimentary carbonates provided original REEs and were metasomatized by REE-rich hydrothermal fluids to form the giant REE deposit.  相似文献   

7.
白云鄂博REE-Nb-Fe稀土矿赋矿岩系建造研究评述   总被引:2,自引:0,他引:2  
白云鄂博特大型铌、稀土、铁矿床,由于其矿物组成的多样性、地质构造的复杂性、成矿的多期性使之成为一类典型稀土矿床,成为研究稀土矿的天然实验室。尽管已有60多年的开采及研究历史,但其含铁及稀土的矿床建造机制仍具争议。本文通过搜集、整理国内外近几年来发表的有关赋矿岩性(白云岩、富钾板岩、富钠岩石及碳酸岩脉)的研究成果,结合笔者的认识,对各种不同观点进行了对比分析和总结,最终提出了白云鄂博碱性碳酸岩-热水沉积岩系的观点,为白云鄂博稀土矿的研究提供一定的参考价值。  相似文献   

8.
Trachytic rock and its altered rock-fenite-in the Bayan Obo ore district, Inner Mongolia, China, were referred to as slate or feldspar rock before, and identified by the authors for the first time (in 1992). In the paper the mineral assemblages, structures and textures and petrochemical compositions of the rocks, as well as the electron microprobe analysis of feldspars in the rocks are described. The Sm-Nd isochron age of the trachytic rock is 1096±56 Ma, with INd=0.51100+4 (2σ) and εNd(t)= -4.4±0.7. Alterations of the trachytic rock, including microclinization, riebeckitization, aegirinization and biotitization, and accompanied rare element and REE mineralizations are discussed. Based on the occurrence of the trachytic rock and associated fenitization it is deduced that the Bayan Obo Fe-Nb-REE ore deposit is genetically related to magmatic-hydrothermal activity of an alkali carbonatite complex.  相似文献   

9.
白云鄂博超大型REE-Nb-Fe矿床的稀土成矿模式综述   总被引:2,自引:0,他引:2  
白云鄂博矿床在矿物学、矿床学以及成矿理论等研究中有着极其重要的地位。本文旨在总结前人的研究成果,归纳现有的几种矿床成矿模式及其主要依据,并进行简要分析,以期对白云鄂博矿床成因的进一步研究起到些许作用。  相似文献   

10.
白云鄂博稀土铌铁矿床具十分独特的地质、地球化学特征.所以多时代成矿是难以置信的.白云鄂博矿床成矿时间势必晚于赋矿白云岩及其下伏地层.而较多的地层古生物证据表明白云鄂博群形成于震旦纪至奥陶纪之间.基于赋矿白云岩是热水沉积形成,碳酸盐脉是同源热液交代变质岩或砂岩等形成的认识,笔者等认为,碳酸盐脉中的锆石可能是变质岩或砂岩中的锆石,它们虽被热液改造,其U-Pb年龄仍可能老于成矿年龄.已报道的白云鄂博矿床Sm-Nd等时线年龄虽然主要集中在1.2~1.6 Ga.但也有多个分别为0.4~O.5 Ga、0.8~0.9 Ga和1.O~1.1 Ga的年龄值.笔者等收集了所有已发表的98件白云鄂博矿床矿石、矿物及碳酸岩墙和上覆板岩的Sm-Nd年龄分析数据,用Isoplot程序计算,发现这些数据,除两件异常外,可以拟合成一条直线,相关系数R=0.96325,求得等时线年龄t=1125.8±32.5 Ma,εNd=-3.02.这一结果表明在1125.8±32.5 Ma白云鄂博Sm-Nd同位素时钟启动,且未再受后来的地质作用扰动,指示成矿作用应晚于或等于1.1 Ga,但地质意义尚待研究.若假定Sm-Nd同位素时钟不易被一般地质作用重置,则可以采信白云鄂博矿床辉钼矿的R.e-Os模式年龄(439±8 Ma)或黄铁矿Re-Os等时线年龄(439±86Ma)为白云鄂博的成矿年龄.这与赋矿地层的古生物化石年代相符.  相似文献   

11.
An REE-rich carbonatite dyke was found in Dulahala, close to the Bayan Obo superlarge REE-Nb-Fe mineral deposit in Inner Mongolia, northern China. The REE content in the dyke varies greatly, from 1% up to 20% (wt), which might constitute rich REE ores. Light REEs in the carbonatite are enriched and highly fractionated relative to heavy REEs and there is no Eu anomaly. The REE and trace element distribution patterns of the carbonatite are identical to those of fine-grained dolomite marble which is the host rock of the Bayan Obo REE-Nb-Fe superlarge mineral deposit. This indicates a petrogenetic linkage between the REE-rich carbonatite and the mineralizations in this region.  相似文献   

12.
《International Geology Review》2012,54(14):1720-1731
The origin of the Bayan Obo ore deposit, the largest REE deposit in the world, has long been debated and various hypotheses have been proposed. Among them is that the Bayan Obo ore deposit is correlated with and has the same origin as the Sailinhudong micrite mound in the southern limb of the Bayan Obo synclinorium. To test this model, the Bayan Obo ore deposit and the Sailinhudong micrite mound are systematically compared for their geological features, elemental geochemistry, and C, O, and Mg isotopic geochemistry. We show that the Bayan Obo ore deposit and the Sailinhudong micrite mound are both calcareous, lens-like in shape, lack bedding features, and are both hosted in a sedimentary formation that consists of clastic sediments and carbonates, unconformably overlying the Archaean–Palaeoproterozoic crystalline basement. However, their geochemical characteristics differ markedly. Compared with the Sailinhudong micrite carbonates, the Bayan Obo ore-hosting dolomite marbles are strongly enriched in LREEs, Ba, Th, Nb, Pb, and Sr, and have very different (PAAS)-normalized REE patterns. Sailinhudong micrite carbonates have higher δ13CPDB and δ18OSMOW values, falling into the typical sedimentary field, but the Bayan Obo ore-hosting dolomites are isotopically intermediate between primary igneous carbonatite and typical sedimentary limestone. The δ26 Mg values of the Sailinhudong micrite carbonates are lighter than those of normal Mesoproterozoic sedimentary dolostone, while those of the Bayan Obo ore-hosting dolomite marble are isotopically heavier, similar to δ26 Mg of mantle xenoliths and Bayan Obo intrusive carbonatite. We conclude that the Bayan Obo ore deposit is not correlated with the Sailinhudong micrite mound; it is neither a micrite mound nor an altered micrite mound.  相似文献   

13.
根据矿物组成白云鄂博矿区的碳酸岩岩可墙可分为白云石型、白云石-方解石共存型和方解石型三种类型。REE和微量元素地球化学表明,这三类碳酸岩岩墙为碳酸岩浆演化不同阶段的产物,白云石型和白云石-方解石共存型对应于早期岩浆阶段,其(La/Nd)n、(La/Yb)n比值随稀土总量的增加而增大,方解石型则对应于碳酸岩浆演化的晚期热液阶段,其稀土总量明显富集,但其(La/Nd)n、(La/Y)n和(La/Yb)n比值随稀土总量的增加却有减小的趋势,热液阶段也是白云鄂博稀土矿化的主要阶段。  相似文献   

14.
云南武定迤纳厂铁铜稀土矿床是滇中地区具有代表性的元古宙铁铜稀土矿床之一。矿床中除了铁、铜资源外,还伴生有稀土、稀有(铌)、钇、钼、钴等组分。研究表明:稀土元素含量在条纹条带状矿石和脉状矿石中均较高,ΣREE含量分别高达(1 446.83~11 259.23)×10-6和(2 020.92~3 415.51)×10-6,尤其富集La、Ce等轻稀土元素;稀有(铌)元素主要富集在条纹条带状矿石中,含量高达(278.8~529.0)×10-6。由于矿床的矿物组成非常复杂,并且矿石中稀土、稀有(铌)矿物含量相对较少,矿物结晶粒度细小,用传统的测试技术和方法很难识别鉴定,因此矿床的矿物学特征,尤其是稀土、稀有(铌)矿物的赋存状态特征研究一直以来都较为棘手。论文应用矿物表征自动定量分析系统(AMICS),结合扫描电镜能谱仪(SEM-EDS)显微结构原位分析技术,完成了常规岩矿鉴定手段难以完成的矿物定量识别和鉴定,在矿石中发现了含量可观的氟碳钙铈矿、氟碳铈矿和少量的独居石、褐帘石、铌铁矿、褐钇铌矿、硅钍钇矿、含铌金红石等稀有稀土矿物。其中,氟碳铈矿、独居石、铌铁矿、褐钇铌矿等主要富集于条纹条带状矿石中,与铁氧化物、磷灰石、萤石、菱铁矿和早期黄铜矿、黄铁矿等紧密共生;氟碳钙铈矿、褐帘石、硅钍钇矿、含铌金红石等主要局部富集在脉状矿石中,与石英、方解石、绿泥石和晚期黄铜矿、黄铁矿等紧密共生。显然,在铁氧化物和铜硫化物成矿两个阶段均伴随有稀土成矿作用。结合前人的研究成果,笔者将主矿化期划分为铁氧化物磷灰石稀土成矿阶段(Ⅱ-1)和铜硫化物(金)稀土成矿阶段(Ⅱ-2)。其中,氟碳铈矿、独居石、铌铁矿、褐钇铌矿等主要形成于Ⅱ-1阶段,其成矿作用可能与Columbia超大陆裂谷化裂解有关;氟碳钙铈矿、褐帘石、硅钍钇矿、(含铌)金红石等则主要形成于Ⅱ-2阶段,其成矿作用可能与Rodinia超大陆裂解有关。对比研究发现,云南武定迤纳厂铁铜稀土矿床与白云鄂博超大型铌铁稀土矿床在大地构造背景、成矿元素组合、赋矿岩系、矿物组成、成矿时代、稀土来源等方面均有可对比性,初步确定云南武定迤纳厂铁铜稀土矿床是一个“白云鄂博式”矿床。  相似文献   

15.
Summary ?A carbonatite dyke, extremely enriched in rare earth elements (REE), is reported from Bayan Obo, Inner Mongolia, North China. The REE content in the dyke varies from 1 wt% to up to 20 wt%. The light REEs are enriched and highly fractionated relative to the heavy REEs, and there is no Eu anomaly. Although carbon isotope δ13C (PDB) values of the carbonatites (−7.3 to −4.7‰) are within the range of normal mantle (−5±2‰), oxygen isotope δ18O (SMOW) (11.9 to 17.7‰) ratios apparently are higher than those of the mantle (5.7±1.0‰), indicating varying degrees of exchange with hydrothermal fluids during or after magmatic crystallization. The carbonatite is the result of partial melting followed by fractional crystallization. Primary carbonatite melt was formed by less than 1% partial melting of enriched mantle, leaving a garnet-bearing residue. The melt then rose to a crustal magma chamber and underwent fractional crystallization, producing further REE enrichment. The REE and trace element distribution patterns of the carbonatites are similar to those of fine-grained dolomite marble, the ore-host rock of the Bayan Obo REE–Nb–Fe giant mineral deposit. This fact may indicate a petrogenetic link between the dykes described here and the Bayan Obo mineral deposit. Received November 1, 2001; revised version accepted June 16, 2002  相似文献   

16.
17.
白云鄂博矿区周围火成碳酸岩岩墙地质特征   总被引:19,自引:0,他引:19       下载免费PDF全文
首次填出白云鄂博矿区周围火成碳酸岩岩墙的分布图,深入系统地研究了岩墙的地质产状、主矿物类型、岩石结构、人工重砂矿物组成、稀土元素含量等特征。反映了白云鄂博矿区周围火成碳酸岩岩墙的岩浆演化分异过程存在差异。对于研究白云鄂博矿区铁与稀土的矿化提供了物质来源的证据。  相似文献   

18.
稀土元素(Y+Sc+La-Lu)作为现代工业的“维生素”,是当今社会重要的战略资源。白云鄂博超大型REE-Nb-Fe矿床位于中国内蒙古,是世界上最大的稀土矿床。因此,该矿床的成岩成矿模式受到全球地质工作者的强烈关注,并对此进行了大量的分析研究工作。以往的工作主要集中在对H8赋矿白云岩全岩年代学和地球化学的研究上,但由于白云鄂博稀土矿床经历了后期复杂的变形变质作用,矿石的结构构造非常复杂,全岩的研究结果造成了对该矿床成岩成矿模式不同的认识和争论。近些年,随着现代地球化学分析技术的快速发展,人们可以直接对白云石和稀土矿物(如独居石、磷灰石、氟碳铈矿等)进行高精度的微区原位同位素组成和原位U-Th-Pb定年分析,从而获得能够明确指示矿物时代、成矿流体和成矿物质来源的重要证据。结合近年来的研究成果,本文总结了目前关于白云鄂博超大型稀土矿床成岩成矿模式的不同认识,提出白云鄂博矿床初始稀土成矿源于中元古代(1.3 Ga)的碳酸岩岩浆活动,后期经历了早古生代的大规模流体作用,矿床中稀土元素发生再活化、富集和沉淀,稀土矿物巨量堆积成矿的新认识。  相似文献   

19.
The giant Bayan Obo REE–Nb–Fe deposit consists of replacement bodies hosted in dolomite marble made up of magnetite, REE fluorocarbonates, fluorite, aegirine, amphibole, calcite and barite. Two or three phase CO2-rich, three phase hypersaline liquid–vapor–solid, and two phase liquid-rich inclusions have been recognized in mineralized fluorite and quartz samples. Microthermometry measurements indicate that the carbonic phase in CO2-rich inclusions is nearly pure CO2. Fluids involving in REE–Nb–Fe mineralization at Bayan Obo might be mainly of H2O–CO2–NaCl–(F–REE) system. Coexistences of brine inclusions and CO2-rich inclusions with similar homogenization temperatures give evidence that immiscibility happened during REE mineralization. An unmixing of an original H2O–CO2–NaCl fluid probably derived from carbonatitic magma. The presence of REE-carbonates as an abundant solid in fluid inclusions shows that the original ore-forming fluids are very rich in REE, and therefore, have the potential to produce economic REE ores at Bayan Obo.  相似文献   

20.
中国碱性侵入岩的空间分布及有关金属矿床   总被引:10,自引:2,他引:10  
我国碱性侵入岩分布十分广泛,且常沿两大构造单元之间或古老大陆边缘的深断裂带分布。深断裂是控制碱性岩上侵定位和控岩控矿的构造,碱性岩侵入体常呈串珠状沿深断裂作线状延展,形成14条岩带,将与其有关的内生金属矿床分为12类。并对白云鄂博、牦牛坪、东坪和巴哲等矿床的地质特征进行了研究,还将与碱性侵入岩有关的金属矿床分为与正长岩类有关的矿床和与碱性花岗岩类有关的矿床两大类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号