首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青藏高原东部的隆升机制一直都是地学界的研究热点,研究学者们提出和发展了多种岩石圈变形模型,而存在多种模型的主要原因之一是对青藏高原东部地壳及岩石圈结构认识不足。本文主要针对SinoProbe-02项目横跨龙门山断裂带、全长400多公里的宽角、折射地震数据及重力数据进行联合反演和综合解释。研究结果表明,龙门山及邻近地区地壳结构可明确划分为上地壳、中地壳和下地壳。上地壳上层为沉积层,龙门山断裂带以西大部分区域被三叠纪复理岩覆盖,而在龙日坝断裂与岷江断裂之间出现了密度为2.7g/cm3的高速异常体;向东靠近龙门山地区,沉积层厚度逐渐减薄。中地壳速度变化不均一,而且变形强烈;若尔盖盆地和龙门山断裂带下方出现明显低速带;中地壳在龙门山西侧厚度加厚,在岷江断裂下方和四川盆地靠近龙门山断裂带地区附近厚度达到最大。莫霍面整体深度从东往西增厚,最厚可达56 km。本次研究得到的地壳结构和密度分布分析结果表明现有的地壳厚度和物质组成不足以支撑龙门山及邻近地区目前所达到的隆升高度,因此四川盆地刚性基底西缘因挤压作用产生的弯曲应力也是该地区抬升的重要条件之一。  相似文献   

2.
本文在综合解译地质图、遥感影像及数字高程模型的基础上,沿着青衣江河谷对龙门山南段多条断裂进行了详细调查。将前第四纪大规模不整合边界作为断裂的分布范围,同时通过构造地貌标志确定最新的活动断裂位置,如断错山脊、断层槽谷、河道形态变化等。解译过程中也参考了前人研究成果,如开挖探槽位置信息,浅层地震剖面资料。调查结果显示,松潘—甘孜褶皱带与龙门山接触地带发育了中岗断裂、永富断裂,晚第四纪活动特征不明显。龙门山后山、中央、前山3条主干断裂在南段依次对应耿达—陇东断裂、岩井—五龙断裂、与双石—大川断裂,与北段具有相似的断块构造。3条断裂都有断错地貌特征但断裂分支较多,其中盐井—五龙断裂有一条分支为宝兴断裂,双石—大川断裂有小关子断裂一条分支。在前陆地区,基底滑脱带延伸至浅部盖层,断坡处发育了始阳断裂、新开店断裂等浅部分支断裂。通过这些断裂分布样式、断错地貌特征、与实测地质剖面发现,龙门山南段具有纯挤压特征,最新构造活动已经开始改造前陆地区,是扩展的边界。而龙门山北段具有和逆冲相当的走滑分量,表明青藏高原在推挤龙门山的过程中,龙门山北缘向西秦岭方向发生走滑逃逸,龙门山南段由于同时受川滇块体向东推挤作用而呈现纯挤压特征。高原推挤作用集中于松潘—甘孜褶皱带东缘的小金弧形构造,控制了龙门山断裂带南北构造差异。  相似文献   

3.
The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.  相似文献   

4.
《International Geology Review》2012,54(12):1121-1131
The Xianshuihe fault zone (XFZ) forms a boundary that accommodates crustal movement eastwards from central Tibet. The lack of well-defined time constraints has hampered the reconstruction of the geometric and kinematic evolution of the fault zone, and inhibited the development of a consistent regional tectonic model. New geochronological investigations of mica K/Ar and apatite fission-track ages on the Ganzi–Yushu segment of the XFZ indicate that fault activity started ca. 13 Ma before present, which considerably precedes the 5 Ma initiation of offset on the Xiaojiang fault (XjF) segment. Different initiation times for different fault segments clearly demonstrate that the geometric and kinematic evolution of the XFZ can be divided into two periods. The XFZ cut through the Dangjiang, Ganzi, and Gongga Shan areas, and reached the Qinghe–Yanyuan area during an early stage, from ca. 13 to 5 Ma, as a boundary fault with lateral mass transfer from the interior to southeast Tibet. At the southern edge of the XFZ, the movement took advantage of the southern segment of the Longmen Shan thrust fault – the Jinhe–Qinghe thrust fault. During the late stage, from 5 Ma to present, the fault zone passed through the Yushu, Ganzi, and Gongga Shan areas, then offset the Longmen Shan thrust fault belt and reached the Kunming area. The Jinhe–Qinghe fault was abandoned in the later period as the southern part of the XFZ, and the XjF became active because of continuous clockwise rotation of the crust around the eastern syntaxis.  相似文献   

5.
龙日坝断裂带位于青藏高原最东缘,呈北东-南西向延伸,平行于其东侧的龙门山断裂带,二者大约相距150 km。与龙门山断裂带不同的是,龙日坝断裂带在青藏高原东缘相关GPS测量中表现为一明显的速度梯度带,说明龙日坝断裂带可能具有很重要的构造属性。然而有关龙日坝断裂带的地表结构构造延伸问题一直悬而未决,目前还存在许多的争议,这在一定程度上也阻碍了我们对青藏高原东缘相对于印度-欧亚板块碰撞地球动力学响应的了解。在本次研究中,我们将首次采用ALOS-PALSAR卫星数据,并结合地表地质和前人的地球物理学研究成果,来监测与龙日坝断裂带的构造活动相关的细微地表形变,并由此控制龙日坝断裂带的延伸范围。研究结果表明,龙日坝断裂带与其西南侧的抚边河断裂带相交且近乎垂直,而非前人研究所认为的龙日坝断裂带延伸至其西缘的鲜水河断裂带。综合研究结果也为了解龙日坝断裂带的大地构造属性提供了数据支持。  相似文献   

6.
龙门山断裂带印支期左旋走滑运动及其大地构造成因   总被引:60,自引:6,他引:60  
位于青藏高原东缘的龙门山构造呈北东—南西向将松潘—甘孜褶皱带和华南地块分割开。前者主要是由一套巨厚的三叠纪复理石沉积组成 ,分布在古特提斯海的东缘。后者由前寒武纪基底和上覆的古生代和中生代沉积盖层组成。位于汶川—茂汶断裂以东的前龙门山存在一系列倾向北西的逆掩断层 ,它们将许多由元古宙和古生代岩层组成的断片向南东置于四川盆地的中生代红层之上 ,构成典型的薄皮构造。许多研究由此断定松潘—甘孜褶皱带和四川盆地之间在中生代发生过大规模的北西—南东向挤压。然而 ,汶川—茂汶断裂西侧的松潘—甘孜褶皱带内部的挤压构造线大多是垂直于而不是平形于龙门山断裂带 ,这表明当时的挤压应力不是北西—南东向而是北东—南西向。近年来在龙门山构造带内发现 ,在三叠纪时龙门山断裂带在发生推覆的同时还经历过大规模的北东—南西向的左旋走滑运动 ,协调走滑运动的主要构造为汶川—茂汶断裂。走滑运动的成因与松潘—甘孜褶皱带北东—南西向缩短有关。汶川—茂汶断裂的左旋走滑在龙门山的北东端被古特提斯海沿勉略俯冲带的消减和发生在大巴山的古生代 /中生代岩层的褶皱和冲断作用所吸收 ,在龙门山的南西端被古特提斯海沿甘孜—理塘俯冲带的消减和松潘—甘孜三叠纪复理石的褶皱和冲断作用所吸?  相似文献   

7.
龙门山地震带的地质背景与汶川地震的地表破裂   总被引:17,自引:0,他引:17  
龙门山位于青藏高原与扬子地台之间, 系由一系列大致平行的叠瓦状冲断带构成, 自西向东发育汶川茂汶断裂、映秀北川断裂和彭县灌县断裂,并将龙门山划分为3个构造地层带,分别为变形变质构造地层带(主要由志留系泥盆系浅变质岩和前寒武系杂岩构成)、变形变位构造地层带(主要由上古生界三叠系沉积岩构成)、变形构造地层带(主要由侏罗系至第三系红层和第四纪松散堆积构成)。 龙门山断裂带属地震危险区,3条主干断裂皆具备发生7级左右地震的能力,其中映秀北川断裂是引发地震的最主要断层,据对彭县灌县断裂青石坪探槽场地的研究结果表明,在该断裂带上最晚的一次强震发生在93040a.B.P.左右,据此,可以初步判定,这3条主干断裂的单条断裂上的强震复发间隔至少应在1000a左右,表明龙门山构造带及其内部断裂属于地震活动频度低但具有发生超强地震的潜在危险的特殊断裂,以逆冲-右行走滑为其主要运动方式。 汶川地震属于逆冲走滑型的地震,地表破裂分布于映秀北川断裂带和彭县灌县断裂带上。根据近南北向的断裂(小鱼洞断层、擂鼓断层和邓家坝断层)和地表断距可将映秀北川断层的地表破裂带划分为两个高值区和两个低值区,两个高值区分别位于南段的映秀-虹口一带和位于中北段的擂鼓北川县城邓家坝一带;两个低值区分别位于中南段的白水河茶坪一带和北段的北川黄家坝至平武石坎子一带,两个高值区分别与小鱼洞断层和擂鼓断层相关。根据保存于破裂面上的擦痕,可将该地震破裂过程划分为两个阶段,早期为逆冲作用,晚期为斜向走滑作用,其与地壳增厚构造模式和侧向挤出摸式在青藏高原东缘的推论具有不吻合性。鉴于龙门山的表层运动速率与深部构造运动速率具有不一致性,初步探讨了龙门山地区的地表过程与下地壳流之间的地质动力模型,认为下地壳物质在龙门山近垂向挤出和垂向运动,从而造成导致龙门山向东的逆冲运动、龙门山构造带抬升和汶川特大地震。在此基础上,根据汶川地震所引发的地质灾害,对地震灾后重建提出了的几点建议。  相似文献   

8.
The May 12, 2008, Mw 7.9 Wenchuan earthquake was induced by failure of two of the major faults of the Longmen Shan thrust fault zone along the eastern margin of Tibet Plateau. Our study focused on trenches across the Yingxiu–Bichuan fault, the central fault in the Longmen Shan belt that has a coseismic surface break of more than 200 km long. Trenching excavation across the 2008 earthquake rupture on three representative sites reveals the styles and amounts of the deformation and paleoseismicity along the Longmen Shan fault. Styles of coseismic deformation along the 2008 earthquake rupture at these three sites represent three models of deformation along a thrust fault. Two of the three trench exposures reveal one pre-2008 earthquake event, which is coincident with the pre-existing scarps. Based on the observation of exposed stratigraphy and structures in the trenches and the geomorphic expressions on ground surface, we interpret the 2008 earthquake as a characteristic earthquake along this fault. The interval of reoccurrence of large earthquake events on the Central Longmen Shan fault (the Yingxiu–Beichuan fault) can be inferred to be about 11,000 years according to 14C and OSL dating. The amounts of the vertical displacement and shortening across the surface rupture during the 2008 earthquake are determined to be 1.0–2.8 m and 0.15–1.32 m, respectively. The shortening rate and uplift rate are then estimated to be 0.09–0.12 mm/yr and 0.18–0.2 mm/yr, respectively. It is indicated that the deformation is absorbed mainly not by shortening, but by uplift along the rupture during the 2008 earthquake.  相似文献   

9.
樊春  王二七  王刚  王世锋 《地质科学》2008,43(3):417-433
龙门山断裂带位于青藏高原东缘,构成了青藏高原和四川盆地的重要构造边界。近年来的研究表明:在新生代晚期,除了存在逆冲推覆之外,龙门山的中段和南段还发生了明显的右行走滑活动。对龙门山北段的青川断裂进行的系统研究发现:断裂具有明显的右行走滑特征,沿断裂发育大量不同规模的水系位错,其中嘉陵江水系位错规模最大,据此可确定青川断裂的最大位移量为17km。进一步的野外工作证实断裂的走滑位移在尾端发生构造变换,位于断裂南西端的轿子顶穹隆是叠加构造,吸收了青川断裂的部分位移量;位于断裂北东端的汉中盆地则是处于伸展应力环境下的断陷盆地,吸收了其大部分位移量。  相似文献   

10.
王焕  李海兵  乔秀夫  司家亮  何祥丽 《岩石学报》2017,33(12):3973-3988
强地震是断裂活动的表现形式,可以诱发地表沉积层序顶部未固结的软沉积物发生变形,形成新的变形层(即震积岩***)。因此,在连续沉积剖面中赋存的多层震积岩应是断裂活动的直接证据。川西前陆盆地中的软沉积物变形记载了龙门山断裂带的活动信息,对认识龙门山造山带演化历史具有重要意义。本文通过"汶川地震断裂带科学钻探"一号孔(WFSD-1)和三号孔(WFSD-3)连续岩心剖面的岩性分析和构造研究,识别出11段不同深度的液化角砾岩层,它们是地震触发成因的软沉积物变形岩层。11个液化角砾岩段厚度从~20m至102m不等,分布在晚三叠世须家河组二-五段。这些液化角砾岩层记录了龙门山前陆盆地形成过程中晚三叠世断裂活动特征及趋势。这些厚度不等的震积岩粗略指示约2~20万年的地震活动长周期(地震幕),以及约4至70万年的间震期(地震幕的间隔时间),反映了龙门山断裂早期脉动式(幕式)活动特征。从不同段液化角砾岩层分布间隔规律来看,地震活跃期间隔(即间震期)越来越短,显示龙门山造山带断裂活动越来越强的趋势。结合前人地表软沉积物变形研究,我们认为龙门山造山带在晚三叠世经历了多期次的正断-逆冲活动的造山作用(至少经历14个地震活跃期),形成龙门山雏形及前陆盆地。  相似文献   

11.
四川龙门山地区反转构造样式分析及其成因机制探讨   总被引:3,自引:1,他引:2  
反转构造是当今构造地质学研究的新兴热点领域,本文尝试以反转构造和断层相关褶皱理论来探讨龙门山褶皱冲断带及川西前陆盆地中的反转构造样式及其成因。著者在综合前人研究成果的基础上,通过野外地质调查,室内构造分析与建模系统研究了龙门山地区典型的反转构造样式,讨论了龙门山带的反转性质,主干断裂的成因以及反转动力学机制。研究表明,龙门山的发育机制为一斜向正反转过程,区内发育有反转断层转折褶皱、被动陆缘型反转滑脱褶皱、反转断层传播褶皱以及受古生代裂谷控制的反转构造等反转构造类型;反转时期主要为印支期,本区在印支运动之前同时属被动陆缘和裂谷的构造背景;进入印支期后,受扬子陆块、华北陆块、羌塘陆块之间相互碰撞的影响而造山。该过程在本区不同地段表现存在差异,这种差异受控于前期的构造格局以及后期不同方向挤压应力的叠加。四川前陆盆地的发育和该过程有密切的联系,盆地内部具有裂谷构造反转的证据。  相似文献   

12.
5.12汶川地震引发了大量的滑坡灾害,本文以汶川地震极重灾区涉及的四川12县市为研究区域。通过详细的现场调查研究,对强震条件下的典型高速滑坡的空间分布特征进行了综合分析。从区域上看,高速滑坡明显呈带状沿龙门山断裂带展布,并主要受北川映秀断裂控制。此外,本文还对研究区域内典型高速滑坡的滑程、剪出口高程、滑坡前后缘高差等几何要素的空间分布规律做了分析研究。  相似文献   

13.
Shoubiao Zhu 《Natural Hazards》2013,69(2):1261-1279
The sudden and unexpected Wenchuan earthquake (Ms = 8.0) occurred on the Longmen Shan Fault, causing a large number of casualties and huge property loss. Almost no definite precursors were reported prior to this event by Chinese scientists, who made a first successful prediction of the 1975 Haicheng earthquake (M = 7.3) in China. Does the unsuccessful prediction of the Wenchuan earthquake mean earthquake prediction is inherently impossible? In order to answer this question, the paper simulated inter- and co-seismic deformation, and recurrence of strong earthquakes associated with the Longmen Shan listric thrust fault by means of viscoelastic finite element method. The modeling results show that the computed interseismic strain accumulation in the lower crust beneath the Eastern Tibet is much faster than that in the other regions. In particular, the elastic strain energy density rate accumulates very rapid in and around the Longmen Shan fault in the depth above ~25 km that may explain why the great Wenchuan earthquake occurs in the region of such a slow surface deformation rate. The modeled coseismic displacements around the fault are consistent with surface rupture, aftershock distribution, and GPS measurement. Also, the model displays the slip history on the Longmen Shan fault, implying that the average earthquake recurrence interval on the Longmen Shan fault is very long, 3,300 years, which is in good agreement with the observed by paleoseismological investigations and estimates by other methods. Moreover, the model results indicate that the future earthquake could be evaluated based on numerical computation, rather than on precursors or on statistics. Numerical earthquake prediction (NEP) seems to be a promising avenue to a successful prediction, which will play an important part in natural hazard mitigation. NEP is difficult but possible, which needs well supporting.  相似文献   

14.
The 12 May 2008 Ms 8.0 Wenchuan earthquake, China, was one of largest continental thrusting events worldwide. Based on interpretations of post-earthquake high-resolution remote sensing images and field surveys, we investigated the geometry, geomorphology, and kinematics of co-seismic surface ruptures, as well as seismic and geologic hazards along the Longmen Shan fold-and-thrust belt. Our results indicate that the Wenchuan earthquake occurred along the NE–SW-trending Yingxiu–Beichuan and Guanxian–Anxian faults in the Longmen Shan fold-and-thrust belt. The main surface rupture zones along the Yingxiu–Beichuan and Guanxian–Anxian fault zones are approximately 235 and 72 km in length, respectively. These sub-parallel ruptures may merge at depth. The Yingxiu–Donghekou surface rupture zone can be divided into four segments separated by discontinuities that appear as step-overs or bends in map view. Surface deformation is characterized by oblique reverse faulting with a maximum vertical displacement of approximately 10 m in areas around Beichuan County. Earthquake-related disasters (e.g., landslides) are linearly distributed along the surface rupture zones and associated river valleys.The Wenchuan earthquake provides new insights into the nature of mountain building within the Longmen Shan, eastern Tibetan Plateau. The total crustal shortening accommodated by this great earthquake was as much as 8.5 m, with a maximum vertical uplift of approximately 10 m. The present results suggest that ongoing mountain building of the Longmen Shan is driven mainly by crustal shortening and uplift related to repeated large seismic events such as the 2008 Wenchuan earthquake. Furthermore, rapid erosion within the Longmen Shan fold-and-thrust belt occurs along deep valleys and rupture zones following the occurrence of large-scale landslides triggered by earthquakes. Consequently, we suggest that crustal shortening related to repeated great seismic events, together with isostatic rebound induced by rapid erosion-related unloading, is a key component of the geodynamics that drive ongoing mountain building on the eastern Tibetan Plateau.  相似文献   

15.
The Longmen Shan region includes, from west to east, the northeastern part of the Tibetan Plateau, the Sichuan Basin, and the eastern part of the eastern Sichuan fold-and-thrust belt. In the northeast, it merges with the Micang Shan, a part of the Qinling Mountains. The Longmen Shan region can be divided into two major tectonic elements: (1) an autochthon/parautochthon, which underlies the easternmost part of the Tibetan Plateau, the Sichuan Basin, and the eastern Sichuan fold-and-thrust belt; and (2) a complex allochthon, which underlies the eastern part of the Tibetan Plateau. The allochthon was emplaced toward the southeast during Late Triassic time, and it and the western part of the autochthon/parautochthon were modified by Cenozoic deformation.

The autochthon/parautochthon was formed from the western part of the Yangtze platform and consists of a Proterozoic basement covered by a thin, incomplete succession of Late Proterozoic to Middle Triassic shallow-marine and nonmarine sedimentary rocks interrupted by Permian extension and basic magmatism in the southwest. The platform is bounded by continental margins that formed in Silurian time to the west and in Late Proterozoic time to the north. Within the southwestern part of the platform is the narrow N-trending Kungdian high, a paleogeographic unit that was positive during part of Paleozoic time and whose crest is characterized by nonmarine Upper Triassic rocks unconformably overlying Proterozoic basement.

In the western part of the Longmen Shan region, the allochthon is composed mainly of a very thick succession of strongly folded Middle and Upper Triassic Songpan Ganzi flysch. Along the eastern side and at the base of the allochthon, pre-Upper Triassic rocks crop out, forming the only exposures of the western margin of the Yangtze platform. Here, Upper Proterozoic to Ordovician, mainly shallow-marine rocks unconformably overlie Yangtze-type Proterozic basement rocks, but in Silurian time a thick section of fine-grained clastic and carbonate rocks were deposited, marking the initial subsidence of the western Yangtze platform and formation of a continental margin. Similar deep-water rocks were deposited throughout Devonian to Middle Triassic time, when Songpan Ganzi flysch deposition began. Permian conglomerate and basic volcanic rocks in the southeastern part of the allochthon indicate a second period of extension along the continental margin. Evidence suggests that the deep-water region along and west of the Yangtze continental margin was underlain mostly by thin continental crust, but its westernmost part may have contained areas underlain by oceanic crust. In the northern part of the Longmen Shan allochthon, thick Devonian to Upper Triassic shallow-water deposits of the Xue Shan platform are flanked by deep-marine rocks and the platform is interpreted to be a fragment of the Qinling continental margin transported westward during early Mesozoic transpressive tectonism.

In the Longmen Shan region, the allochthon, carrying the western part of the Yangtze continental margin and Songpan Ganzi flysch, was emplaced to the southeast above rocks of the Yangtze platform autochthon. The eastern margin of the allochthon in the northern Longmen Shan is unconformably overlapped by both Lower and Middle Jurassic strata that are continuous with rocks of the autochthon. Folded rocks of the allochthon are unconformably overlapped by Lower and Middle Jurassic rocks in rare outcrops in the northern part of the region. They also are extensively intruded by a poorly dated, generally undeformed belt, of plutons whose ages (mostly K/Ar ages) range from Late Triassic to early Cenozoic, but most of the reliable ages are early Mesozoic. All evidence indicates that the major deformation within the allochthon is Late Triassic/Early Jurassic in age (Indosinian). The eastern front of the allochthon trends southwest across the present mountain front, so it lies along the mountain front in the northeast, but is located well to the west of the present mountain front on the south.

The Late Triassic deformation is characterized by upright to overturned folded and refolded Triassic flysch, with generally NW-trending axial traces in the western part of the region. Folds and thrust faults curve to the north when traced to the east, so that along the eastern front of the allochthon structures trend northeast, involve pre-Triassic rocks, and parallel the eastern boundary of the allochthon. The curvature of structural trends is interpreted as forming part of a left-lateral transpressive boundary developed during emplacement of the allochthon. Regionally, the Longmen Shan lies along a NE-trending transpressive margin of the Yangtze platform within a broad zone of generally N-S shortening. North of the Longmen Shan region, northward subduction led to collision of the South and North China continental fragments along the Qinling Mountains, but northwest of the Longmen Shan region, subduction led to shortening within the Songpan Ganzi flysch basin, forming a detached fold-and-thrust belt. South of the Longmen Shan region, the flysch basin is bounded by the Shaluli Shan/Chola Shan arc—an originally Sfacing arc that reversed polarity in Late Triassic time, leading to shortening along the southern margin of the Songpan Ganzi flysch belt. Shortening within the flysch belt was oblique to the Yangtze continental margin such that the allochthon in the Longmen Shan region was emplaced within a left-lateral transpressive environment. Possible clockwise rotation of the Yangtze platform (part of the South China continental fragment) also may have contributed to left-lateral transpression with SE-directed shortening. During left-lateral transpression, the Xue Shan platform was displaced southwestward from the Qinling orogen and incorporated into the Longmen Shan allochthon. Westward movement of the platform caused complex refolding in the northern part of the Longmen Shan region.

Emplacement of the allochthon flexurally loaded the western part of the Yangtze platform autochthon, forming a Late Triassic foredeep. Foredeep deposition, often involving thick conglomerate units derived from the west, continued from Middle Jurassic into Cretaceous time, although evidence for deformation of this age in the allochthon is generally lacking.

Folding in the eastern Sichuan fold-and-thrust belt along the eastern side of the Sichuan Basin can be dated as Late Jurassic or Early Cretaceous in age, but only in areas 100 km east of the westernmost folds. Folding and thrusting was related to convergent activity far to the east along the eastern margin of South China. The westernmost folds trend southwest and merge to the south with folds and locally form refolded folds that involve Upper Cretaceous and lower Cenozoic rocks. The boundary between Cenozoic and late Mesozoic folding on the eastern and southern margins of the Sichuan Basin remains poorly determined.

The present mountainous eastern margin of the Tibetan Plateau in the Longmen Shan region is a consequence of Cenozoic deformation. It rises within 100 km from 500–600 m in the Sichuan Basin to peaks in the west reaching 5500 m and 7500 m in the north and south, respectively. West of these high peaks is the eastern part of the Tibetan Plateau, an area of low relief at an elevations of about 4000 m.

Cenozoic deformation can be demonstrated in the autochthon of the southern Longmen Shan, where the stratigraphic sequence is without an angular unconformity from Paleozoic to Eocene or Oligocene time. During Cenozoic deformation, the western part of the Yangtze platform (part of the autochthon for Late Triassic deformation) was deformed into a N- to NE-trending foldandthrust belt. In its eastern part the fold-thrust belt is detached near the base of the platform succession and affects rocks within and along the western and southern margin of the Sichuan Basin, but to the west and south the detachment is within Proterozoic basement rocks. The westernmost structures of the fold-thrust belt form a belt of exposed basement massifs. During the middle and later part of the Cenozoic deformation, strike-slip faulting became important; the fold-thrust belt became partly right-lateral transpressive in the central and northeastern Longmen Shan. The southern part of the fold-thrust belt has a more complex evolution. Early Nto NE-trending folds and thrust faults are deformed by NW-trending basementinvolved folds and thrust faults that intersect with the NE-trending right-lateral strike-slip faults. Youngest structures in this southern area are dominated by left-lateral transpression related to movement on the Xianshuihe fault system.

The extent of Cenozoic deformation within the area underlain by the early Mesozoic allochthon remains unknown, because of the absence of rocks of the appropriate age to date Cenozoic deformation. Klippen of the allochthon were emplaced above the Cenozoic fold-andthrust belt in the central part of the eastern Longmen Shan, indicating that the allochthon was at least partly reactivated during Cenozoic time. Only in the Min Shan in the northern part of the allochthon is Cenozoic deformation demonstrated along two active zones of E-W shortening and associated left-slip. These structures trend obliquely across early Mesozoic structures and are probably related to shortening transferred from a major zone of active left-slip faulting that trends through the western Qinling Mountains. Active deformation is along the left-slip transpressive NW-trending Xianshuihe fault zone in the south, right-slip transpression along several major NE-trending faults in the central and northeastern Longmen Shan, and E-W shortening with minor left-slip movement along the Min Jiang and Huya fault zones in the north.

Our estimates of Cenozoic shortening along the eastern margin of the Tibetan Plateau appear to be inadequate to account for the thick crust and high elevation of the plateau. We suggest here that the thick crust and high elevation is caused by lateral flow of the middle and lower crust eastward from the central part of the plateau and only minor crustal shortening in the upper crust. Upper crustal structure is largely controlled in the Longmen Shan region by older crustal anisotropics; thus shortening and eastward movement of upper crustal material is characterized by irregular deformation localized along older structural boundaries.  相似文献   

16.
四川汶川5.12大地震同震滑动断层泥的发现及意义   总被引:4,自引:0,他引:4  
付碧宏  王萍  孔屏  郑国东  王刚  时丕龙 《岩石学报》2008,24(10):2237-2243
2008年汶川8.0级地震沿龙门山断裂带内的映秀—北川断裂和灌县—安县断裂产生了近300 km的同震地表破裂带。震后地质科学考察发现地表变形以逆冲为主,并伴有右旋走滑。地震地表破裂带大多沿古生代碳质泥岩、页岩和三叠系煤系地层内的滑动面出露地表,这些软弱地层为地震破裂带冲到地表提供了超低摩擦滑动带。我们发现在同震垂直和水平位错达6m左右的地表破裂带,地震的同震滑动发生在厚度约0.5~2cm 的狭窄滑动带内,以发育新鲜的灰色断层泥为特征,这些断层泥是地震断层快速滑动过程中岩石—流体相互作用的结果。  相似文献   

17.
Regional topographic and geomorphic analyses reveal first-order topographic variations from high-elevation and low-relief interior plateau to the relatively low elevation, high-relief marginal plateau in eastern Tibet. Field investigation and slip distribution modeling after 2008 Ms. 8.0 Wenchuan earthquake indicate significant along-strike variability during the rupture that appears to correspond to different segments of a single fault system. This observation motivates a more careful examination of topographic features along the Longmen Shan to explore the connection between the seismic cycle and mountain building. Analyses of topographic relief, hillslope gradient, and channel gradient indices reveal significant differences in the character of topography along the Longmen Shan mountain front. The central portion of the range exhibits the highest slope, relief and steepness of river longitudinal profiles. Whereas the southern Longmen Shan exhibits only subtle differences associated with slightly lower hillslope and channel gradients, the northern Longmen Shan is characterized by topography of significantly lower relief, lessened hillslope gradients, and low-gradient channels. We consider two explanations for these topographic differences; first, that the differences in topographic development along the Longmen Shan reflect different stages of an evolutionary history. Alternatively, these may reflect differences in the rate of differential rock uplift relative to the stable Sichuan Basin.  相似文献   

18.
中生代和新生代多期次的新老构造活动叠加造成了龙门山现今地震频发和复杂的构造格局。沿2008年汶川地震断裂带出露有多种断裂岩组合,为直接开展断裂带热年代学研究提供了重要素材。本研究首次尝试针对映秀-北川断裂带出露的假玄武玻璃开展^(40)Ar/^(39)Ar年龄的多重扩散域(MDD)模拟研究。与钾长石相似的阶梯状上升的年龄谱图表明假玄武玻璃同样具有开展MDD模拟的应用潜力。模拟结果显示,映秀-北川断裂带分别经历了~230Ma和~180Ma起始的构造热事件,对应青藏高原东缘中-晚三叠世统一的挤压造山运动和造山后的伸展垮塌。断裂带内新获得的断层角砾岩磷灰石裂变径迹(AFT)结果与上、下盘已有结果共同组成了较为完整的年龄-高程剖面,揭示出年龄拐点出现在~13Ma,位于~1100m的海拔高度,与热历史反演结果一致,对应映秀-北川断裂带的出露位置,直接证实断裂活动在中中新世以来龙门山的隆升过程中发挥了重要作用。进入中中新世以来,龙门山断裂带的快速剥蚀和地温梯度的显著降低很可能暗示了构造活动机制上的重要转变。  相似文献   

19.
何祥丽  李海兵  王焕  张蕾  孙知明  司家亮 《岩石学报》2020,36(10):3209-3224
断裂蠕滑可以连续释放部分构造应力,但仍可能造成重大的地质灾害,甚至具有发生大地震的可能性。断层岩是断裂作用中的直接产物,其物质组成和内部构造可为揭示断裂带滑移机制提供关键信息。2008年Mw 7.9汶川地震中破裂的龙门山灌县-安县断裂带具有蠕滑性质,是探究大陆内部蠕滑断裂滑移机制的最佳案例。本文以龙门山灌县-安县断裂带地表探槽和深部钻孔的断层岩为研究对象,通过碎屑统计、X射线粉末衍射矿物分析、光学显微镜和扫描电镜观测,结果显示该断裂带断层泥碎屑含量和颗粒大小均小于断层角砾岩,其粘土矿物含量高达50%以上,且断层岩中普遍发育粘土-碎屑组构以及拖尾构造、似S-C组构等多种压溶构造。综合分析发现压溶作用、低摩擦系数物质以及颗粒滑移对灌县-安县断裂带的蠕滑变形都发挥着重要作用,并且三者相辅相成,因此认为灌县-安县断裂带的蠕滑过程主要是压溶作用和摩擦-颗粒滑移机制共同作用,该认识可更好地了解地震周期并为区域防震减灾提供科学依据。  相似文献   

20.
张蕾  李海兵  孙知明  曹勇 《地球学报》2019,40(1):157-172
断裂岩的岩石磁学研究可以揭示地震断裂作用的物理和化学环境,对于探讨地震断裂作用机制具有重要作用。本文在断裂岩岩石磁学最新文献的基础上,结合笔者及所在研究团队在龙门山断裂带获得的研究成果,综述了断裂岩的岩石磁学研究进展。大量研究发现断层泥和假玄武玻璃通常具有磁化率值或剩磁强度异常特征。顺磁性矿物在摩擦热或流体作用下形成新的铁磁性矿物是断层泥和假玄武玻璃高磁化率值或高剩磁强度的主要原因;地震断裂摩擦熔融作用中形成的单质铁是假玄武玻璃中高磁化率值或高剩磁强度异常的另一个重要原因。蠕滑断裂和出露于浅地表的断裂带中可见一些具有低磁化率值异常的断层泥,原因可能是流体作用或断裂带未经历高温摩擦热。断裂岩的岩石磁学研究为地震断裂带的应力应变、形成温度、摩擦热效应、流体作用、形成深度和氧化还原特征等提供了重要信息,可用于分析地震断裂的孕震和发震环境。综合岩石磁学测试和微米至纳米尺度的超显微学研究,并辅助地震断裂岩的摩擦实验、高温热模拟实验等研究可以更好地获得断裂岩的岩石磁学信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号