首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excessive heavy metal content in sandy soils poses risk to human health and the environment. The rapid expansion of urban areas makes it imperative to manage contaminated sites so that land can be reclaimed for beneficial purposes. Several methods have been proposed to control the leaching of heavy metals from contaminated soils. In this study, four techniques for mobilization and immobilization of metals in sandy soil were compared. The assessed mobilization techniques included chemical extraction using aqueous solutions of acids and chelating agents as well as biochemical extraction using sulfur-oxidizing microorganisms. The evaluated immobilization techniques included lime-cement-pozzolan stabilization and natural-zeolite stabilization. The immobilization techniques do not involve removing metals from soil and instead focus on addition of substances to the soil that alter its composition, volume, and properties. On the other hand, mobilization techniques entail the removal of metals from soil and changes in the soil properties. The findings confirmed that both mobilization and immobilization are effective in controlling the leaching of metals from sandy soils and thereby minimize the risk to the environment and human health. However, the appropriate technique for application at a given site should be chosen on a case-by-case basis, while accounting for the economic and technical feasibility, the necessary level of cleanup, and effect of residual metals on human health and the environment.  相似文献   

2.
The heavy metals at high concentration are generally toxic to the plants for their metabolism and growth; therefore, interactions among metals, rhizosphere microbes and plants have attracted attention because of the biotechnological potential of microorganisms for metal removal directly from contaminated soils or the possible transference of them to the plants. The aim of this study was to compare the relationships between the physiological in vitro characteristics of rhizobacteria isolated from plant metal accumulators and their distribution relating with the heavy metals content in contaminated soils. The results of this study showed that the heavy metals present in the rhizosphere of the plant species analyzed, decrease the microbial biomass and content of heavy metals caused a different distribution of rhizobacteria found. Gram negative rhizobacteria (90 %) and gram positive rhizobacteria (10 %) were isolated; all of them are metal-resistant rhizobacteria and 50 % of the isolated rhizobacteria possess both traits: higher indol acetic acid and siderophore producers. The inoculation with these rhizosphere microorganisms that possess metal-tolerating ability and plant growth promoting activities, can be recommended with a practical importance for both metal-contaminated environment and plant growth promotion.  相似文献   

3.
土壤修复过程中重金属形态的研究综述   总被引:4,自引:0,他引:4  
重金属污染土壤的修复是现阶段污染土壤治理中的难点之一,在土壤修复过程中对重金属的形态研究已在多个领域中开展,并且在重金属形态及其与生物有效性和毒性等研究领域取得了一定的成果。本文综述了现阶段在污染土壤修复过程中对重金属形态研究的主要领域,分析研究重金属形态的必要性,总结出土壤修复过程中重金属形态方面应当从重金属在土壤与植物中的存在形态入手,研究重金属元素在不同界面间的迁移转化规律,通过阻断重金属元素在污染源、土壤、生物之间的传递链条,以阻止重金属对生物体造成危害,从而为土壤重金属污染的治理修复提供理论基础。  相似文献   

4.
The chemical speciation of potentially toxic elements (As, Cd, Cu, Pb, and Zn) in the contaminated soils and sulfides-rich tailings sediments of an abandoned tungsten mine in Korea was evaluated by conducting modified BCR sequential extraction tests. Kinetic and static batch leaching tests were also conducted to evaluate the potential release of As and other heavy metals by acidic rain water and the leaching behaviors of these heavy metals. The major sources of the elements were As-, Zn- and Pb-bearing sulfides, Pb carbonates (i.e., cerussite), and Pb sulfates (i.e., anglesite). The biggest pollutant fraction in these soil and tailing samples consists of metals bound to the oxidizable host phase, which can be released into the environment if conditions become oxidative, and/or to residual fractions. No significant difference in total element concentrations was observed between the tailings sediments and contaminated soils. For both sample types, almost no changes occurred in the mobility of As and the other heavy metals at 7 days, but the mobility increased afterwards until the end of the tests at 30 days, regardless of the initial pH. However, the mobility was approximately 5–10 times higher at initial pH 1.0 than at initial pHs of 3.0 and 5.0. The leached amounts of all the heavy metal contents were higher from tailings sediments than from contaminated soils at pH > 3.0, but were lower at pH < 3.0 except for As. Results of this study suggest that further dissolution of heavy metals from soil and tailing samples may occur during extended rainfall, resulting in a serious threat to surface and groundwater in the mine area.  相似文献   

5.
The effects of organic matter (80% humic and 15% fulvic acid) and coexistence of heavy metals (Ni, Pb and Zn) on sorption of three polycyclic aromatic hydrocarbons (PAHs)—acenaphthene, fluorene and fluoranthene—were examined for kaolinite, 60% kaolinite?+?40% sand, and 43% kaolinite?+?42% sand?+?15% bentonite. In total 108 batch sorption tests of PAHs were conducted for three types of clay mineral mixtures in six possible combinations of soil organic matter and heavy metal contents from no heavy metals and organic matter added to maximum organic matter added with spiked heavy metals. Results showed that the existence of metals increased the sorption of PAHs onto kaolinite from 4.7% for acenaphthene to 17.9% for fluoranthene. Organic matter in a kaolinite-sand-bentonite matrix could increase PAH sorption by up to 140% for fluoranthene. In all cases, increases were greater for fluoranthene, a larger PAH molecule. Heavy metals coexisting with organic matter led to enhanced sorption of PAHs compared to clay minerals without organic matter. Synergistic effects of organic matter and heavy metals on PAH sorption increments in the mixtures studied were such that the overall sorption could be 10–41% higher than that based on summation of the separate effects of metals and organics.  相似文献   

6.
曾远  罗立强 《岩矿测试》2017,36(3):209-221
随着经济的发展,矿产资源的开采和利用程度越来越高,一方面发现有地表露头矿床的几率越来越小,另一方面其造成的重金属污染严重危害环境和人类健康。自然界中的微生物与扩散到环境中的重金属会产生相互作用,具有这种特异性的细菌既可应用于指示隐伏金属矿床,亦可应用于重金属污染生物修复。本文从特异性微生物与重金属相互作用微观机制、微生物找矿、重金属污染土壤的微生物修复三个方面,对其研究现状和进展进行了评述,重点对特异性微生物与重金属离子发生的吸附、累积与转化过程,微生物改变重金属元素分布、赋存状态和毒性作用机理,蜡样芽孢杆菌(Bacillus cereus)与金的作用机制及其在寻找隐伏金矿的应用潜力,特异性微生物通过代谢产物吸附去除土壤中重金属元素及其辅助植物修复重金属污染等方面进行了介绍和阐述。  相似文献   

7.
近年来,工业和科技的快速发展使得重金属污染土固化/稳定化的修复研究成为热点。运用微生物诱导碳酸钙沉淀(MICP)技术联合吸附材料对锌铅复合重金属污染土进行固化/稳定化的修复,通过无侧限抗压强度试验、毒性浸出试验,评价处理前后污染土的固化效果与重金属的稳定化效果,结合扫描电镜(SEM)和X射线衍射(XRD)等检测手段,揭示MICP技术处理锌铅重金属污染土的修复机制。研究结果表明,采用MICP技术对锌铅重金属污染土进行固化/稳定化之后,可以有效降低污染土中有害重金属的浸出性。当矿化时间为10d时,试样无侧限抗压强度为942.5k Pa;铅的浸出浓度为4.20mg/L,比未处理时降低了44.81%;锌的浸出浓度为4.31mg/L,比未处理时降低了46.19%,效果显著。在此基础上,添加10%的多孔硅吸附材料后,试样无侧限抗压强度可达到1 021 kPa,强度提高了8.3%;铅的浸出浓度为2.45mg/L,与未经处理时相比,降幅达到了67.81%,与单纯MICP方法处理时相比,铅浸出浓度被二次降低了41.67%;锌的浸出浓度仅为2.93 mg/L,与未经处理时相比,降幅达到了63.4%,与单纯...  相似文献   

8.
Consuming edible plants contaminated by heavy metals transferred from soil is an important pathway for human exposure to environmental contaminants. In the past several decades, heavy metal accumulation in contaminated soil has been widely studied; however, few researches investigated the background levels of metals in plants and evaluated the difference in plants grown in soils produced from different parent rocks. In this study, a systemic survey of heavy metal distribution and accumulation in the soil–pepper system was investigated in an unpolluted area, Hainan Island, China. Levels of Cu, Pb, Zn and Cd were measured in soils and pepper fruits from five representative pepper-growing areas with different soil parent rocks (i.e. basalt, granite, sedimentary rock, metamorphic rock and alluvial deposits). Average concentrations of Cu, Pb, Zn and Cd in pepper fruits were 11.52, 0.84, 8.77 and 0.05 mg/kg, respectively. The concentrations of heavy metals in soils are controlled by the parent materials and varied greatly from in different areas. Heavy metal contents in all pepper samples were lower than the Chinese maximum contaminant levels. The relationship between heavy metals in soils and biological absorption coefficient (BAC) of pepper fruits suggests that the uptake ability of pepper for soil metals depends mainly on the physiological mechanism, while in some cases, the soil types and supergene environment are also important.  相似文献   

9.
The present study deals with the characterization of effluent released from sponge iron industries and distribution of heavy metals in soil and macrophytes near to effluent discharge channel. Apart from this, accumulation of heavy metals in nearby soil and vegetation system irrigated with effluent-contaminated water is also the subject of this study. Physico-chemical analysis of effluent reveals that the concentration of total suspended solids (TSS), total hardness (TH), iron (Fe2+), and oil and grease are greater than the IS (1981) norms for discharge of water into inland water body. The soil along the sides of the effluent channel also shows higher concentration of heavy metals than the background soil. The enrichment of the heavy metals are in the order of Chromium (Cr) > Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Copper (Cu) > Cadmium (Cd). Macrophytes growing along the sides of the effluent channel also show significant accumulation of heavy metals almost in the same order as accumulated in soil. Higher uptake of heavy metals by these varieties reveals that these species can be used for future phytoremediation. The effluent as well as contaminated water is extensively used for irrigation for growing vegetables like tomato (Lycopersicon esculatum) in the surrounding areas. Heavy metal accumulation in this agricultural soil are in the sequence of Cr > Fe > Mn > Zn > Cu > Cd. More or less similar type of accumulation pattern are also found in tomato plants except Fe and Zn exceeding Cr and Mn. Transfer Factor of heavy metals from soil to tomato plants (TFS) shows average value of <1, suggesting less uptake of heavy metals from soil. Among the plant parts studied, fruit shows least accumulation. Although tomato plants show some phenotypic changes, the survival of tomato plants as well as least accumulation of metals in fruit reveals their tolerance to heavy metals. Therefore it may be suggested that this plant can be grown successfully in the heavy metal contaminated soil. Further research work on in situ toxicity test will be necessary in order to identify the most resistive variety on this particular type of contaminated site.  相似文献   

10.
Emerging environmental issues related to heavy metal contamination in rice draw great concern about the soil quality of paddy farming lands irrigated with groundwater. Investigating the functioning of soil microorganisms exposed to heavy metal contamination is imperative for agricultural soil manipulations. The current study accentuates the influence of heavy metals on microbial activity and community composition in arable soil of West Bengal State of India. The result revealed that the fertility indicators (activity of all soil enzymes) and growth-limiting factors (soil N and P) were negatively correlated with the heavy metal stress except the soil total organic content which demonstrated significant positive correlation with the heavy metals. In case of functional diversity of soil, all the considered diversity indices exhibited no specific pattern along with the availability of heavy metals. Further, despite the heavy metal contamination, we observed a very complex and indifferent pattern of bacterial community composition along the heavy metal contamination sites. Overall, we found that γ-Proteobacteria had been the most abundant bacterial community followed by Actinobacteria, Firmicutes, β-Proteobacteria and α-Proteobacteria. Commemorating all the results, we can infer that arsenic and other heavy metal contamination is deteriorating the soil quality and hence warrants immediate attention of concerned soil scientist and agronomists.  相似文献   

11.
氨基膨润土对铜镍镉污染土壤的钝化修复研究   总被引:1,自引:0,他引:1  
采集土壤,加入铜、镍和镉制成重金属污染土壤。以四乙烯五胺改性膨润土和膨润土原土作为修复剂,通过模拟酸雨和混合提取剂提取有效态重金属,评价膨润土和氨基膨润土对土壤中铜、镍、镉的钝化效果。结果表明:p H=3. 5的模拟酸雨对各污染土壤中重金属离子的提取率均在0. 1%以下。混合提取剂对污染土壤中有效态金属的提取能力比模拟酸雨强很多。添加膨润土原土和氨基膨润土均能钝化土壤中的铜、镍和镉,氨基膨润土上嫁接的氨基对金属有络合作用,因而比膨润土原土对铜、镍和镉具有更强的钝化能力。综合评价表明氨基膨润土是一种对铜、镍和镉污染土壤具有应用前景的钝化修复材料。  相似文献   

12.
对重金属和辐射污染的土壤和地下水的微生物修复   总被引:1,自引:0,他引:1  
由重金属和辐射产生的环境污染在世界范围内产生了一系列问题.利用特殊的微生物如金属还原和耐金属细菌对环境中的金属和辐射污染进行处理具有非常好的前景.现场的生物修复的成功应用将对清除污染环境中的重金属和辐射提供潜在方法.最近的研究还关注于了解在微生物群体内重金属和辐射对微生物的作用.生物毯和生物膜是在生物修复中具有代表性的两种微生物群落的机能.金属的种类和价态变化、转移过程以及微生物代谢作用是对金属和辐射生物修复的三种重要的组成部分.结合以上三方面,可以更好的了解自然中的微生物和生物修复过程之间的关系.  相似文献   

13.
为了研究一种高效的多种重金属污染土壤修复剂,本文采用了一种具有OH-缓释功能的改性Mg(OH)2,通过重金属污染土壤稳定化修复实验,探讨了改性Mg(OH)2对污染土壤中多种重金属(Pb、Cd、Cu、Zn)的稳定效率及对多种重金属形态分布的影响。结果表明,投加改性Mg(OH)2对土壤中多种重金属均有稳定作用,对Pb、Cd、Cu、Zn的稳定效率分别为72.42%、34.53%、87.64%和97.65%,且改性Mg(OH)2的投加使重金属交换态质量明显减少、残渣态质量增加,进一步提高了重金属的稳定性,降低了重金属生物有效性;另外,改性Mg(OH)2具有OH-缓释性,可使土壤长期保持一定的碱性,是一种经济有效的土壤修复剂。  相似文献   

14.
《Organic Geochemistry》1999,30(8):937-945
The anaerobic degradation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated in several marine harbor sediments. In sediments from Boston Harbor that were heavily contaminated with petroleum, [14C]-naphthalene and [14C]-phenanthrene were oxidized to 14CO2 without a lag, suggesting that the microbial community was adapted for anaerobic PAH oxidation in situ. The addition of molybdate, a specific inhibitor of sulfate-reducing microorganisms, inhibited PAH mineralization which suggested that sulfate reducers were involved in the anaerobic oxidation of the PAHs. PAHs were also anaerobically oxidized at another site in Boston Harbor that was less heavily contaminated, but at a slower rate than in the most heavily contaminated sediments. Sediments not contaminated with petroleum did not significantly oxidize the PAHs. A similar correspondence between rates of anaerobic PAH oxidation and the degree of PAH contamination was observed in sediments from Tampa Bay and San Diego Bay. When relatively pristine sediments from San Diego Bay that did not have a significant capacity for anaerobic PAH oxidation were exposed to high concentrations of naphthalene, they developed a potential for naphthalene degradation that was comparable to that in sediments that had a history of PAH contamination. The increase in potential for naphthalene degradation in the sediments exposed to naphthalene was associated with an increase in naphthalene-degrading microorganisms. These results suggest that many marine harbor sediments contain microorganisms capable of anaerobically oxidizing PAHs under sulfate-reducing conditions and that these microorganisms will respond with an increase in their activity when PAHs are introduced into the sediments. Thus, if PAH inputs into harbor sediments from petroleum can be reduced there may be a widespread potential for microorganisms to remove this PAH contamination from the sediments, despite anaerobic conditions.  相似文献   

15.
Fifty soil samples collected from agricultural land in four regions of Poland with different anthropopressure were analysed for their content of 16PAHs by GC/MS. The regions correspond to Polish administrative units (voievodeships): Podlaskie and Lubelskie are situated in the rural East part of the country and more industrialised Slaskie and Dolnoslaskie voievodeships – in the South-West part. Basic physicochemical properties as well as the content of selected potentially harmful metals (Pb and Zn) were included in the soil analysis. Overall accumulation of Σ16PAHs in the upper soil layer was within the range 73–1800 μg kg−1 with a geometric mean (GM) of 252 μg kg−1, while the mean benzo(a)pyrene (BaP) load was 20 μg kg−1. This corresponds with data for other European countries. Carcinogenic compounds contributed nearly in 50% to the total PAHs loads. In uncontaminated rural regions the mean Σ16PAHs and BaP contents were 113–159 μg kg−1 and 11–13 μg kg−1, respectively. Regional conditions strongly influenced the accumulation of PAHs ?4-rings, which were highly dependent (over 95%) on local anthropopressure expressed as dust and 4PAHs emission indexes. Soil acidity was the main soil parameter related to the accumulation of higher molecular weight PAHs in soils. In more contaminated regions a significant link between soil OM and PAH loads was noted. The same regions were characterised by associations between PAHs and potentially harmful metals implying common sources of pollution. Those relationships were not observed in the uncontaminated part of the country. The lower molecular weight PAHs contributed to a smaller extent (about 20%) to the total PAHs content in soils, and were less affected by anthropogenic factors.  相似文献   

16.
In the present study, stabilization treatment using waste resource stabilizers was performed for soil contaminated with As and heavy metals (Pb and Cu). Calcined oyster shell (COS) and coal mine drainage sludge (CMDS) were used as a mixed stabilizing agent for a wet-curing duration of 28 days. After the stabilization treatment, the treatment process efficiency was evaluated by the results of various batch- and column-leaching tests. Neutral and weak acid extraction methods, such as water-soluble extraction and SPLP, did not exhibit satisfactory results for heavy metal stabilization, even if they showed very low leachability. On the other hand, TCLP and 0.1 M HCl extraction showed that the stabilizers significantly reduced the amount of heavy metals leached from the soil, which strongly supports the thesis that the stabilization treatment is efficient in the acidic leaching conditions that were explored. Specifically, in the 0.1 M HCl extraction, the reduction efficiencies of As, Pb, and Cu leachings were more than 90 %, compared with control experiments. This study demonstrates that the application of waste resources for the stabilization of As and heavy metals is feasible. However, some limitations observed in the experiments should be considered in future studies, such as the mobilization of alkali-soluble elements, and in particular, exchangeable fractions of Cu. In addition, the treatment efficiency can be evaluated by different leaching methods, which suggests that multidirectional approaches are required for the proper evaluation of stabilization treatment.  相似文献   

17.
Irrigation by treated wastewater (TWW) can pollute the soil by different organic and inorganic compounds. The pollution level can depend on the irrigation period, soil nature, and wastewater characteristics. Since 1989, the Zaouit Sousse area (central Tunisian) has been irrigated by treated wastewater. The irrigation period and the mineralogy of soil composition change from one locality to another in Zaouit Sousse area. In this work, we are interested in organic compounds, polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs) evolution. One control soil (S1) and four irrigated areas soil (S2, S3, S4, and S5) were chosen. The soil samples differ by the irrigation period and soil characteristics. Total PAHs content in control soil was 66.2 ng?g?1 and in irrigated areas were between 46.23 and 129.51 ng?g?1. The PAHs content in irrigated soil, except S5 which has been irrigated with wastewater for 20 years and contains the highest clay fraction percent, decreased with the irrigation period (from 0 to 20 years). The microbial degradation may decrease the PAHs concentrations in the soil thanks to bacterium brought by TWW and the important soil permeability. Concentration of heavy metals ranged from 24 to 1,320 μg?L?1. The HMs (Cu, Cr, Zn, Fe, Ni, Pb, and Cd) contents decreased with the irrigation period (from 10 to 20 years). So, following the PAHs aerobic bio-degradation, this organic compound discharges their absorbed heavy metals which leached to deeper levels. The Cr, Cu, Al, Zn, and Cd mobility depend on the clay yield too. However, the PAHs and Pb mobility are also related to humic substance quantities. Cr and Cu have affinities both to clay and humic substance quantities.  相似文献   

18.
南京城市土壤某些元素的富集特征及其对浅层地下水的影响   总被引:20,自引:2,他引:20  
本研究以南京市的公园、校园绿地、道路绿地和郊区菜地等不同功能区的土壤为对象,对土壤的磷素和重金属以及一些土壤剖面点位的地下水组成进行了分析.研究发现城市土壤构成了区别于自然背景的某些元素(如磷和重金属)的地球化学垒,形成了明显的元素富集区域,其中磷素含量是背景土壤的数倍甚至十数倍,Pb含量也远高出背景土壤,60%以上样品达到中等污染程度以上.从磷素在剖面中的积累模式可以看出,城市土壤中磷含量最高的层次出现在表层以下的不同深度,说明土壤经历了不同的扰动过程,这意味着在城市发展过程中,土壤的性质遭受强烈的人为活动影响,元素在土壤中的分布形态可以指示不同的利用历史.质量改变后的土壤对地下水等环境产生影响,使地下水的组成发生改变,其中磷素含量直接受到土壤的影响,效区菜地地下水中硝态氮含量极高,而本研究尚未发现地下水中的重金属含量与土壤有显著相关.  相似文献   

19.
The effects of humic acid (HA) on heavy metal uptake by herbaceous plants in soil simultaneously contaminated with heavy metals and petroleum hydrocarbons were investigated. The results showed that HA reduced readily soluble and exchangeable forms of heavy metals in the contaminated soil but increased their plant-available forms. Potential bioavailability and leachability factors became larger than 1 after adding HA to the soil, except for those of Ni, suggesting that more heavy metals could be potentially phytoavailable for plant uptake. Furthermore, HA increased the accumulation of Pb, Cu, Cd, and Ni in the shoots and roots of selected plants. The greatest increase in the accumulation of heavy metals was 264.7 % in the shoot of Festuca arundinacea, with the bioconcentration factor (BCF) increasing from 0.30 to 1.10. Humic acid also increased the BCFs of the roots of Brassica campestris for Ni and Pb. These results suggest that HA amendment could enhance plant uptake of heavy metals, while concurrently reducing heavy metal leachability and preventing subsurface contamination, even in soils simultaneously contaminated with petroleum hydrocarbons.  相似文献   

20.
《Applied Geochemistry》2004,19(10):1553-1565
Recent research has shown that phytoextraction approaches often require soil amendments, such as the application of EDTA, to increase the bioavailability of heavy metals in soils. However, EDTA and EDTA–heavy metal complexes can be toxic to plants and soil microorganisms and may leach into groundwater, causing further environmental pollution. In the present study, vetiver grass (Vetiveria zizanioides) was studied for its potential use in the phytoremediation of soils contaminated with heavy metals. In the pot experiment, the uptake and transport of Pb by vetiver from Pb-contaminated soils under EDTA application was investigated. The results showed that vetiver had the capacity to tolerate high Pb concentrations in soils. With the application of EDTA, the translocation ratio of Pb from vetiver roots to shoots was significantly increased. On the 14th day after 5.0 mmol EDTA kg−1 of soil application, the shoot Pb concentration reached 42, 160, 243 mg kg−1 DW and the root Pb concentrations were 266, 951, and 2280 mg kg−1 DW in the 500, 2500 and 5000 mg Pb kg−1 soils, respectively. In the short soil leaching column (9.0-cm diameter, 20-cm height) experiment, about 3.7%, 15.6%, 14.3% and 22.2% of the soil Pb, Cu, Zn and Cd were leached from the artificially contaminated soil profile after 5.0 mmol EDTA kg−1 of soil application and nearly 126 mm of rainfall irrigation. In the long soil leaching experiment, soil columns (9.0-cm diameter, 60-cm height) were packed with uncontaminated soils (mimicking the subsoil under contaminated upper layers) and planted with vetiver. Heavy metal leachate from the short column experiment was applied to the surface of the long soil column, the artificial rainwater was percolated, and the final leachate was collected at the bottom of the soil columns. The results showed that soil matrix with planted vetiver, could re-adsorb 98%, 54%, 41%, and 88% of the initially applied Pb, Cu, Zn, and Cd, respectively, which may reduce the risk of heavy metals flowing downwards and entering the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号