首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
藏北高原多年冻土区地表反照率特征分析   总被引:9,自引:5,他引:4  
利用青藏高原冰冻圈观测研究站西大滩、五道梁和唐古拉自动气象站(AWS)2006—2007年的辐射观测资料,分析了藏北高原多年冻土区不同下垫面的地表反照率特征.结果表明:该地区地表反照率在四季都表现出明显的日变化特征,呈U形,早晚大,中午小.日平均和月平均地表反照率有相同的年变化特征,且冬半年的地表反照率远远大于夏半年.受积雪的影响,地表反照率年均值较高,夏季最小,冬季最大,春季大于秋季.针对3种不同植被类型的下垫面,在四季反照率都有高寒草甸(唐古拉)高寒草原(西大滩)荒漠草原(五道梁)的特点.  相似文献   

2.
分析了2008年青藏高原林芝地区与四川盆地温江地区无降水条件下地表辐射、 湍流通量和地表反照率的日变化及月际变化特征, 并探讨了季风过程对其产生的影响.结果表明: 林芝与温江地区地表辐射和湍流通量都具有明显的日变化和月际变化周期, 季风期受云的影响, 日循环规律变得不是非常规则.季风对林芝地区地表能量分配影响极大, 季风前感热通量占主导地位, 季风期和季风后(夏、 秋节)潜热通量是净辐射的主要消耗项; 温江地区全年潜热在净辐射的分布中占主导地位, 感热通量的作用和土壤热通量相当. 林芝地区年平均地表反照率为0.21, 温江地区年平均仅为0.14; 季风前(3-5月)、 季风中(6-7月)和季风后(8-9月), 林芝地区的地表反照率分别为0.20、 0.19和0.20, 温江地区的地表反照率分别为0.13、 0.11和0.14.  相似文献   

3.
近30a来托木尔峰南麓科其喀尔冰川冰舌区变化   总被引:7,自引:6,他引:1  
20世纪80年代中期以来,托木尔峰南麓地区冰雪融水量明显增加,冰川处于强烈的消融退缩状态.根据对科其喀尔冰川冰舌区不同海拔探测表明,近30 a来冰川厚度明显减薄,冰舌区平均厚度减薄在0.5~1.5 m·a-1之间.对科其喀尔冰川末端位置研究表明,科其喀尔冰川进入20世纪90年代以来处于比较强烈的退缩状态.相对于1974年的冰川位置,冰川退缩了380 m左右.科其喀尔冰川的全面退缩,标志着托木尔峰地区冰川处于全面的负物质平衡状态.  相似文献   

4.
念青唐古拉山拉弄冰川气象要素变化特征   总被引:3,自引:2,他引:1  
利用在念青唐古拉山拉弄冰川垭口架设的自动气象站观测资料,分析了2006年9月1日至2007年8月31日的气温、气压、相对湿度和风等气象要素的日和季节变化特征.结果表明:拉弄冰川垭口气温日变化呈现升温快降温慢的特点,年平均气温为-8.1℃,最冷月为2月,最暖月为7月,其温度分别为-17.6℃和0.7℃;相对湿度日变化呈单峰单谷型,年平均相对湿度为53.4%,8月最大1月最小;气压日变化呈双峰双谷型,年均气压值为497.1hPa,9月值最大2月值最小,其气压分别为501.9hPa和489.9hPa;冬春季的风速日变化比夏秋季大,年均风速为4.2m.s-1,1月最大8月最小,其风速分别为7.5m.s-1和2.5m.s-1,全年盛行以偏南风和偏北风为主,约占全年盛行风向频率的75.2%.  相似文献   

5.
天山乌鲁木齐河源1号冰川近雪面气象要素观测分析   总被引:1,自引:1,他引:0  
利用中国气象局乌鲁木齐沙漠气象研究所于2009年1月20日至12月31日在天山乌鲁木齐河源1号冰川冰雪表面实施大气科学观测实验观测取得的资料和同期大西沟气象站资料, 分析了1号冰川四季大气温度、风速、风向以及总辐射的变化特征, 对比、探讨了冰川尺度上冰雪表面与周边山地的辐射和地-气热量传输特性, 在此基础上揭示了二者气温、风速、大气湿度变化的差异及其成因. 研究表明: 1)由于冰川冰雪对太阳辐射的反射率高, 冰雪表面得到的净辐射和热量少, 使得冰川四季大气温度比大西沟站平均偏低2.9 ℃; 2)冰川与周边山地下垫面的不同, 引起太阳净辐射-温度场-气压场-风场的连锁变化, 造成冰川轴向风以下行偏南气流为主导, 法向风盛行偏东气流; 冰川夜间风速大于大西沟, 白天却小于大西沟风速; 3)冰川和大西沟大气含水量较高, 相对湿度在40%~80%之间变化, 因大西沟地表蒸发大, 其相对湿度略高于冰川.  相似文献   

6.
西天山托木尔峰南麓大型山谷冰川冰舌区消融特征分析   总被引:4,自引:3,他引:1  
基于对托木尔峰南麓托木尔型山谷冰川的野外考察和典型冰川的定位观测,对冰面被表碛广泛覆盖的所谓“托木尔型”冰川冰舌区表碛与冰面消融的关系进行了研究. 结果表明:表碛对冰面消融、冰川水文过程、冰川变化等均具有重要影响,当表碛厚度超过3 cm时,表碛对冰面消融就产生明显抑制作用,且随着厚度增加,冰面消融显明减弱. 科其喀尔冰川表面的观测表明,由末端向上,表碛厚度逐渐减薄. 受表碛影响,科其喀尔冰川区最大的消融量出现在海拔3 800~3 900 m之间、表碛物厚度小于10 cm的区域内;冰川消融强度由此向上随着海拔的升高而下降,向下随表碛厚度的增大而减弱. 冰面湖的发育是表碛覆盖冰川的又一主要特征,湖水对冰面的融蚀和快速排泄成为冰面产汇流的主要过程. 科其喀尔冰川研究表明,两三个冰面湖排泄形成的融蚀冰量就相当于冰川末端退缩造成的冰量损失. 因此,冰面湖等热喀斯特地形的形成、扩张融蚀、融穿排泄、形成湖区低地,这一周而复始的过程不仅是其主要消融方式之一,而且也强烈的影响着冰川水文及冰川变化. 托木尔峰南麓地区大型冰川变化主要以厚度减薄为主,而不是像大多数冰川显著的变化主要表现在末端和面积减少方面.  相似文献   

7.
两类度日模型在天山科其喀尔巴西冰川消融估算中的应用   总被引:1,自引:0,他引:1  
采用辐射传输参数化方案估算太阳入射短波辐射,并以小时气温作为输入数据,在200、100和50 m 3种海拔梯度下,分别应用传统度日模型和改进度日模型对科其喀尔巴西冰川2008年夏季消融区非表碛覆盖区消融进行了模拟分析.研究表明:太阳小时入射总辐射计算与实测结果具有较好的一致性;科其喀尔巴西冰川度日因子存在明显的时空差异性;随着空间分辨率提高,2类度日模型的模拟效果都变好;在200和100 m海拔梯度下,改进度日模型的模拟结果优于传统度日模型,而在50 m海拔梯度下,无明显改进.  相似文献   

8.
唐古拉山冬克玛底冰川反照率变化特征研究   总被引:11,自引:10,他引:1  
根据夏季消融期成像的Landsat TM影像和2000-2009年间的MOD10A1数据资料, 分析了唐古拉山区冬克玛底冰川反照率的时空变化特征. 结果表明: 受空间尺度效应和现有反演方法的影响, 由遥感反演的反照率资料在数值上存在一定的误差, 但基本上能够反映冰川反照率的时空变化特征. 从空间分布上来看, 该冰川反照率随海拔升高呈增大趋势, 其中在平衡线附近的变化最为显著; 受地形因素的影响, 在同一海拔带内部也存在着较大的差异. 从年内变化上来看, 该冰川反照率日际变化波动较大, 且具有明显的季节变化特征. 从年际变化上来看, 自2000年以来该冰川年均反照率的变化波动较大, 总体呈微弱下降的趋势, 这主要与年降雪和冰面污化程度有关; 不考虑降雪对冰面反照率的影响, 2000-2009年间该冰川在消融期的反照率呈逐年减小的趋势, 变化速率约为-0.0083·a-1, 其原因在于夏季气温的升高和冰面污化程度的加大.  相似文献   

9.
冰川反照率时空变化特征研究对于评估冰川能量物质平衡及认识冰川消融过程至关重要。本文基于高空间分辨率的Landsat OLI影像和高时间分辨率的MOD10A1产品,并结合冰面反照率实测数据,开展了2011—2021年北疆萨吾尔山木斯岛冰川表面反照率的时空变化特征及其对冰川物质平衡影响的研究。结果表明:Landsat反演反照率和MOD10A1反照率与同期内冰面实测反照率的相关性分别为0.95和0.62,均显示木斯岛冰川表面反照率存在显著的时空变化特征;在空间尺度上,冰面反照率沿主流线整体随海拔升高呈增加趋势。但由于局部地形差异,反照率在海拔3 600 m以下区域随海拔升高出现下降趋势;在同一海拔处,反照率沿冰川两侧边缘向中部递增。2011—2021年,冰川年均反照率微弱增加,消融期内(5—8月)平均反照率与全年平均反照率的变化速率分别为0.0024 a-1和0.0017 a-1;逐月反照率具有显著的季节变化特征,6—8月冰面反照率较低(0.330),12月—次年2月冰面反照率较高(0.586);消融期内冰川消融区反照率下降幅度大于积累区。研究进一步表明,夏季(6—8月)平均反照率与冰川物质平衡存在显著的正相关(R=0.84,P<0.01),气温、固态降水、云量、太阳入射角、吸光性杂质等是影响冰川反照率变化的重要因素。该研究将对冰川消融过程和机理、能量物质平衡模拟等工作提供重要的基础支撑。  相似文献   

10.
唐古拉山冬克玛底冰川平衡线高度附近的能量平衡   总被引:1,自引:6,他引:1  
本文以连续的、至少一年的观测资料,分析青藏高原唐古拉山冬玛底冰川平衡线高度处的辐射平衡及能量平衡特征。冰川表面独特的下垫面性质,使其净辐射值全年有5个月左右为负;潜热交换量基本与净辐射成反向的季节变化;感热交换全年均为正值而成为该冰川表面主要源之一;传导热交换量对能量平衡的贡献很小。该冰川表面的能量交换水平季节变化明显,冰川表面气温季节变化与净辐射关系密切,冰川表面气温对总辐射能量变化的敏感性系数  相似文献   

11.
藏北高原多年冻土区地表反照率时空变化特征   总被引:2,自引:2,他引:0  
杨成  姚济敏  赵林  乔永平  史健宗 《冰川冻土》2016,38(6):1518-1528
利用自动气象站数据和MODIS(MOD02)数据,对位于藏北高原多年冻土区的阿雅克气象站、卓乃湖气象站、唐古拉气象站和西大滩气象站四个观测站点的单点地表反照率的季节变化、日变化和站点所属区域(88°~95°E,32°~38°N)的区域地表反照率夏、冬季节的空间分布进行了分析研究,得出:2013年,四个研究站点地表反照率均是夏季最小,冬季最大,春季大于秋季,其他季节较夏季地表反照率峰值较多;当太阳高度角大于40°时各站点地表反照率日变化基本不变,地表冻融过程中地表反照率完全冻结阶段 > 日冻融循环阶段 > 完全融化阶段,且地表日冻融循环阶段地表反照率日变化的中间时刻有明显下降。研究区域夏、冬季地表反照率大部分在0.1~0.3范围内;冬季地表反照率大于0.3的区域明显多于夏季,夏季区域地表反照率自阿雅克到唐古拉呈带状递减。  相似文献   

12.
基于2008年11月-2009年10月祁连山老虎沟12号冰川积累区的风速、风向观测资料, 分析了年内季节和日变化特征. 结果表明: 全年日平均风速波动较大, 介于1~8.8 m·s-1. 日均值以冬季最大, 春, 秋季次之, 夏季最小, 分别为5.1 m·s-1, 3.4 m·s-1, 3.7 m·s-1, 2.6 m·s-1, 表现出典型的"高山型"风速特征. 秋, 冬季节, 无论昼夜, 以偏南风为主, 风速始终保持在较为稳定的高值状态, 属于典型的冰川风; 春, 夏季节, 冰川风场依旧强劲, 而且伴有山谷风出现. 受山系-河谷地形及雪冰下垫面的共同作用, 春, 夏, 秋三季表现出一定的偏东风, 柴达木低压可能对此也有贡献.  相似文献   

13.
利用低温预浓缩-GC/MSD研究了广州市大气中痕量的一氯二氟甲烷(HCFC-22),并且将其变化特征与SO2、NO2和可吸入颗粒物(PM10)等一般空气污染物进行了比较.结果表明,广州市大气中HCFC-22的年平均浓度值是一些全球本底站观测值的3倍左右,表明广州存在较强的HCFC-22排放源,可能与HCFC-22作为制冷剂在城区较大量使用有关.广州市HCFC-22呈现出夏秋季高、冬春季低的特征,这主要与HCFC-22排放的季节性差异有关.而广州市大气一般空气污染物SO2、NOx、PM10和CO的浓度水平则与HCFC-22相反,呈现夏秋季低、冬春季高的特征,主要受扩散条件与季风影响.HCFC-22日变化幅度在夏季远大于冬季,变化规律整体与SO2、NOx和PM10大致相似,夏季呈双峰特征,冬季则呈单峰特征,但与常规污染物不同的是,夏季HCFC-22在17:00~20:00家用空调使用高峰期呈现异常高值.  相似文献   

14.
蒋熹  王宁练  杨胜朋 《冰川冻土》2007,29(6):889-899
根据青藏高原唐古拉山多年冻土区2005年6月24日~10月16日的总辐射、分光辐射和分光反照率观测资料,利用总辐射和大气层顶太阳辐射的比值——日有效透射率Teff,用聚类分析法将资料划分为晴天、多云和阴天三类天气,分析了该地区夏、秋季节总辐射、分光辐射比例和分光反照率的日变化和季节变化规律.结果表明,夏季总辐射与大气层顶的差值和日际变化幅度最大,秋季以后这种差值和日际变化幅度减小.天空状况对分光辐射比例和地表反照率均有影响,表现为近红外辐射比例晴天比阴天大,可见光比例晴天比阴天小,各波段反照率晴天均比阴天大.反照率在夏季最低,秋季较高,反照率的日变化有依存分光辐射比例的关系,这大致可以解释地表反照率依存太阳高度角而变化的现象.无积雪地面反照率近红外波段大于可见光波段,地表有积雪时,反照率明显不同,其可见光波段反照率大于近红外波段反照率.功率谱分析表明,日有效透射率Teff存在着2~3 d的周期,它是该地区天气系统活动影响太阳辐射收入的一个反映,指示出唐古拉山地区天气系统亦有2~3 d的周期性.  相似文献   

15.
拉萨河谷大气水汽日变化特征   总被引:7,自引:0,他引:7       下载免费PDF全文
基于近10年(1999~2008年)地基GPS遥感的大气可降水量(GPS-PW)资料和地面气象资料,分析了拉萨河谷各季GPS-PW日变化特征及其对夏季降水日变化特征的影响。结果表明,在拉萨河谷各季GPS-PW都具有明显的日变化特征。春、夏、秋和冬季GPS-PW平均日变化幅度分别为1.0mm、1.7mm、1.0mm和0.8mm。GPS-PW日最小值和最大值出现的时间随季节变化不大,分别出现在08:00~10:00UTC和15:00~18:00UTC。各季GPS-PW日变化序列的谐波分析结果表明,日循环(24h)与半日循环(12h)是GPS-PW日变化的主要信号。日循环信号夏季最强,冬季最弱;半日循环信号夏季最强,春季最弱。在夏季GPS-PW达到日最大值的时间比平均逐时降水频次和降水量达到日最大值的时间约早2h。GPS-PW日变化对夏季降水日变化特征具有重要影响。  相似文献   

16.
谷良雷  姚济敏  胡泽勇  赵林 《冰川冻土》2016,38(6):1482-1490
利用藏北高原位于季节冻土区的那曲BJ站和多年冻土区的唐古拉站2008年气象要素观测资料,对两站点的小气候特征进行了分析和对比,得到以下结论:那曲BJ站最大冻结深度可达1.5m左右;唐古拉站活动层最大融化深度超过了3.0m。两站的气温、比湿、降雨和积雪均有明显的季节变化;降雨和比湿均是5-10月较大,其他时段较小;积雪均基本集中在1-3月和10-12月。各层土壤温度及日变幅、温度的月均值和月最高/低值及月较差、比湿的月均值和瞬时最大值、风速瞬时最大值均是那曲BJ站大于唐古拉站。那曲BJ站与唐古拉站的风速、气温、比湿的年平均值分别是4.73m·s-1、-1.34℃、3.96g·kg-1和4.02m·s-1、-5.80℃、3.25g·kg-1,年降雨量和积雪日数分别为590.50mm、114d和405.27mm、135d,两站5-10月的降雨量分别占全年降雨量的96.20%和86.55%。两站在2月初和11月初由于较大降雪均出现了气温陡降的现象,最大积雪日均出现在11月,日最大积雪深度BJ站小于唐古拉站。典型晴天日,那曲BJ站在冬季而唐古拉站在冬春季节风速日变化明显;比湿日变化夏秋季节较冬春季节明显。  相似文献   

17.
长江源沱沱河区45a来的气候变化特征   总被引:11,自引:3,他引:8  
利用1959—2003年长江源区沱沱河气象站气温、降水、积雪等地面观测资料,对年代际的气候变化特征及其影响进行了分析.结果表明:该区域45 a来夏季增温比较明显.20世纪90年代四季平均气温、平均最高和平均最低气温比最冷的80(或60)年代偏高0.6~1.2℃;降水量(含积雪量)冬季呈增加的趋势,夏季呈减少的趋势,秋、春季降水量增加而积雪量减少;年大风日数80—90年代较60—70年代偏多.80年代是夏季温度升高、降水减少、大风日数增多的暖干气候背景,90年代以来继续加剧,并逐步扩展到春、秋季节,使得该区域的草场退化、冰川和冻土消融加快、湿地资源减少、生态环境恶化.  相似文献   

18.
1980-2009年西藏地区水汽输送的气候特征   总被引:1,自引:0,他引:1  
卓嘎  罗布  周长艳 《冰川冻土》2012,34(4):783-794
利用1980-2009年NCEP/NCAR月平均再分析格点资料, 分析了近30 a来西藏地区水汽输送的气候特征. 结果表明: 1)西边界和南边界为水汽流入边界, 北边界和东边界为水汽流出边界; 夏季水汽总输入量最大, 冬季最小且季节差异显著; 春季水汽总输出量最大, 冬季最小且季节差异不明显; 春、 冬季为净水汽支出, 夏、 秋季为净水汽收入; 2)无论是年还是不同季节平均, 近30 a来西边界水汽输入量、 北边界水汽输出量基本呈现增加趋势或弱的减少趋势, 东边界水汽输出量、 南边界水汽输入量基本呈现减少趋势; 总水汽输入、 输出量均呈现减少趋势; 年、 夏季、 秋季净收入量呈现减少趋势, 春季、 冬季净支出量呈现增加趋势; 3)西藏地区冬、 春、 秋季的水汽主要来自中纬度西风带水汽输送, 夏季水汽主要来自阿拉伯海、 孟加拉湾、 南海和西太平洋地区, 夏季南边界的水汽输送状况对西藏地区降水起着决定性作用.  相似文献   

19.
地形对天山积雪冻融变化的影响分析   总被引:1,自引:0,他引:1  
胡伟杰  刘海隆  王辉  赵文宇 《冰川冻土》2016,38(5):1227-1232
天山积雪是新疆水资源的重要来源,地形对积雪的空间分布和消融有重要影响,分析地形对天山积雪冻融过程的影响具有重要的理论意义.基于2005-2014年的MODIS/Terra积雪8 d合成数据(MOD10A2)与数字高程模型(DEM)数据,分析了天山积雪覆盖随高程、坡度和坡向的季节变化规律.分析结果表明:(1)在不同季节里,不同高程中的融雪和积雪过程同步发生,其中在春季和冬季,雪盖变化较大的区域主要分布在低海拔和高海拔地区;而在夏、秋两季,雪盖变化较大的区域主要分布在中海拔地区.(2)在不同季节,不同坡度的积雪冻融过程也同步进行,但春季和冬季积雪呈线性变化,在缓坡和陡坡地区变化明显;夏季和秋季积雪变化缓慢,在中坡变化显著.(3)天山积雪变化随坡向具有对称性和周期性.积雪变化呈现北坡大、南坡小,春、冬季大,夏、秋季小的特点.在波动周期内,夏秋季积雪变化波动较大,变化趋势与春、冬季相反.研究结果可为融雪型洪水预报提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号