首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Granitoids and metamorphic rocks of the Baidarik basement block of the Dzabkhan microcontinent are studied in terms of geology, geochronology (U-Pb dating of zircon microfractions and individual grains) and Nd isotopic-geochemical systematics. As is established, the formation history of metamorphic belt (disthene-sillimanite facies) in junction zone of the Baidarik block and Bayankhongor zone of the Late Riphean (~665 Ma) ophiolite association characterizes development of the Vendian (~560–570 Ma) active continental margin. The high-P metamorphic rocks of that time span evidence formation of structures with the Earth’s crust of considerable thickness. In Central Asia, events of the Vendian low-gradient metamorphism are established also in the Tuva-Mongolian massif, Kan block of the East Sayan Mountains, and South Chuya inlier of the Caledonides in the Altai Mountains. Based on these data, it is possible to distinguish the Late Baikalian stage in development of the Early Caledonian superterrane of Central Asia, which antedated the subsequent evolution of this structure during the Late Cambrian-Ordovician. The high-gradient metamorphism that affected most intensively the southeastern part of the Baidarik block can be correlated with the Early Paleozoic (525–540 Ma) evolution of active continental margin and associated development of the Vendian oceanic basins and island arcs of the Ozernaya zone.  相似文献   

2.
The Early Caledonian folded area in Central Asia (Early Caledonian superterrane) hosts micro-continent fragments with an Early and Late Precambrian crystalline basement, the largest of them being the Dzabkhan and Tuva-Mongolian fragments. Their junction zone hosts exposures of crystalline rocks that were previously thought to be part of the Early Precambrian Dzabkhan microcontinent. The Bayannur zone in the southern part of the Songino block hosts the Baynnur gneiss-migmatite and Kholbonur metavolcanic-terrigenous metamorphic complexes. The former is believed to be the Early Proterozoic crystalline basement, and the latter is thought to unconformably overly the Late Riphean cover complex of the Songino block. Various rocks of the tectono-stratigraphic complexes in the Bayannur zone were studied geologically and geochronologically (by the U-Pb technique of zircon). Regional metamorphism and folding in the Bayannur Complex were dated at 802 ± 6 Ma. The Nd model ages lie within the range of 1.5–2.0 Ga and thus preclude the correlation of these rocks with those in the Archean and Early Proterozoic basement of the Dzabkhan microcontinent. The upper age limit for folding and metamorphism in the Bayannur zone is marked by postkinematic granites dated at 790 ± 3 Ma, and the lower limit of the volcano-sedimentary complex is determined by the Nd model age of the sandstone (1.3 Ga). The upper age limit of the volcano-plutonic rocks in this zone is set by the gabbroids and anorthosites: 783 ± 2 and 784 ± 3 Ma, respectively. The complex of island-arc granitoids in the Bayannur zone is dated at 859 ± 3 Ma. The age constraints make it possible to correlate crystalline rocks in the Bayannur Complex of the Sangino block and the Dzhargalant Complex in the Tarbagatai block. Currently available data testify that the Precambrian Khangai group of blocks in the Early Caledonian Central Asian superterrane includes continental crustal blocks related to the processes of Early Precambrian, Late Riphean, and Vendian tectonism.  相似文献   

3.
Fragments of continental blocks or microcontinents are represented in the Early Caledonian orogenic area of Central Asia (or Early Caledonian superterrane); the largest of these are the Dzabkhan and Tuva-Mongolian microcontinents, with Early and Late Precambrian crystalline basements, respectively. In the linkage zone of these microcontinents, crystalline rocks of the Tarbagatai and Songino blocks that are considered as units of the Early Precambrian ensialic basement of the superterrane are also known. They are composed of strongly metamorphosed rocks formed during the Early Baikalian orogeny about 790 to 820 Ma. U-Pb zircon dating and Nd isotope studies revealed, within the northwestern Dzabkhan microcontinent, the Dzabkhan-Mandal zone of crystalline rocks associated with the Riphean crust-forming process. The age of the gneiss substrate of this zone is estimated as 1.3 to 0.86 Ga. An early episode of metamorphism is dated at about 856 ± 2 Ma. The data available so far indicate a heterogeneous structure of the Dzabkhan microcontinent basement represented by Early Precambrian and Early and Late Baikalian crystalline formations.  相似文献   

4.
The Baidarik block of the Dzavhan microcontinent (Central Asian Fold Belt) includes the Upper Archean Baidaragin gray-gneiss complex. Among gray plagiogneisses, there are metabasic bodies, which are probably relics of early volcanics. By composition, the metabasites are divided into three petrochemical groups, whose protoliths were tholeiitic basalts, Al-undepleted and Al-depleted basaltic komatiites. Only a few samples are similar in REE composition to these protoliths. We have found metabasites with crustal-contamination features. The unusual geochemical properties of the metabasites (LREE enrichment and Nb, Zr, and Ti depletion) are related to their metasomatism.  相似文献   

5.
The Early Caledonian Central Asian Orogenic Belt hosts fragments of continental blocks with Early and Late Precambrian crystalline basement. One of the structures with an Early Precambrian basement was thought to be the Dzabkhan microcontinent, which was viewed as an Early Precambrian “cratonal terrane”. The first geochronologic data suggest that the basement of the Dzabkhan microcontinent includes a zone of crystalline rocks related to Late Riphean tectonism. Geological, geochronological (U-Pb zircon dates), and Nd isotopic-geochemical data were later obtained on the northwestern part of the Dzabkhan microcontinent. The territory hosts the most diverse metamorphic complexes thought to be typical of the Early Precambrian basement. The complexes were determined to comprise the Dzabkhan-Mandal and Urgamal zones of high-grade metamorphic rocks. Gabbrodiorites related to the early metamorphic episode and dated at 860 ± 3 Ma were found in the Dzabkhan-Mandal zone, and the gneiss-granites marking the termination of this episode were dated at 856 ± 2 Ma. The granitoids of the Dzabkhan batholith, whose emplacement was coeval with the termination of the late high-grade metamorphic episode in rocks of both zones, have an age of 786 ± 6 Ma. Similar age values were determined for the granitoids cutting across the Late Precambrian rocks of the Songino and Tarbagatai blocks, which mark the stage when the mature Late Riphean continental crust was formed. The Late Riphean magmatic and metamorphic rocks of the Dzabkhan microcontinent were found out to have Nd model ages mostly within the range of 1.1–1.4 Ga at ?Nd(T) from +1.9 to +5.5. The Nd model age of the metaterrigenous rocks is 2.2?1.3 Ga at ?Nd(T) from ?7.2 to +3.1. The results of our studies provide evidence of convergence processes, which resulted in the Late Riphean (880?780 Ma) continental crust in Central Asia. Simultaneously with these processes, divergence processes that were responsible for the breakup of Rodinia occurred in the structures of the ancient cratons. It is reasonable to suggest that divergence processes within ancient continental blocks and Rodinia shelf were counterbalanced by the development of the Late Riphean continental crust in the convergence zones of its surrounding within established interval.  相似文献   

6.
The oldest crystalline complexes of the Early Caledonian superterrane of Central Asia were formed in the Early Precambrian. They are exposed in the basement of microcontinents, which represent old cratonic fragments. Among the latters are the crystalline complexes of the Tarbagatai block previously ascribed to the Dzabkhan microcontinent. It was shown that the crystalline complexes of the Tarbagatai block have a heterogeneous structure, consisting of the Early Precambrian and later Riphean lithotectonic complexes. Structurally, the Early Precambrian complexes are made up of tectonic sheets of gneisses, migmatites, and gneiss granites of the Ider Complex that are cut by gabbroanorthosite massif. The Riphean Jargalant Complex comprises alternating hornblende crystalline schists and biotite (sometimes sillimanite-bearing) gneisses with marble horizons. The upper age boundary of the Riphean Complex is determined by the subautochthonous granitoids with age about 810 Ma. The presence of the Riphean high-grade rocks indicates that structures with newly formed crust were formed in the paleooceanic framing of the Early Precambrian blocks of the Rodinia supercontinent by the Mid-Late Riphean. Divergence that began at that time within old Rodinian cratons and caused rifting and subsequent break-up of the supercontinent was presumably changed by convergence in the paleooceanic area.  相似文献   

7.
U-Pb geochronological results confirm the Mesozoic age (124 ± 1 Ma) of the Beket granitoid complex, previously interpreted as being one of the markers amongst the Early Proterozoic magmatic complexes within the Amur superterrane (microcontinent) of the Central Asian Fold Belt. This implies that the structural and metamorphic amphibolite facies overprints documented either in the Beket granitoids or Gonzha host rocks are evidently Mesozoic rather than Early Proterozoic in age.  相似文献   

8.
The formation stages of high-grade metamorphic complexes and the related granitoids of the Dzabkhan terrane basement are considered. The age data (U–Pb method, TIMS) of zircons from the trondhjemite block of the eastern part of the Dzabkhan terrane, which is directly overlain by the dolomite sequence of the Tsagaan Oloom Formation, are given. Trondhjemites yield the U–Pb zircon age of 862 ± 3 Ma. In their structural position, they are assigned to typical postmetamorphic formations that determine the formation and cratonization of rocks of the host block. The geochronological study of trondhjemites gives grounds to distinguish fragments of the continental crust in the Dzabkhan terrane basement, the formation of which occurred at different periods of time: ~860 and ~790 Ma. Geological–geochronological and Sm?Nd isotope–geochemical studies indicate that the Dzabkhan terrane basement is not a single block of the Early Precambrian continental crust, but a composite terrane, comprising Neoproterozoic ensialic and island-arc structural and compositional complexes. Correlation of Sr isotopic characteristics with the 87Sr/86Sr variation curve in the Neoproterozoic and Cambrian seawater shows that carbonate deposits accumulated at the eastern margin of the Dzabkhan terrane near the end of the Neoproterozoic, 700–550 Ma, and in the central part of the terrane in the Early Cambrian, 540–530 Ma.  相似文献   

9.
Two types of Precambrian high-grade metamorphism, Inner Mongolia, China   总被引:20,自引:0,他引:20  
Abstract Archaean and Proterozoic granulite facies complexes of Inner Mongolia differ in lithological association, tectonic style, mineral assemblage and metamorphic P–T path. A nearly isobaric cooling path for Archaean high-grade metamorphic rocks is suggested by reaction textures and geothermobarometry. Early Proterozoic metamorphic rocks show nearly isothermal decompression. Archaean metamorphism may have been caused by magmatic accretion, whereas early Proterozoic metamorphism suggests a major continental thickening event followed by exhumation.  相似文献   

10.
赞比亚谦比西铜矿位于新元古代卢菲利安弧构造带内。矿体呈似层状分布于新元古代罗安组的砂页岩中。罗安组地层不整合于古元古代穆瓦系砂砾岩之上,穆瓦系砂砾岩不整合于下部谦比西花岗岩基底之上。锆石U-Pb测年结果表明谦比西花岗岩年龄为(1984±6)Ma~(1986±6)Ma;穆瓦系年龄上限为(1932±8)Ma。谦比西花岗岩岩石地球化学、稀土元素与球粒陨石配分特征均表现为S型花岗岩的特征。区域地质资料表明,可能由于古元古代班韦卢地块与坦桑尼亚太古宙克拉通碰撞作用诱发了卢菲利安古元古代花岗岩基底的形成;太古宙刚果克拉通于早元古代(2100~1800 Ma)期间活化,并形成一稳定块体。  相似文献   

11.
再论冀北古缝合带的证据   总被引:4,自引:0,他引:4  
近南北走向的冀北太古宙麻粒岩相古陆核北侧受到近东西走向的古元古代造山带的交切。在陆缘沉积增生带内发现大量残存的古洋壳残片,包括蛇纹石化方辉橄榄岩、且鬣刺结构的苦橄岩、透闪石岩、橄长岩、异剥钙榴岩、细碧岩、退变榴辉岩、基性枕状熔岩和斜长花岗岩等,与陆缘沉积岩一起构成古蛇绿岩混杂带。推断该蛇绿岩混杂带从古元古代开始直到新元古代末有逐步向北后退发育的特点。  相似文献   

12.
喜马拉雅地体的泛非-早古生代造山事件年龄记录   总被引:35,自引:24,他引:35  
喜马拉雅地体是55±10Ma以来印度陆块与欧亚大陆碰撞而形成的增生地体,位于其中的高喜马拉雅与特提斯-喜马拉雅构造单元的变质基底主要由角闪岩相的富铝变质沉积岩和花岗质片麻岩组成。对两类岩石中锆石的SHRIMPU-Pb测年结果表明,除了记录了20Ma以来的构造事件年龄外,主要保存了529-457Ma的变形和变质事件记录,另外还保存了更早期(>835Ma)的年龄信息。根据20Ma以来崛起的喜马拉雅挤出岩片中包含早期强烈褶皱和向南的斜向逆冲构造以及伴随的角闪岩相变质作用记录,结合岩石测年所获得的大量泛非-早古生代年龄和奥陶纪底砾岩的发现,说明曾位于南半球印度陆块北部的变质基底岩石经历过泛非-早古生代造山事件,同位素年代学数据表明:(1)原始喜马拉雅山是泛非-早古生代造山事件的产物;(2)印度陆块早-中元古代变质基底的再活化在原始喜马拉雅山形成中起重要的作用;(3)现在的喜马拉雅山是在泛非-早古生代造山事件基础上再造山的结果。  相似文献   

13.
Newly obtained data on Pb isotopic ratios in feldspars from Early Proterozoic granitoids of the Sangilen block of the Tuva-Mongolian microcontinent and Caledonian structures surrounding it, considered together with earlier data on the O and Nd isotopic systems, indicate that ancient (approximately 2 Ga) crustal material mixed in the sources of granites of the Tuva-Mongolian microcontinent with younger juvenile material. Positive ɛNd values of granitoids from the Bashkimugor and Chgargalant massifs are accounted for by processes of crustal contamination during the interaction of the melt with crustal material. Similar Nd isotopic characteristics of granitoids in the Khoromnug pluton were caused by the melting of the Late Riphean crust. In granitoids of the massifs in the Kaakhem and Eastern Tannuola zones of the surrounding Caledonian structures, the involvement of juvenile material from oceanic crust increases away from the Sangilen block. Granites in the junction zone between the Tuva-Mongolian microcontinent and surrounding structures display evidence of the presence (up to 10–20%) of an ancient crustal component, and the melting history of granitoids in the Eastern Tannuola zone is dominated by an Early Paleozoic juvenile component in combination with material similar to the Vendian ophiolites of the Agardag-Erzin zone. An increase in the δ18O value, the 206Pb/204Pb ratio, and the TNd(DM) values within a single complex (from older to younger granitoid phases) is explained by the systematic involvement of crustal material in the melting processes.  相似文献   

14.
A concept for the interpretation of the initial provenance signal in rocks of the Taratash block (in the Southern Urals) using the zircon isotope dating of the Archean and Early Proterozoic igneous and metamorphic rocks was substantiated and carried out. Based on 132 zircon-age datings with a discordance of as much as 10%, a probability-density diagram was compiled first to compare these age data with those of detrital zircons from Lower Riphean sandstones of the Ai Formation and, secondly, with the probability density of zircon ages in metamorphic rocks of the Aleksandrovsk block, which is located to the east. The similarity of the distributions was verified using the Kolmogorov–Smirnov test.  相似文献   

15.
内蒙古北部早元古代变质岩系的发现及其岩石学研究   总被引:6,自引:0,他引:6  
肖荣阁  隋德才 《现代地质》1995,9(2):142-148
笔者参加内蒙区调工作,首次于本区发现了早元古代变质岩系。该岩系由3个岩组组成,一是花敖包特正变质岩组(Pt1bh),二是昌特敖包副变质岩组(Pt1bc),三是阿木乌苏条带状混合岩组(Pt1ba)。对各岩组的岩石学、矿物学及岩石化学的研究,表明这是一套深变质岩系,近似于下地壳岩石组合。其Rb-Sr等时线测年资料与印支期花岗岩源区年龄为17~19亿a,是目前本区发现的最古老的变质岩系,它经历了大面积混合岩化和花岗岩化作用。  相似文献   

16.
The geochemical and Sm–Nd isotope characteristics of Late Precambrian and Early Cambrian sandstones previously related to the sedimentary cover of the Dzabkhan continental block are reported. It is established that the Riphean and Vendian sedimentary rocks of the Ul’zitgol’skaya and Tsaganolomskaya Formations were accumulated within the Dzabkhan continental block as a result of recycling of the terrigenous deposits formed at the expense of destruction of basement rocks and younger granite. The formation of terrigenous rocks of the Bayangol’skaya Formation after a gap in sedimentation occurred in the sedimentary basin, where only the Late Riphean formations of the juvenile crust, probably of the Dzabkhan–Mandal block were the sources, without the contribution of the ancient crustal material. The Tsaganolomskaya and Bayangol’skaya Formations were formed in different sedimentary basins and cannot be related to the same complex.  相似文献   

17.
徐民  刘永江  温泉波  高飞 《世界地质》2017,36(2):371-380
对内蒙古霍林郭勒地区出露的"宝音图群"砂岩进行了锆石LA-ICP-MS U-Pb同位素测年,样品112个分析点结果显示,具有主要峰值年龄257 Ma、283 Ma、313 Ma和少数老年龄(1 700 Ma),且257 Ma的年龄表明该地层主体的沉积下限的时代为早三叠世,原定为下元古界的"宝音图群"实为早三叠世地层。该地层物源主要来自于大石寨组火山岩、苏尼特左旗—锡林浩特—西乌旗南岩浆弧和相邻地块的变质基底,并有少量华北板块北缘物源混入,说明在早三叠世初华北板块北缘与北侧地块已经开始碰撞。  相似文献   

18.
New radiolarian ages show that the island arc-related Acoje block of the Zambales Ophiolite Complex is possibly of Late Jurassic to Early Cretaceous age.Radiometric dating of its plutonic and volcanichypabyssal rocks yielded middle Eocene ages.On the other hand,the paleontological dating of the sedimentary carapace of the transitional mid-ocean ridge-island arc affiliated Coto block of the ophiolite complex,together with isotopic age datings of its dikes and mafic cumulate rocks,also yielded Eocene ages.This offers the possibility that the Zambales Ophiolite Complex could have:(1)evolved from a Mesozoic arc(Acoje block)that split to form a Cenozoic back-arc basin(Coto block),(2)through faulting,structurally juxtaposed a Mesozoic oceanic crust with a younger Cenozoic lithospheric fragment or(3)through the interplay of slab rollback,slab break-off and,at a later time,collision with a microcontinent fragment,caused the formation of an island arc-related ophiolite block(Acoje)that migrated trench-ward resulting into the generation of a back-arc basin(Coto block)with a limited subduction signature.This Meso-Cenozoic ophiolite complex is compared with the other oceanic lithosphere fragments along the western seaboard of the Philippines in the context of their evolution in terms of their recognized environments of generation.  相似文献   

19.
华北地区长城系在中国元古宙研究中占有相当重要的地位,其底界是目前划分古、中元古界的重要界线标志。长期以来,由于在靠近长城系底部缺少可定年的岩层或地质体,其底界年龄一直难以确定。近年来笔者在北京密云地区,发现了长城系常州沟组砂岩层直接覆盖在发育有古风化壳的环斑花岗岩(脉)之上。风化壳物质的组成主要为环斑花岗岩的原地风化岩石,以及向上过渡为貌似环斑花岗岩的粗碎屑岩。已获得古风化壳环斑花岗质碎屑岩的碎屑锆石U Pb年龄值为(1 682±20)Ma (SHRIMP) 和(1 708±56)Ma (LA ICP MS)等,与相邻的密云环斑花岗岩年龄相同。初步分析表明,密云环斑花岗岩及其同期岩脉在侵位之后,曾随着区域地壳抬升暴露出地表。经过一定时期的风化和部分剥蚀,在其表面形成残积物和接近原地堆积的环斑花岗质碎屑物质。从形成时间来看,这套岩石应属于“前常州沟期(组)”。它的存在和测年结果显示,长城系常州沟组的底界年龄应小于1 682 Ma,而不是以前划定的1 800 Ma。根据环斑花岗质沉积岩碎屑锆石以及已有的上覆地层相关年龄数据的分析,我们初步提出长城系底界年龄约为1 665~1 670 Ma。  相似文献   

20.
The Early Caledonian folded area of Central Asia comprises a variety of continental crust fragments with Early to Late Precambrian crystalline basement. Crystalline rocks, which form part of the Songino block, outcrop at the junction between the Dzabkhan and Tuva-Mongolian terranes. The Bayannur zone in the southern part of the Songino block contains the Bayannur migmatite-gneiss and Kholbonur terrigenous-metavolcanic metamorphic complexes. Previous studies provide the 802 ± 6 Ma age for the regional metamorphism and folding within the Bayannur complex. On the basis of the minimum Nd model age of 1.5 Ga, gneisses from this complex cannot be regarded as Early Precambrian. Two main rock associations were distinguished in the Kholbonur complex. Mafic metavolcanics compose the dominant lithology of the first rock association, whereas the second association comprises terrigenous-volcanic and predominantly terrigenous suites. The rocks of the predominantly terrigenous suite, including mudstones, sandstones, and conglomerates, are interpreted to derive from the Late Riphean accretionary prism. The lithology and composition of metaterrigenous rocks suggest that they were possibly derived from erosion of a volcanic arc. The upper age limit of this suite is constrained by postkinematic granites (790 ± 3 Ma; U-Pb zircon), the lower age is given by plagiogranite (874 ± 3 Ma; U-Pb zircon) from comglomerate pebbles. Therefore, the timing of deposition of this terrigenous suite can be bracketed by the 874–790 Ma time interval. These ages and compositional features of the Kholbonur complex terrigenous rocks suggest that the convergence took place at around 870–880 Ma and thus it can be correlated with the divergent processes between the blocks of continental crust composing the supercontinent Rodinia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号