首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Performance observation is a necessary part of the design and construction process in geotechnical engineering. For deep urban excavations, empirical and numerical methods are used to predict potential deformations and their impacts on surrounding structures. Two inverse analysis approaches are described and compared for an excavation project in downtown Chicago. The first approach is a parameter optimization approach based on genetic algorithm (GA). GA is a stochastic global search technique for optimizing an objective function with linear or non-linear constraints. The second approach, self-learning simulations (SelfSim), is an inverse analysis technique that combines finite element method, continuously evolving material models, and field measurements. The optimization based on genetic algorithm approach identifies material properties of an existing soil model, and SelfSim approach extracts the underlying soil behavior unconstrained by a specific assumption on soil constitutive behavior. The two inverse analysis approaches capture well lateral wall deflections and maximum surface settlements. The GA optimization approach tends to overpredict surface settlements at some distance from the excavation as it is constrained by a specific form of the material constitutive model (i.e. hardening soil model); while the surface settlements computed using SelfSim approach match the observed ones due to its ability to learn small strain non-linearity of soil implied in the measured settlements.  相似文献   

2.
This paper presents an approach for the probabilistic inverse analysis of braced excavations based on the maximum likelihood formulation. Here, the soil parameters are updated using the observations of the maximum ground settlement and/or the maximum wall deflection measured in a staged excavation. The updated soil parameters are then used to refine the predicted wall and ground responses in the subsequent excavation stages, as well as to assess the building damage potential at the final excavation stage. Case study shows that the proposed approach is effective in improving the predictions of the excavation-induced wall and ground responses. More-accurate predictions of the wall and ground responses, in turn, lead to a more accurate assessment of the damage potential of buildings adjacent to the excavation. The proposed approach offers an effective means for a probabilistic inverse analysis of braced excavations.  相似文献   

3.
A 3D numerical model for mechanised excavations is presented, which is capable of simulating the overall process of excavation and construction of a tunnel when a TBM EPB (Tunnel Boring Machine–Earth Pressure Balance) is used.The main construction aspects of a mechanised excavation are modelled. Their influence on calculated ground displacements are investigated by means of a series of parametric analyses.With the aim of testing the performance of the proposed 3D numerical model, a series of 25 Class C predictions has been carried out. Case Histories related to the construction of the 1995–2003 Madrid Metro Extension Project were considered for this purpose.As a general rule, the results obtained with the Modified Cam–Clay model closely fit in situ measurements. When the Linear-Elastic or the Mohr–Coulomb models are used, it is not as easy to summarise the results obtained, as higher fluctuations are observed around in situ measured data. A good agreement is also shown when the distribution of horizontal displacements along depth is considered.For some sections, the mechanised excavation model is not capable of reproducing the high values of the surface settlements measured in situ. A closer look at the results shows that mixed face conditions are found for these cases, with the TBM excavating through layered soil formations having sharply different mechanical behaviour.  相似文献   

4.

Excavation-induced ground movements and the resulting damages to adjacent structures and facilities is a source of concern for excavation projects in urban areas. The concern will be even higher if the adjacent structure is old or has low strength parameters like masonry building. Frame distortion and crack generation are predictors of building damage resulted from excavation-induced ground movements, which pose challenges to projects involving excavations. This study is aimed to investigate the relation between excavation-induced ground movements and damage probability of buildings in excavation affected distance. The main focus of this paper is on masonry buildings and excavations stabilized using soil nail wall method. To achieve this purpose, 21 masonry buildings adjacent to 12 excavation projects were studied. Parametric studies were performed by developing 3D FE models of brick walls and excavations stabilized using soil nail wall. Finally, probability evaluations were conducted to analyze the outputs obtained from case studies. Based on the obtained results, simple charts were established to estimate the damage of masonry structures in excavation affected distance with two key parameters including “Displacement Ratio” and “Normalized Distance”. The results also highlight the effects of building distance from excavation wall on its damage probability.

  相似文献   

5.
The determination of the optimum excavation sequences in mining and civil engineering using numerical stress analysis procedures requires repeated solution of large models. Often such models contain much more complexity and geometric detail than required to arrive at an accurate stress analysis solution, especially considering our limited knowledge of rock mass properties. This paper develops an automated framework for estimating the effects of excavations at a region of interest, and optimizing the geometry used for stress analysis. It eliminates or simplifies the excavations in a model while maintaining the accuracy of analysis results. The framework can equally be applied to two‐dimensional boundary and finite element models. The framework will have the largest impact for non‐linear finite element analysis. It can significantly reduce computational times for such analysis by simplifying models. Error estimators are used in the framework to assess accuracy. The advantages of applying the framework are demonstrated on an excavation‐sequencing scenario. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a numerical analysis of the influence of initial stress state on the response of deep excavation supported by retaining wall. Indeed, the influence of diaphragm wall installation prior to excavation works may affect the soil response and lateral wall deflection induced by excavation process. The first part of this paper gives a short review of the numerical methods aimed to reproduce the retaining wall installation. Numerical analysis of a deep excavation in two‐dimensional and three‐dimensional conditions is then performed according to the methods previously presented. In three‐dimensional conditions, diaphragm wall installation is performed considering a sequence of panels, described by their number and length. Results of three‐dimensional calculations confirm that stress state is disturbed by wall installation, which has a sensitive effect on the ground response induced by soil excavation. It is also noted that these results are not easily reproduced in two‐dimensional conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
敏感环境下基坑数值分析中土体本构模型的选择   总被引:15,自引:1,他引:14  
徐中华  王卫东 《岩土力学》2010,31(1):258-264
数值分析已成为敏感环境下基坑工程分析的最重要手段,其关键是选择合适的土体本构模型和计算参数。在分析了岩土数值分析中常用土体本构模型特点的基础上,通过算例较系统地对比了各类模型在基坑开挖数值分析中的适用性。敏感环境下的基坑工程需重点关注墙后土体的变形,从满足工程需要和方便实用的角度出发,建议采用能考虑黏土的塑性和应变硬化特征、能区分加荷和卸荷且刚度依赖于应力水平的硬化类弹塑性模型,如MCC模型和HS模型进行分析。具体工程实例的分析,表明了硬化类弹塑性模型在敏感环境下基坑开挖数值分析中的适用性。  相似文献   

8.
复合土钉墙支护FLAC3D数值模拟与实测结果对比   总被引:1,自引:0,他引:1  
张尚根 《岩土力学》2008,29(Z1):129-135
针对深基坑复合土钉墙支护的特点,运用FLAC3D软件进行深基坑开挖与土钉支护过程的数值模拟,计算中采用摩尔-库仑弹塑性模型,接触面运用接触单元来模拟土体与土钉之间的相互作用。通过计算得到了基坑不同开挖及土钉支护过程中土钉轴力沿钉长分布、墙后土体深层水平位移、周围地表沉降、坑底隆起及潜在滑动面等变化情况,并与实测结果比较发现二者吻合较好,计算结果对工程施工和设计具有一定的指导意义。同时说明所采用的FLAC3D计算模型和分析方法是可靠的,能够满足工程的精度要求,能够较好地运用于实际工程中的分析与预测。  相似文献   

9.
In recent years, many researchers have considered the mechanical characteristics of deep foundation excavation in soft-soil. The analysis of these deep excavations requires consideration of an uncertain, nonlinear, dynamic and complicated system, and involves consideration of soil strength, stability, deformation, fluid flow and interaction of soil and different retaining configurations. It is difficult to describe such a nonlinear system using traditional analysis. Therefore, in order to accurately describe the mechanical behavior of a representative deep excavation of the subway station, in this case, 3-Dimensional geotechnical numerical analysis method using FLAC3D software was applied. Using this tool, a study considering earth pressure, soil deformation and settlement was carried out. Furthermore, the response of different retaining configurations was deeply investigated. Triaxial cement mixing piles were considered as a way to optimize deformation of the deep excavation and reduce settlement of the ground surface and the railway embankment. The analysis indicated that the deeper the foundation excavation was, the larger the surface settlement and the smaller the earth pressure. The analysis also considered the mechanical effect of varying the wall thickness and the wall depth on the structure‘s deformation characteristics. The simulations indicated that a wall thickness of less than 1.4 m effectively reduced wall horizontal displacement, ground surface settlement and uneven settlement of railway embankment. While a variable wall embedded depth that was less than 52 m also changed the settlement of the excavation deformation and the ground surface. Therefore, the numerical results can agree with the practical project to imply that numerical method in the paper is applicable and reliable, which provides a new thought to research on deep excavation in soft-soil.  相似文献   

10.
FLAC3D在深基坑开挖与支护数值模拟中的应用   总被引:37,自引:0,他引:37  
刘继国  曾亚武 《岩土力学》2006,27(3):505-508
运用FLAC3D软件对武汉长江过江隧道江南明挖段深基坑进行了开挖与支护模拟。计算中采用摩尔-库仑弹塑性模型,基坑围护结构与土体之间的接触面运用接触单元。通过计算得出不同开挖阶段的地表沉降、基底隆起和墙后土体水平位移,为工程设计与施工提供参考。  相似文献   

11.
Three-dimension finite element analyses of deep excavations with buttress walls were performed to evaluate the effect of buttress wall shapes on limiting movements induced by deep excavation. Results showed that a combination of the rectangular and the capital L-letter shapes (RL-shape) yielded the greatest performance in reducing wall deflections and ground surface settlements. The main deformation-control mechanism mainly came from the horizontal and vertical frictional resistances of buttress walls against adjacent soils which were pushed by wall deflections and the soil heave at the excavation bottom, respectively. Besides, the RL-shape buttress walls were successfully verified through a well-documented case history.  相似文献   

12.
Summary The paper provides the approximate closed-form expressions for the estimation of the amount of ground water infiltration, the seepage exit gradient and the hydraulic pressure distribution on the cutoff elements in the case of sheeted excavations below the water table. The expressions are obtained by a multiple regression-type fitting of the results of an extensive parametric finite-element analysis for the two-dimensional steady-state flow in the soil around a sheeted excavation. In addition to the problem geometry, the effects of an impermeable base and a thin low permeability layer penetrated by the sheeting are also studied. The predictions of the approximate expressions deviate from the corresponding finite-element results by less than 15%, for a wide range of geometries and soil characteristics. It is shown how shape factors might be used to adapt the semi-empirical formulae for the case of excavations with limited length (circular and rectangular).  相似文献   

13.
Ground movements and strut loads in strutted excavations in clay have been observed to change with time. In this paper, the time-dependent behaviour of excavation support system is studied by comparing the results of undrained and consolidation analyses with data from an instrumented excavation project. Dissipation of excess pore pressure is modelled using a fully coupled consolidation analysis while the soil is assumed to be an elastic-perfectly plastic material obeying the Mohr-Coulomb yield criterion. The results of the study show that the undrained analysis underestimates the sheet pile wall movement and fail to reflect the progressive movement of the sheet pile. In contrast, these effects are well-predicted by the consolidation analysis, thereby indicating that dissipation of excess negative pore pressure can indeed account for much of the observed progressive ground movement and build-up of strut loads with time. The elasto-plastic consolidation model can also simulate excavation sequence including uneven excavation and time delays in excavation and strutting.  相似文献   

14.
Current study deals with investigating the effects of both time factor and the selection of a constitutive model type on predicting deformations of an excavation braced by nailing using two and three-dimensional finite element analyses. In addition, the effects of stress path and the type of defined initial conditions of the analytical model on deformations of the floor and walls of the excavation are also studied. Time factor, in the form of earth materials’ creep, can largely be entered into calculation of deformations of excavations by conducting viscoelastic and viscoplastic analyses. On the other hand, there hasn’t been done a comprehensive study regarding the creep behavior of excavations through comparing the results of two-dimensional and three-dimensional numerical analyses so far. The results showed that it’s largely possible to approach the actual deformation behavior of an excavation by considering the constitutive model of soft soil creep, SSC model, in the numerical plastic analyses. The effects of stress path on the deformation behavior of the excavation walls and excavation floor are investigated by using OCR stress ratio and POP stress difference; These two factors, both of which are also analogous, represent a boundary value for swelling behavior of the excavation floor and an increasing rate for the deformation behavior of the excavation walls since the increase in OCR or POP is equal to the increase in the soil lateral pressure coefficient at rest.  相似文献   

15.
Observations from earthquakes over the past several decades have highlighted the importance of local site conditions on propagated ground motions. Downhole arrays are deployed to measure motions at the ground surface and within the soil profile, and also to record the pore pressure response within the soft soil profiles during excitation. The degradation of soil stiffness as excess pore pressures are generated during earthquake events has also been observed. An inverse analysis framework is developed and demonstrated to directly extract soil material behavior including pore water pressure (PWP) generation from downhole array measurements that can then be readily used in 1D nonlinear site response analysis. The self‐learning simulations (SelfSim) inverse analysis framework, previously developed for total stress site response analysis, is extended to extract PWP generation behavior of the soil in addition to cyclic response during ground shaking. A Neural Network based constitutive model is introduced to represent PWP generation during cyclic loading. A new analysis scheme is introduced that can use data from co‐located piezometer and accelerometer sensors. The successful performance of the proposed framework is demonstrated using four synthetic vertical array recordings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The influence of a diaphragm wall construction on the stress field in a soft clayey soil is investigated by the use of a three‐dimensional FE‐model of seven adjacent wall panels. The installation procedure comprises the excavation and the subsequent pouring of each panel taking into account the increasing stiffness of the placed fresh concrete. The soft clay deposit is described by a visco‐hypoplastic constitutive model considering the rheological properties and the small‐strain stiffness of the soil. The construction process considerably affects the effective earth and pore water pressures adjacent to the wall. Due to concreting, a high excess pore water pressure arises, which dissipates during the following construction steps. The earth pressure finally shows an oscillating, distinct three‐dimensional distribution along the retaining wall which depends on the installation sequence of the panels and the difference between the fresh concrete pressure and the total horizontal earth pressure at rest. In comparison to FE‐calculations adopting the earth pressure at rest as initial condition, greater wall deflections and surface ground settlements during the subsequent pit excavation can be expected, as the average stress level especially in the upper half of the wall is increased by the construction procedure of the retaining structure. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The recent capability of measuring full‐field deformations using advanced imaging techniques provides the opportunity to improve the predictive ability of computational soil mechanics. This paper investigates the effects of imperfect initial specimen geometry, platen‐soil and apparatus compliance, and material heterogeneity on the constitutive model calibration process from triaxial tests with nonlubricated platens. The technique of 3D‐Digital Image Correlation (3D‐DIC) was used to measure, from digital images, full‐field displacements over sand specimen surfaces throughout triaxial compression tests, as well as actual specimen initial shape, and deformations associated with platen and apparatus compliance and bedding settlement. The difference between predicted and observed 3D specimen surface deformations served to quantify an objective function in the optimization algorithm. Four different three‐dimensional finite element models (FEMs), each allowing varying degrees of material variability in the solution of the inverse problem, were used to study the effect of material heterogeneity. Results of the parametric study revealed that properly representing the actual initial specimen geometry significantly improves the optimization efficiency, and that accounting for boundary compliance can be critical for the accurate recovery of the full‐field experimental displacements. Allowing for nonsymmetric material variability had the most significant impact on predicted behavior. A relatively high coefficient of variation in model parameters was found among a statistical ensemble of tests, underscoring the importance of conducting multiple tests for proper material characterization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
坑角效应是基坑空间效应的重要体现形式之一,但目前对带多阳角深基坑的坑角效应还缺乏具体且深入的研究。以海南滨海软土地区两垂直相交的综合管廊狭长深基坑工程为依托,利用Plaxis 3D建立了两种典型施工模式下带多阳角的综合管廊交叉节点深基坑开挖的三维数值模型,对由开挖引起的地表沉降、支护结构变形以及支撑轴力等开展了细致的对比分析,并着重探讨了坑角效应对其分布形态的影响。计算结果表明:在两种典型施工模式下,综合管廊狭长深基坑的地表最大沉降变化区间约为0.11%He~0.67%He,且支护结构的最大侧向变形与开挖深度之间的上下限值分别为0.25% He、1.35%He。整体而言,在完全对称的施工模式Ⅱ下,基坑周围土体的地表最大沉降和支护结构的侧向变形均低于施工模式Ⅰ的计算结果;但在施工模式Ⅱ下,基坑开挖过程中在阳角的两个临空面方向均表现为显著的坑角效应,而在施工模式Ⅰ下,仅在阳角形成之后的单一方向上表现为明显的坑角效应。坑角效应的影响范围约为2倍的开挖深度,在坑角效应的影响范围内,基坑周围土体的地表沉降、支护结构的侧向变形以及支撑轴力均较坑角效应影响范围以外的计算结果显著降低。研究认为,若在带多阳角的综合管廊交叉节点处的深基坑设计中合理考虑坑角效应的影响范围及其发挥程度,可在一定程度上降低工程成本。  相似文献   

19.
何平  徐中华  王卫东  李青 《岩土力学》2015,36(Z1):597-601
等厚度水泥土搅拌墙技术即TRD工法,近年来在深基坑工程中得到了广泛应用。以上海国际金融中心基坑工程开展的0.7 m厚、8 m宽、56.7 m深TRD成墙试验为背景,采用有限元方法,并基于土体小应变本构模型对其成墙过程进行了模拟,得到了土体侧向位移和地表沉降曲线,并与实测数据进行了对比。结果表明,距离墙体5 m处两者的土体侧向位移曲线基本一致,而距离墙体1.4 m处的土体侧向位移在深度大于20 m后的计算结果较实测值偏小;地表沉降在靠近墙体处最大,随着距墙体的距离增大而逐渐减小。最后分析了成墙深度对地表沉降和土体侧向变形的影响,结果表明,深度越深,引起的土体侧向变形和地表沉降也越大。通过不同成墙深度引起的地表沉降归一化曲线可看出,TRD成墙引起的最大地表沉降约为0.05%H(H为成墙深度),沉降影响区域约为1.8H。  相似文献   

20.
王成华  刘庆晨 《岩土力学》2012,33(6):1851-1856
对土体采用Mohr-Coulomb弹塑性本构模型,用接触面单元模拟桩-土相互作用,利用ABAQUS建立桩筏基础--地基--基坑开挖三维有限元分析模型。对基坑开挖影响下的群桩基础竖向承载性状进行了分析,讨论了桩顶反力分布、桩身轴力、桩侧摩阻力以及开挖引起的桩身水平位移及其弯矩的变化规律,并进行了考虑基坑开挖与不考虑基坑开挖的群桩基础竖向承载性状的对比分析。通过研究,取得了基坑开挖对高层建筑桩筏基础影响的基本认识,这些认识对于改进桩筏基础设计理论有一定的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号