首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic source characteristics in the Kachchh rift basin and Saurashtra horst tectonic blocks in the stable continental region (SCR) of western peninsular India are studied using the earthquake catalog data for the period 2006–2011 recorded by a 52-station broadband seismic network known as Gujarat State Network (GSNet) running by Institute of Seismological Research (ISR), Gujarat. These data are mainly the aftershock sequences of three mainshocks, the 2001 Bhuj earthquake (M w 7.7) in the Kachchh rift basin, and the 2007 and 2011 Talala earthquakes (M w ≥ 5.0) in the Saurashtra horst. Two important seismological parameters, the frequency–magnitude relation (b-value) and the fractal correlation dimension (D c) of the hypocenters, are estimated. The b-value and the D c maps indicate a difference in seismic characteristics of these two tectonic regions. The average b-value in Kachchh region is 1.2 ± 0.05 and that in the Saurashtra region 0.7 ± 0.04. The average D c in Kachchh is 2.64 ± 0.01 and in Saurashtra 2.46 ± 0.01. The hypocenters in Kachchh rift basin cluster at a depth range 20–35 km and that in Saurashtra at 5–10 km. The b-value and D c cross sections image the seismogenic structures that shed new light on seismotectonics of these two tectonic regions. The mainshock sources at depth are identified as lower b-value or stressed zones at the fault end. Crustal heterogeneities are well reflected in the maps as well as in the cross sections. We also find a positive correlation between b- and D c-values in both the tectonic regions.  相似文献   

2.
Seismicity of Gujarat   总被引:2,自引:2,他引:0  
Paper describes tectonics, earthquake monitoring, past and present seismicity, catalogue of earthquakes and estimated return periods of large earthquakes in Gujarat state, western India. The Gujarat region has three failed Mesozoic rifts of Kachchh, Cambay, and Narmada, with several active faults. Kachchh district of Gujarat is the only region outside Himalaya-Andaman belt that has high seismic hazard of magnitude 8 corresponding to zone V in the seismic zoning map of India. The other parts of Gujarat have seismic hazard of magnitude 6 or less. Kachchh region is considered seismically one of the most active intraplate regions of the World. It is known to have low seismicity but high hazard in view of occurrence of fewer smaller earthquakes of M????6 in a region having three devastating earthquakes that occurred during 1819 (M w7.8), 1956 (M w6.0) and 2001 (M w7.7). The second in order of seismic status is Narmada rift zone that experienced a severely damaging 1970 Bharuch earthquake of M5.4 at its western end and M????6 earthquakes further east in 1927 (Son earthquake), 1938 (Satpura earthquake) and 1997 (Jabalpur earthquake). The Saurashtra Peninsula south of Kachchh has experienced seismicity of magnitude less than 6.  相似文献   

3.
Hamdache  M.  Pel&#;ez  J. A.  Kijko  A.  Smit  A. 《Natural Hazards》2016,86(2):273-293

We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.

  相似文献   

4.
In this study, receiver function analysis is carried out at 32 broadband stations spread all over the Gujarat region, located in the western part of India to image the sedimentary structure and investigate the crustal composition for the entire region. The powerful Genetic Algorithm technique is applied to the receiver functions to derive S-velocity structure beneath each site. A detail image in terms of basement depths and Moho thickness for the entire Gujarat region is obtained for the first time. Gujarat comprises of three distinct regions: Kachchh, Saurashtra and Mainland. In Kachchh region, depth of the basement varies from around 1.5 km in the eastern part to 6 km in the western part and around 2–3 km in the northern part to 4–5 km in the southern part. In the Saurashtra region, there is not much variation in the depth of the basement and is between 3 km and 4 km. In Gujarat mainland part, the basement depth is 5–8 km in the Cambay basin and western edge of Narmada basin. In other parts of the mainland, it is 3–4 km. The depth of Moho beneath each site is obtained using stacking algorithm approach. The Moho is at shallower depth (26–30 km) in the western part of Kachchh region. In the eastern part and epicentral zone of the 2001 Bhuj earthquake, large variation in the Moho depths is noticed (36–46 km). In the Saurashtra region, the crust is more thick in the northern part. It varies from 36–38 km in the southern part to 42–44 km in the northern part. In the mainland region, the crust is more thick (40–44 km) in the northern and southern part and is shallow in Cambay and Narmada basins (32–36 km). The large variations of Poisson’s ratio across Gujarat region may be interpreted as heterogeneity in crustal composition. High values of σ (∼0.30) at many sites in Kachchh and few sites in Saurashtra and Mainland regions may be related to the existence of high-velocity lower crust with a mafic/ultramafic composition and, locally, to the presence of partial melt. The existing tectono-sedimentary models proposed by various researchers were also examined.  相似文献   

5.
We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.  相似文献   

6.
Estimation of seismic hazard in Gujarat region, India   总被引:1,自引:1,他引:0  
The seismic hazard in the Gujarat region has been evaluated. The scenario hazard maps showing the spatial distribution of various parameters like peak ground acceleration, characteristics site frequency and spectral acceleration for different periods have been presented. These parameters have been extracted from the simulated earthquake strong ground motions. The expected damage to buildings from future large earthquakes in Gujarat region has been estimated. It has been observed that the seismic hazard of Kachchh region is more in comparison with Saurashtra and mainland. All the cities of Kachchh can expect peak acceleration in excess of 500?cm/s2 at surface in case of future large earthquakes from major faults in Kachchh region. The cities of Saurashtra can expect accelerations of less than 200?cm/s2 at surface. The mainland Gujarat is having the lowest seismic hazard as compared with other two regions of Gujarat. The expected accelerations are less than 50?cm/s2 at most of the places. The single- and double-story buildings in Kachchh region are at highest risk as they can expect large accelerations corresponding to natural periods of such small structures. Such structures are relatively safe in mainland region. The buildings of 3?C4 stories and tall structures that exist mostly in cities of Saurashtra and mainland can expect accelerations in excess of 100?cm/s2 during a large earthquake in Kachchh region. It has been found that a total of 0.11 million buildings in Rajkot taluka of Saurashtra are vulnerable to total damage. In Kachchh region, 0.37 million buildings are vulnerable. Most vulnerable talukas are Bhuj, Anjar, Rapar, Bhachau, and Mandvi in Kachchh district and Rajkot, Junagadh, Jamnagar, Surendernagar and Porbandar in Saurashtra. In mainland region, buildings in Bharuch taluka are more vulnerable due to proximity to active Narmada-Son geo-fracture. The scenario hazard maps presented in this study for moderate as well as large earthquakes in the region may be used to augment the information available in the probabilistic seismic hazard maps of the region.  相似文献   

7.
ABSTRACT

New field and petrographic data from the Birimian of the Kolia-Boboti Basin in the Kédougou-Kéniéba inlier indicate two phases of gold mineralization related to Eburnean tectono-magmatic events. Syn- to late-tectonic (D2/D3) mineralization, controlled by stockwork sulphide-bearing quartz-chlorite and quartz-carbonate veins, is associated with fluid circulation related to magmatic intrusions. V2 veins and disseminated assemblages are mainly composed of quartz + chlorite + pyrite and ± gold. Haematite and arsenopyrite are added in the sediments (pelite, greywake, sandstone, quartzite, and marble) and albite in the felsic rocks (andesite, rhyolite, granodirite, and diorite). V3 veins assemblage is composed of quartz + carbonate + pyrite + chalcopyrite and ± gold. Pyrrhotite appears in the sediments (greywacke, quartzite, marble). Sericite, tourmaline, haematite, and magnetite are common in both V2 and V3 assemblages. The first sulphide-bearing quartz-chlorite assemblage is related to the hydrothermal activity of the Eburnean D2 deformation, which was focused mostly along NW- to NNE-trending tectonic structures. The second sulphide-bearing quartz-carbonate assemblage is associated with hydrothermal activity during late Eburnean D3 deformation, mainly located in NE- to E–W-trending tectonic structures. Gold is correlated with the abundance of sulphides (pyrite, chalcopyrite, arsenopyrite), and sulphide stockworks are more abundant in the veins sub-parallel (V2b) or oblique (V2c) to the N–S- to NNE-oriented S2 foliation, as well as in the N45°–N90°-oriented V3 veins. V1 veins, which are related to D1 Eburnean tectonics, are highly deformed (folded and boudinaged) and are poor in sulphides. The host structures of mineralization (V2 and V3 veins) represent the low- and medium-stress domains resulting from the Eburnean D2 and D3 tectonic phases, respectively. The intra-crystalline deformation of the quartz grains associated with these three vein types indicates relatively low temperatures. These different features suggest that most of the mineralization was associated with sulphides formed during the D2 and D3 Eburnean tectono-magmatic events dated around 2080 ± 0.9 and 2061 ± 15 Ma, respectively.  相似文献   

8.
An intraplate earthquake of magnitude (M c) 6.9 (Anon 2001a) struck Bhuj and the adjoining region of Kachchh in Gujarat on January 26th, 2001 at about 0316 hrs (GMT) and was followed by a number of aftershocks. The epicentre of this earthquake was located at 23.4‡N and 70.28‡E close to the Kachchh mainland fault. The intensity observed around the epicenter was X on the MSK scale. A study of 531 aftershocks, in the magnitude range of 3.0–5.7, recorded at Vadodara Seismological Observatory till March 31st, 2001 has been carried out and various statistical parameters calculated. The total energy released during the study period is calculated to be 8.2 × 1014 joule. Sudden occurrence of the main shock without any foreshock in the same tectonic system is a unique feature of this sequence. Theb- value (0.86), value of M0-M1 (1.2), high M1/M0 (0.89) and high value of the decay constanth (0.91), all support the tectonic origin of the present study.  相似文献   

9.
The Surat City, which is the second most populated city in the state of Gujarat in western India, warrants site-specific seismic hazard assessment due to its rapid urbanization and proximity to major seismogenic zones. This study reports results of microtremor investigations at 72 single stations and 4 arrays in an area of 325 km2 spanning the city. The resonant frequencies, associated peak amplification values and liquefaction vulnerability indices were deduced from the horizontal to vertical spectral ratios. Ground amplification (AHVSR) in the range of 3.0–5.0 was observed in the 2.0–4.0-Hz frequency band at most of the sites. A secondary AHVSR between 2.0 and 3.0 is also observed in the 6.0–7.0-Hz frequency band at a few sites. Locales that are most susceptible to liquefaction are identified based on their vulnerability index (K g) exceeding the value of 10. The shear wave velocities (V s) ≥ 500 m/s inferred from array measurements occur at 38 m depth in the western part and ~16 m depth in the eastern part of city. The response spectra estimated from strong motion data recorded at an accelerograph site in Surat from three earthquakes of M w ≥ 3.2 that occurred in Kachchh, Saurashtra and Narmada regions are in accordance with our inferences of characteristic site frequencies and amplification. Our results, in agreement with the damage scenario during the 2001 Bhuj earthquake, provide valuable inputs for site-specific seismic hazard evaluation of the Surat City.  相似文献   

10.
In this study, the modified stochastic method based on dynamic corner frequency has been used for the simulation of strong ground motions in Gujarat region. The earthquake-generating faults have been identified in the Gujarat region on the basis of past seismicity of the region. In all, 19 probable faults have been identified with 12 in Kachchh region, 5 in Saurashtra and 2 in Mainland Gujarat region. The maximum magnitude has been assigned to each fault based on the regional tectonic environment and past seismicity. The strong ground motions from these identified sources have been estimated at numerous points distributed all over Gujarat region on a grid. The peak ground acceleration (PGA) values have been extracted from the accelerograms and contoured. The spatial distribution of maximum of 19 PGA values at every grid point have been described and discussed. The ground motions at the surface of 32 important cities of the Gujarat have been estimated by incorporating the site amplification functions. The site amplification functions are obtained using the local earthquake data. These cities are located on various types of geological formations. We note that the site amplification functions have modified the character of the records and amplified the acceleration values at almost all the sites. The Kachchh region can expect surface accelerations between 400 and 800 cm/s2, Saurashtra between 100 and 200 cm/s2 and Mainland less than 50 cm/s2 from a future large earthquake. The obtained results are useful for disaster mitigation measures, strengthening the existing built environment and design of structures in the region.  相似文献   

11.
A damaging and widely felt moderate (Mw 5.0) earthquake occurred in the Talala region of Saurashtra, Gujarat (western India) on November 6, 2007. The highly productive sequence comprised about 1300 micro earthquakes (M > 0.5) out of which 325 of M ? 1.5 that occurred during November 6, 2007–January 10, 2008 were precisely located. The spatial aftershock distribution revealed a NE–SW striking fault in accordance with the centroid moment tensor solution, which in turn implies left-lateral motion. The orientation and sense of shear are consistent with similarly orientated geological fault identified in the area from satellite imagery and field investigation.The aftershocks temporal decay, b-value of frequency–magnitude distribution, spatial fractal dimension, D, and slip ratio (ratio of the slip occurred on the primary fault to the total slip) were examined with the purpose to identify the properties of the sequence. The high b-value (1.18 ± 0.01) may be attributed to the paucity of the larger (M ? 4.0) aftershocks and reveals crustal heterogeneity and low stress regime. The high p-value (1.10 ± 0.39), implying fast decay rate of aftershocks, evidences high surface heat flux. A value of the spatial fractal dimension (D) equal to 2.21 ± 0.02 indicates random spatial distribution and source in a two-dimensional plane that is being filled-up by fractures. A slip ratio of 0.42 reveals that more slip occurred on secondary fault systems.The static Coulomb stress changes due to the coseismic slip of the main shock, enhanced off fault aftershock occurrence. The occurrence of a moderate earthquake (Mw 4.3) on October 5, 2008 inside a region of positive Coulomb stress changes supports the postulation on aftershock triggering. When the stress changes were resolved on a cross section including the stronger (M4.8) foreshock plane that is positioned adjacent to the main fault, it became evident that the activity continued there due to stress transfer from the main rupture.  相似文献   

12.
Zircon U–Pb dating of two samples of metagabbro from the Riwanchaka ophiolite yielded early Carboniferous ages of 354.4 ± 2.3 Ma and 356.7 ± 1.9 Ma. Their positive zircon εHf(t) values (+7.9 to +9.9) indicate that these rocks were derived from a relatively depleted mantle. The metagabbros can be considered as two types: R1 and R2. Both types are tholeiitic, with depletion of high-field-strength elements (HFSE) and enrichment of large-ion lithophile elements (LILE) similar to those of typical back-arc basin basalts (BABB), such as Mariana BABB and East Scotia Ridge BABB. Geochemical and isotopic characteristics indicate that the R1 metagabbro originated from a back-arc basin spreading ridge with addition of slab-derived fluids, whereas the R2 metagabbro was derived from a back-arc basin mantle source, with involvement of melts and fluids from subducted ocean crust. The Riwanchaka ophiolite exhibits both mid-ocean ridge basalts- and arc-like geochemical affinities, consistent with coeval ophiolites from central Qiangtang. Observations indicate that the Qiangtang ophiolites developed during the Late Devonian–early Carboniferous (D3–C1) in a back-arc spreading ridge above an intra-oceanic subduction zone. Based on our data and previous studies, we propose that an oceanic back-arc basin system existed in the Longmuco–Shuanghu–Lancang Palaeo-Tethys Ocean during the D3–C1 period.  相似文献   

13.
贺跃  徐备  张立杨  张焱杰 《岩石学报》2018,34(10):3071-3082
兴蒙造山带位于中亚造山带东段,是研究地壳生长与古亚洲洋演化的热点区域。内蒙古中部苏尼特左旗地区位于兴蒙造山带中段,区内分布的上泥盆统色日巴彦敖包组磨拉石建造是古亚洲洋闭合的重要证据之一,前人对其岩石组合、地层层序与沉积环境进行了报道,并指出其属于晚泥盆世的前陆盆地,但未就前陆盆地的属性、分类及其与造山带的空间关系展开详细研究。因此,本研究选择该区东北部的昌特敖包剖面,利用野外实测、锆石U-Pb同位素定年、沉积相分析等方法查明该碎屑沉积的地层层序、形成时代与物质来源,在此基础上补充完善了兴蒙造山带北造山带二级构造单元的划分方案。研究结果表明,昌特敖包剖面碎屑沉积属上泥盆统色日巴彦敖包组,而非前人认为的二叠纪大石寨组地层,其碎屑物质主要来自南部的宝力道岛弧与北部兴安-爱力格庙地块。沉积环境分析表明昌特敖包剖面色日巴彦敖包组主要为冲积扇相沉积,上部过渡到干旱气候火山活动背景下的滨浅海相沉积。综合昌特敖包剖面的沉积、年代、物源及大地构造位置特征,可以推断其代表晚泥盆世造山带的弧背前陆盆地。由此,苏尼特左旗地区北造山带的构造单元在前人划定的前陆变形带、混杂带、周缘前陆盆地、岛弧岩浆岩、同碰撞花岗岩以北,还存在弧背前陆盆地。本研究结果为恢复中亚造山带的构造演化过程提供了关键沉积学证据。  相似文献   

14.
《地学前缘(英文版)》2020,11(5):1743-1754
Broad-band and long-period magnetotelluric(MT) data were acquired along an east-west trending traverse of nearly 200 km across the Kachchh,Cambay rift basins,and Aravalli-Delhi fold belt(ADFB),western India.The regional strike analysis of MT data indicated an approximate N59°E geoelectric strike direction under the traverse and it is in fair agreement with the predominant geological strike in the study area.The decomposed transverse electric(TE)-and transverse magnetic(TM)-data modes were inverted using a nonlinear conjugate gradient algorithm to image the electrical lithospheric structure across the Cambay rift basin and its surrounding regions.These studies show a thick(~1-5 km) layer of conductive Tertiary-Mesozoic sediments beneath the Kachchh and Cambay rift basins.The resistive blocks indicate presence of basic/ultrabasic volcanic intrusives,depleted mantle lithosphere,and different Precambrian structural units.The crustal conductor delineated within the ADFB indicates the presence of fluids within the fault zones,sulfide mineralization within polyphase metamorphic rocks,and/or Aravalli-Delhi sediments/metasediments.The observed conductive anomalies beneath the Cambay rift basin indicate the presence of basaltic underplating,volatile(CO_2,H_2 O) enriched melts and channelization of melt fractions/fluids into crustal depths that occurred due to plume-lithosphere interactions.The variations in electrical resistivity observed across the profile indicate that the impact of Reunion plume on lithospheric structures of the Cambay rift basin is more dominant at western continental margin of India(WCMI) and thus support the hypothesis proposed by Campbell Griffiths about the plume-lithosphere interactions.  相似文献   

15.
The Bam earthquake (2003 December 26, M W = 6.6) was one of the largest earthquakes that occurred in southeast of Iran during last century. It took place along an N–S trending right-lateral strike-slip fault, almost near the southern end of Nyband–Gowk fault. In this study, we mapped the frequency–magnitude distribution of aftershock events spatially across the Bam aftershock zone. The b-value varies between 0.6 and 1.1 across the Bam rupture zone. The overall depth distribution of b-value in Bam aftershock zone reveals two distinct increases in b-value: (1) at depths of 8–10 km and (2) shallower than 4 km beneath the Bam city. There is no correlation between high b- value anomalies found in this study and the region of largest slip, whereas the spatial correlation between high b-value anomalies and the zone of low V s and high σ (in earlier tomography study) is obvious. This correlation reveals that material properties and increasing heterogeneity are more important in controlling b-value distribution in Bam earthquake rupture zone. The high b-value anomaly near the surface of northern part of rupture zone may be related to unconsolidated and water-rich quaternary alluvial sediments and probable low-strength rocks beneath them. The high b-value anomaly at depth range 8–10 km can be correlated with fractured and fluid-filled mass, which may result from the movement of magma during Eocene volcanism in the Bam area. In this study, the induced changes in pore fluid pressure due to main shock are suggested as a mechanism for aftershock generation.  相似文献   

16.
《International Geology Review》2012,54(13):1602-1629
Widespread Cretaceous volcanic basins are common in eastern South China and are crucial to understanding how the Circum-Pacific and Tethyan plate boundaries evolved and interacted with one another in controlling the tectonic evolution of South China. Lithostratigraphic units in these basins are grouped, in ascending order, into the Early Cretaceous volcanic suite (K1V), the Yongkang Group (K1-2), and the Jinqu Group (K2). SHRIMP U-Pb zircon geochronological results indicate that (1) the Early Cretaceous volcanic suite (K1V) erupted at 136–129 Ma, (2) the Yongkang Group (K1-2) was deposited from 129 Ma to 91 Ma, and (3) the deposition of the Jinqu Group (K2) post-dated 91 Ma. Structural analyses of fault-slip data from these rock units delineate a four-stage tectonic evolution of the basins during Cretaceous to Palaeogene time. The first stage (Early to middle Cretaceous time, 136–91 Ma) was dominated by NW–SE extension, as manifested by voluminous volcanism, initial opening of NE-trending basins, and deposition of the Yongkang Group. This extension was followed during Late Cretaceous time by NW–SE compression that inverted previous rift basins. During the third stage in Late Cretaceous time, possibly since 78.5 Ma, the tectonic stress changed to N–S extension, which led to basin opening and deposition of the Jinqu Group along E-trending faults. This extension probably lasted until early Palaeogene time and was terminated by the latest NE–SW compressional deformation that caused basin inversion again. Geodynamically, the NW–SE-oriented stress fields were associated with plate kinematics along the Circum-Pacific plate boundary, and the extension–compression alternation is interpreted as resulting from variations of the subducted slab dynamics. A drastic change in the tectonic stress field from NW–SE to N–S implies that the Pacific subduction-dominated back-arc extension and shortening were completed in the Late Cretaceous, and simultaneously, that Neo-Tethyan subduction became dominant and exerted a new force on South China. The ongoing Neo-Tethyan subduction might provide plausible geodynamic interpretations for the Late Cretaceous N–S extension-dominated basin rifting, and the subsequent Cenozoic India–Asia collision might explain the early Palaeogene NE–SW compression-dominated basin inversion.  相似文献   

17.
A high-resolution passive seismic experiment in the Kachchh rift zone of the western India has produced an excellent dataset of several thousands teleseismic events. From this network, 500 good teleseismic events recorded at 14 mobile broadband sites are used to estimate receiver functions (for the 30–310° back-azimuth ranges), which show a positive phase at 4.5–6.1 s delay time and a strong negative phase at 8.0–11.0 s. These phases have been modeled by a velocity increase at Moho (i.e. 34–43 km) and a velocity decrease at 62–92 km depth. The estimation of crustal and lithospheric thicknesses using the inversion of stacked radial receiver functions led to the delineation of a marked thinning of 3–7 km in crustal thickness and 6–14 km in lithospheric thickness beneath the central rift zone relative to the surrounding un-rifted parts of the Kachchh rift zone. On an average, the Kachchh region is characterized by a thin lithosphere of 75.9 ± 5.9 km. The marked velocity decrease associated with the lithosphere–asthenoshere boundary (LAB), observed over an area of 120 km × 80 km, and the isotropic study of xenoliths from Kachchh provides evidence for local asthenospheric updoming with pockets of partial melts of CO2 rich lherzolite beneath the Kachchh seismic zone that might have caused by rifting episode (at 88 Ma) and the associated Deccan thermal-plume interaction (at 65 Ma) episodes. Thus, the coincidence of the area of the major aftershock activity and the Moho as well as asthenospheric upwarping beneath the central Kachchh rift zone suggests that these pockets of CO2-rich lherzolite partial melts could perhaps provide a high input of volatiles containing CO2 into the lower crust, which might contribute significantly in the seismo-genesis of continued aftershock activity in the region. It is also inferred that large stresses in the denser and stronger lower crust (at 14–34 km depths) induced by ongoing Banni upliftment, crustal intrusive, marked lateral variation in crustal thickness and related sub-crustal thermal anomaly play a key role in nucleating the lower crustal earthquakes beneath the Kachchh seismic zone.  相似文献   

18.
ABSTRACT

The Mesozoic tectonic transition from the Palaeo-Tethys tectonic regime to the Palaeo-Pacific tectonic regime in the eastern South China Block has long been debated. Geochemical and zircon U–Pb–Hf isotopic studies were conducted on the Dashuang complex in the eastern Zhejiang Province. The Dashuang complex consists mainly of quartz syenite in the northwestern part and quartz monzonite in the southeastern part. New laser ablation inductively coupled plasma mass spectrometry zircon U–Pb data show that the quartz syenite, the quartz monzonite, and its chilled margin (fine-grained granite) crystallized at 235 ± 4 Ma, 232 ± 3 Ma, and 230 ± 1 Ma, respectively. The Dashuang complex intrudes into the Chencai Group gneiss that postdated ~646 Ma and underwent anatexis at 443 ± 14 Ma. The quartz monzonite shows A-type granite affinity, characterized by high K2O + Na2O and Zr + Nb + Ce + Y, high FeOT/(MgO + FeOT) and Ga/Al ratios, an enrichment in light rare earth elements, and depletions in Ba, Sr, and Eu. The quartz monzonite has zircon εHf(t) values of ?14.2 to –11.9 and two-stage model ages of 1788–1922 Ma. Zircon εHf(t) values of the chilled margin (fine-grained granite) and wall rock (gneiss) are scattered (?18.2 to –6.3 and ?19.5 to 10.2). The corresponding two-stage model ages are 1482–2133 Ma and 1184–2471 Ma, respectively. The Dashuang complex was derived mainly from partial melting of Neoproterozoic clastic rocks in the Cathaysia Block. Geochemical data indicate that the quartz monzonite formed in a post-collision extensional environment. These results, considered with previous data, indicate that the transition from the Palaeo-Tethys to the Palaeo-Pacific tectonic regimes of the eastern South China Block occurred during the Late Triassic (225–215 Ma).  相似文献   

19.
This article reports our new interpretations of the depositional environment and provenance of the Dawashan Formation in the Longmuco–Shuanghu–Lancangjiang suture zone (LSLSZ), in the Southern Qiangtang terrane of northern Tibet, in order to gain a better understanding of the Ordovician tectonic evolution of the northern margin of Gondwana. The Dawashan Formation is dominated by greywacke and shale, with interlayered bimodal volcanic rocks that were deposited in a bathyal to abyssal marine basin. The detrital zircons in the greywacke of the Dawashan Formation have peak ages of 550, 988, 1640, and 2500 Ma, indicating a northern Gondwana margin provenance. The bimodal metavolcanic rocks from the Dawashan Formation are dominated by metarhyolite with subordinate metabasalt. The results of zircon LA-ICP-MS U–Pb dating indicate that the metarhyolite formed between 470 and 455 Ma. The metavolcanic samples are bimodal (SiO2 = 45.27–55.05 and 66.09–74.59 wt.%). In comparison, the metabasalt has a wide range of MgO concentrations and Mg# values, contains variable Cr and low Ni concentrations, is depleted in Rb, Ba, and Sr, and is enriched in TiO2, Th, U, Nb, and Ta. Geochemical diagrams show that the metabasalt erupted in an intra-plate environment. The metarhyolites have high SiO2, Th, and U concentrations, low concentrations of MgO, P2O5, Nb, Sr, and Ti, and negative Eu anomalies. The metarhyolites yield negative zircon εHf(t) values (–2.08 to – 4.50) and TCDM model ages of 1436–1567 Ma. The metarhyolites formed from magma derived from the partial melting of old continental crust. These data indicate that the Dawashan Formation records Middle–Upper Ordovician bathyal to abyssal turbidite deposition in a deep-water rift basin at the northern margin of Gondwana.  相似文献   

20.
Neoarchean and Mesoproterozoic sequences in the Oakover Basin provide a record of deformation and sedimentation along the eastern edge of the Archean Pilbara Craton. The early extensional history of the Oakover Basin is overprinted by subsequent compressional events. Five distinct deformation events are recognised in the Woodie Woodie region; the Archean D1 event, comprising west-northwest–east-southeast extension associated with formation of the Neoarchean Hamersley Basin; the Mesoproterozoic D2a event, with northwest–southeast extension and basin formation associated with manganese mineralisation; the D2b event, with renewed extension associated with intrusion of Davis Dolerite during the ca 1090–1050 Ma Warakurna event; the D3 event, comprising northeast–southwest-directed compression attributed to the ca 900 Ma Edmundian Orogeny; the Neoproterozoic D4 event, with east-northeast–west-southwest extension producing large D4 grabens associated with the opening of the Officer Basin; and, the Neoproterozoic D5 event comprising north–south-directed compression attributed to the ca 550 Ma Paterson Orogeny. Abundant manganese deposits are hosted by the Neoarchean and Mesoproterozoic sequences in the Oakover Basin, including the large high-grade manganese deposits at Woodie Woodie. The orebodies are predominantly hydrothermal in origin, with a late supergene overprint, and deposition of primary manganese mineralisation was synchronous with northwest–southeast Mesoproterozoic D2a extension and basin formation. The manganese is associated with normal faults, and many of these represent growth faults related to basin formation. Stratabound manganese is found above or adjacent to fault-hosted manganese. An initial structural framework established during Archean rifting was reactivated in the D2a event and provided a major structural control on manganese distribution. High-grade manganese deposits at Woodie Woodie mine appear to be located in a zone of oblique dextral extension on major north-northwest- to north-trending faults that mark the eastern ‘active’ or faulted margin of an early rift basin. These large north-northwest-trending normal faults are linked to a major northwest-trending transform fault zone (Jewel-Southwest Fault Zone) that separates the Oakover Basin into a northern and southern basin. The transform fault represents a major deep fluid conduit for hydrothermal fluids and most likely accounts for the concentration of significant manganese occurrences immediately to the north and south of this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号