首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
To examine the pathways that form Mn(III) and Mn(IV) in the Mn(II)-oxidizing bacterial strains Pseudomonas putida GB-1 and MnB1, and to test whether the siderophore pyoverdine (PVD) inhibits Mn(IV)O2 formation, cultures were subjected to various protocols at known concentrations of iron and PVD. Depending on growth conditions, P. putida produced one of two oxidized Mn species - either soluble PVD-Mn(III) complex or insoluble Mn(IV)O2 minerals - but not both simultaneously. PVD-Mn(III) was present, and MnO2 precipitation was inhibited, both in iron-limited cultures that had synthesized 26-50 μM PVD and in iron-replete (non-PVD-producing) cultures that were supplemented with 10-550 μM purified PVD. PVD-Mn(III) arose by predominantly ligand-mediated air oxidation of Mn(II) in the presence of PVD, based on the following evidence: (a) yields and rates of this reaction were similar in sterile media and in cultures, and (b) GB-1 mutants deficient in enzymatic Mn oxidation produced PVD-Mn(III) as efficiently as wild type. Only wild type, however, could degrade PVD-Mn(III), a process linked to the production of both MnO2 and an altered PVD with absorbance and fluorescence spectra markedly different from those of either PVD or PVD-Mn(III). Two conditions, the presence of bioavailable iron and the absence of PVD at concentrations exceeding those of Mn, both had to be satisfied for MnO2 to appear. These results suggest that P. putida cultures produce soluble Mn(III) or MnO2 by different and mutually inhibitory pathways: enzymatic catalysis yielding MnO2 under iron sufficiency or PVD-promoted oxidation yielding PVD-Mn(III) under iron limitation. Since PVD-producing Pseudomonas species are environmentally prevalent Mn oxidizers, these data predict influences of iron (via PVD-Mn(III) versus MnO2) on the global oxidation/reduction cycling of various pollutants, recalcitrant organic matter, and elements such as C, S, N, Cr, U, and Mn.  相似文献   

2.
Kinetics of arsenopyrite oxidative dissolution by oxygen   总被引:1,自引:0,他引:1  
We used a mixed flow reactor system to determine the rate and infer a mechanism for arsenopyrite (FeAsS) oxidation by dissolved oxygen (DO) at 25 °C and circumneutral pH. Results indicate that under circumneutral pH (6.3-6.7), the rate of arsenopyrite oxidation, 10−10.14±0.03 mol m−2 s−1, is essentially independent of DO over the geologically significant range of 0.3-17 mg L−1. Arsenic and sulfur are released from arsenopyrite in an approximate 1:1 molar ratio, suggesting that oxidative dissolution by oxygen under circumneutral pH is congruent. Slower rates of iron release from the reactor indicate that some of the iron is lost from the effluent by oxidation to Fe(III) which subsequently hydrolyzes and precipitates. Using the electrochemical cell model for understanding sulfide oxidation, our results suggest that the rate-determining step in arsenopyrite oxidation is the reduction of water at the anodic site rather than the transfer of electrons from the cathodic site to oxygen as has been suggested for other sulfide minerals such as pyrite.  相似文献   

3.
Arsenic and Sb are common mine-water pollutants and their toxicity and fate are strongly influenced by redox processes. In this study, simultaneous Fe(II), As(III) and Sb(III) oxidation experiments were conducted to obtain rates under laboratory conditions similar to those found in the field for mine waters of both low and circumneutral pH. Additional experiments were performed under abiotic sterile conditions to determine the biotic and abiotic contributions to the oxidation processes. The results showed that under abiotic conditions in aerated Fe(III)–H2SO4 solutions, Sb(III) oxidizes slightly faster than As(III). The oxidation rates of both elements were accelerated by increasing As(III), Sb(III), Fe(III), and Cl concentrations in the presence of light. For unfiltered circumneutral water from the Giant Mine (Yellowknife, NWT, Canada), As(III) oxidized at 15–78 μmol/L/h whereas Sb(III) oxidized at 0.03–0.05 μmol/L/h during microbial exponential growth. In contrast, As(III) and Sb(III) oxidation rates of 0.01–0.03 and 0.01–0.02 μmol/L/h, respectively, were obtained in experiments performed with acid unfiltered mine waters from the Iberian Pyritic Belt (SW Spain). These results suggest that the Fe(III) formed from microbial oxidation abiotically oxidized As(III) and Sb(III). After sterile filtration of both mine water samples, neither As(III), Sb(III), nor Fe(II) oxidation was observed. Hence, under the experimental conditions, bacteria were catalyzing As and Sb oxidation in the Giant Mine waters and Fe oxidation in the acid waters of the Iberian Pyrite Belt.  相似文献   

4.
The oxidation of Mn(II) by O2 to Mn(III) or Mn(IV) is thermodynamically favored under the pH and pO2 conditions present in most near surface waters, but the kinetics of this reaction are extremely slow. This work investigated whether reactive oxygen species, produced through illumination of humic substances, could oxidize Mn at an environmentally relavent rate. The simulated sunlight illumination of a solution containing 200 μM Mn(II) and 5 mg/L Aldrich humic acid buffered at pH 8.1 produced ∼19 μM of oxidized Mn (MnOx where x is between one and two) after 45 minutes. The major oxidants reponsible for this reaction appear to be photoproduced superoxide radical anion, O2, and singlet molecular oxygen, 1O2. The dependencies of MnOx formation on Mn(II), humic acid, and H+ concentration were characterized. A kinetic model based largely on published rate constants was established and fit to the experimental data. As expected, analysis of the model indicates that the key reaction rate controlling MnOx production is the rate of decomposition of a MnO2+ complex formed from the reaction of Mn(II) with O2. This rate is strongly dependent on the Mn(II) complexing ligands in solution. The MnOx production in the seawater sample taken from Bodega Bay, USA and spiked with 200 μM Mn(II) was well reproduced by the model. Extrapolations from the model imply that Mn photo-oxidation should be a significant reaction in typical surface seawaters. Calculated rates, 5.8 to 55 pM h−1, are comparable to reported rates of biological Mn oxidation, 0.07 to 89 pM h−1. Four fresh water samples that were spiked with 200 μM Mn(II) also showed significant MnOx production. Based on these results, it appears that Mn photo-oxidation could constitute a significant, and apparently unrecognized geochemical pathway in natural waters.  相似文献   

5.
The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnOx). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20–150 mg/L), system construction (±inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 °C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnOx precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnOx precipitates from all sites was coarse and “sponge-like” composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnOx precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnOx mineral assemblages in CMD treatment systems.  相似文献   

6.
Biofilm-embedded Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. The speciation and mobility of Zn in particular has been linked to Mn oxides found in streams, wetlands, soils, and aquifers. We investigated the mechanisms of Zn sorption to a biogenic Mn oxide within a biofilm produced by model soil and freshwater MnII-oxidizing bacteria Pseudomonas putida. The biogenic Mn oxide is a c-disordered birnessite with hexagonal layer symmetry. Zinc adsorption isotherm and Zn and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy experiments were conducted at pH 6.9 to characterize Zn sorption to this biogenic Mn oxide, and to determine whether the bioorganic components of the biofilm affect metal sorption properties. The EXAFS data were analyzed by spectral fitting, principal component analysis, and linear least-squares fitting with reference spectra. Zinc speciation was found to change as Zn loading to the biosorbent [bacterial cells, extracellular polymeric substances (EPS), and biogenic Mn oxide] increased. At low Zn loading (0.13 ± 0.04 mol Zn kg−1 biosorbent), Zn was sorbed to crystallographically well-defined sites on the biogenic oxide layers in tetrahedral coordination to structural O atoms. The fit to the EXAFS spectrum was consistent with Zn sorption above and below the MnIV vacancy sites of the oxide layers. As Zn loading increased to 0.72 ± 0.04 mol Zn kg−1 biosorbent, Zn was also detected in octahedral coordination to these sites. Overall, our results indicate that the biofilm did not intervene in Zn sorption by the Mn-oxide because sorption to the organic material was observed only after all Mn vacancy sites were capped by Zn. The organic functional groups present in the biofilm contributed significantly to Zn removal from solution when Zn concentrations exceeded the sorption capacity of the biooxide. At the highest Zn loading studied, 1.50 ± 0.36 mol Zn kg−1 biosorbent, the proportion of total Zn sorption attributed to bioorganic material was 38 mol%. The maximum Zn loading to the biogenic oxide that we observed was 4.1 mol Zn kg−1 biogenic Mn oxide, corresponding to 0.37 ± 0.02 mol Zn mol−1 Mn. This loading is in excellent agreement with previous estimates of the content of cation vacancies in the biogenic oxide. The results of this study improve our knowledge of Zn speciation in natural systems and are consistent with those of Zn speciation in mineral soil fractions and ferromanganese nodules where the Mn oxides present are possibly biogenic.  相似文献   

7.
The oxygenation kinetics of nanomolar concentrations of Fe(II) in aqueous solution have been studied in the absence and presence of millimolar concentrations of phosphate over the pH range 6.0-7.8. At each phosphate concentration investigated, the overall oxidation rate constant varied linearly with pH, and increased with increasing phosphate concentration. A model based on equilibrium speciation of Fe(II) was found to satisfactorily explain the results obtained. From this model, the rate constants for oxygenation of the Fe(II)-phosphate species FeH2PO4+, FeHPO4 and FePO4 have been determined for the first time. FePO4 was found to be the most kinetically reactive species at circumneutral pH with an estimated oxygenation rate constant of (2.2 ± 0.2) × 10 M−1 s−1. FeH2PO4+ and FeHPO4 were found to be less reactive with oxygen, with rate constants of (3.2 ± 2) × 10−2 M−1 s−1 and (1.2 ± 0.8) × 10−1 M−1 s−1, respectively.  相似文献   

8.
The initial solid phase oxidation products formed during the oxidation of aqueous Mn(II) at 25°C were studied as a function of time. The analyses included morphology (TEM), mineralogy (x-ray diffraction), OMn ratio (iodometric method), oxidation state of manganese (XPS), and dissolved manganese. The initial solid formed under our conditions was Mn3O4 (hausmannite) which converted completely to γMnOOH (manganite) after eight months. βMnOOH (feitknechtite) appeared to be an intermediate in this transformation. The OMn ratio was initially 1.37 and increased to 1.49 over the same time span. Throughout the course of this study the XPS analyses showed that the surface of the solids (<50 Å) was dominated by Mn(III). The solution pH and dissolved manganese concentrations were consistent with disproportionation and oxidation reactions that favor the transformation of Mn3O4 to γMnOOH but not to γMnO2.  相似文献   

9.
Microbial Mn(II) oxidation kinetics in response to oxygen concentration were assessed in suboxic zone water at six sites throughout the Black Sea. Mn(II) oxidation rates increased asymptotically with increasing oxygen concentration, consistent with Michaelis-Menten enzyme kinetics. The environmental half-saturation constant, KE, of Mn(II) removal (oxidation) varied from 0.30 to 10.5 μM dissolved oxygen while the maximal environmental rate, VE−max, ranged from 4 to 50 nM h−1. These parameters varied spatially and temporally, consistent with a diverse population of enzymes catalyzing Mn oxide production in the Black Sea. Coastally-influenced sites produced lower KE and higher VE−max constants relative to the Western and Eastern Gyre sites. In the Bosporus Region, the Mn(II) residence time calculated using our KE and VE−max values with 0.1 μM oxygen was 4 days, 25-fold less than previous estimates. Our results (i) indicate that rapid Mn(II) oxidation to solid phase Mn oxides in the Black Sea’s suboxic zone is stimulated by oxygen concentrations well below the 3-5 μM concentration reliably detected by current oceanographic methods, (ii) suggest the existence of multiple, diverse Mn(II)-oxidizing enzymes, (iii) are consistent with shorter residence times than previously calculated for Mn(II) in the suboxic zone and (iv) cast further doubt on the existence of proposed reactions coupling solid phase Mn oxide production to electron acceptors other than oxygen.  相似文献   

10.
Sorption of rare earth elements (REEs) and Ce oxidation on natural and synthetic Mn oxides have been investigated by many researchers. Although Mn(II)-oxidizing microorganisms are thought to play an important role in the formation of Mn oxides in most natural environments, Ce oxidation by biogenic Mn oxide and the relevance of microorganisms to the Ce oxidation process have not been well understood. Therefore, in this study, we conducted sorption experiments of REEs on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. The distribution coefficients, Kd(REE), between biogenic Mn oxide (plus hyphae) and 10 mmol/L NaCl solution showed a large positive Ce anomaly and convex tetrad effect variations at pH 3.8, which was consistent with previous works using synthetic Mn oxide. The positive Ce anomaly was caused by oxidation of Ce(III) to Ce(IV) by the biogenic Mn oxide, which was confirmed by analysis of the Ce LIII-edge XANES spectra. With increasing pH, the positive Ce anomaly and convex tetrad effects became less pronounced. Furthermore, negative Ce anomalies were observed at a pH of more than 6.5, suggesting that Ce(IV) was stabilized in the solution (<0.2 μm) phase, although Ce(III) oxidation to Ce(IV) on the biogenic Mn oxide was confirmed by XANES analysis. It was demonstrated that no Ce(III) oxidation occurred during sorption on the hyphae of strain KR21-2 by the Kd(REE) patterns and XANES analysis. The analysis of size exclusion HPLC-ICP-MS showed that some fractions of REEs in the filtrates (<0.2 μm) after sorption experiments were bound to organic molecules (40 and <670 kDa fractions), which were possibly released from hyphae. A line of our data indicates that the negative Ce anomalies under circumneutral pH conditions arose from Ce(III) oxidation on the biogenic Mn oxide and subsequent complexation of Ce(IV) with organic ligands. The suppression of tetrad effects is also explained by the complexation of REEs with organic ligands. The results of this study demonstrate that the coexistence of the biogenic Mn oxide and hyphae of strain KR21-2 produces a specific redox chemistry which cannot be explained by inorganic species.  相似文献   

11.
Oxic limestone beds are commonly used for the passive removal of Mn(II) from coal mine drainage (CMD). Aqueous Mn(II) is removed via oxidative precipitation of Mn(III/IV) oxides catalyzed by Mn(II)-oxidizing microbes and Mn oxide (MnOx) surfaces. The relative importance of these two processes for Mn removal was examined in laboratory experiments conducted with sediments and CMD collected from eight Mn(II)-removal beds in Pennsylvania and Tennessee, USA. Sterile and non-sterile sediments were incubated in the presence/absence of air and presence/absence of fungicides to operationally define the relative contributions of Mn removal processes. Relatively fast rates of Mn removal were measured in four of the eight sediments where 63–99% of Mn removal was due to biological oxidation. In contrast, in the four sediments with slow rates of Mn(II) removal, 25–63% was due to biological oxidation. Laboratory rates of Mn(II) removal were correlated (R2 = 0.62) to bacterial biomass concentration (measured by phospholipid fatty acids (PLFA)). Furthermore, laboratory rates of Mn(II) removal were correlated (R2 = 0.87) to field-scale performance of the Mn(II)-removal beds. A practical recommendation from this study is to include MnOx-coated limestone (and associated biomass) from an operating bed as “seed” material when constructing new Mn(II)-removal beds.  相似文献   

12.
The fate of arsenic in groundwater depends largely on its interaction with mineral surfaces. We investigated the kinetics of As(III) oxidation by aquifer materials collected from the USGS research site at Cape Cod, MA, USA, by conducting laboratory experiments. Five different solid samples with similar specific surface areas (0.6-0.9 m2 g−1) and reductively extractable iron contents (18-26 μmol m−2), but with varying total manganese contents (0.5-3.5 μmol m−2) were used. Both dissolved and adsorbed As(III) and As(V) concentrations were measured with time up to 250 h. The As(III) removal rate from solution increased with increasing solid manganese content, suggesting that manganese oxide is responsible for the oxidation of As(III). Under all conditions, dissolved As(V) concentrations were very low. A quantitative model was developed to simulate the extent and kinetics of arsenic transformation by aquifer materials. The model included: (1) reversible rate-limited adsorption of As(III) onto both oxidative and non-oxidative (adsorptive) sites, (2) irreversible rate-limited oxidation of As(III), and (3) equilibrium adsorption of As(V) onto adsorptive sites. Rate constants for these processes, as well as the total oxidative site densities were used as the fitting parameters. The total adsorptive site densities were estimated based on the measured specific surface area of each material. The best fit was provided by considering one fast and one slow site for each adsorptive and oxidative site. The fitting parameters were obtained using the kinetic data for the most reactive aquifer material at different initial As(III) concentrations. Using the same parameters to simulate As(III) and As(V) surface reactions, the model predictions were compared to observations for aquifer materials with different manganese contents. The model simulated the experimental data very well for all materials at all initial As(III) concentrations. The As(V) production rate was related to the concentrations of the free oxidative surface sites and dissolved As(III), as with apparent second-order rate constants of and for the fast and the slow oxidative sites, respectively. The As(III) removal rate decreased approximately by half for a pH increase from 4 to 7. The pH dependence was explained using the acid-base behavior of the surface oxidative sites by considering a surface pKa = 6.2 (I = 0). In the presence of excess surface adsorptive and oxidative sites, phosphate diminished the rate of As(III) removal and As(V) production only slightly due to its interaction with the oxidative sites. The observed As(III) oxidation rate here is consistent with previous observations of As(III) oxidation over short transport distances during field-scale transport experiments. The model developed here may be incorporated into groundwater transport models to predict arsenic speciation and transport in chemically heterogeneous systems.  相似文献   

13.
The kinetics of Fe(III) precipitation in synthetic buffered waters have been investigated over the pH range 6.0-9.5 using a combination of visible spectrophotometry, 55Fe radiometry combined with ion-pair solvent extraction of chelated iron and numerical modeling. The rate of precipitation, which is first order with respect to both dissolved and total inorganic ferric species, varies by nearly two orders of magnitude with a maximum rate constant of 16 ± 1.5 × 106 M−1 s−1 at a pH of around 8.0. Our results support the existence of the dissolved neutral species, Fe(OH)30, and suggest that it is the dominant precursor in Fe(III) polymerization and subsequent precipitation at circumneutral pH. The intrinsic rate constant of precipitation of Fe(OH)30 was calculated to be allowing us to predict rates of Fe(III) precipitation in the pH range 6.0-9.5. The value of this rate constant, and the variation in the precipitation rate constant over the pH range considered, are consistent with a mechanism in which the kinetics of iron precipitation are controlled by rates of water exchange in dissolved iron hydrolysis species.  相似文献   

14.
Different analytical techniques were used to find the most reliable and economic method for determining the labile fraction of C in biochar. Biochar was produced from pine, poplar and willow (PI, PO and WI, respectively) at two temperatures (400 and 550 °C) and characterised using spectroscopic techniques [solid state 13C nuclear magnetic resonance spectroscopy (NMR)], molecular markers [pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS)], thermogravimetry (TG), elemental composition and wet oxidation (potassium permanganate and potassium dichromate). Short term incubation (110 h) of an A horizon from an Umbrisol amended with the biochar samples at two doses (7.5 and 15 t ha−1) was also carried out to provide supplementary information on the influence of biochar-soil interaction on CO2 evolution. Spectroscopic analysis demonstrated that the degree of biochar carbonisation was influenced by the type of feedstock and heating conditions and followed the order WI-400 < PI-400 ∼ WI-550 ∼ PO-400 < PO-550 < PI-550. The thermo-labile fraction of the biochar samples, estimated from TG, ranged between 21% and 49%. The fraction of total C oxidised with potassium permanganate (Cper/Ctotal) was <50 g kg−1 in all cases, whereas potassium dichromate (Cdichro/Ctotal) oxidation efficiency ranged between 180 and 545 g kg−1. For each type of feedstock, the highest values of either chemically or thermally degradable C corresponded to the biochar produced at low temperature. Results indicate that low cost methodologies, such as dichromate oxidation and TG, reflected the degree of biochar carbonisation, and could therefore be used to estimate the labile fraction of C in biochar.  相似文献   

15.
Manganese (oxy)hydroxides (MnOX) play important roles in the oxidation and mobilization of toxic As(III) in natural environments. Abiotic oxidation of Mn(II) to MnOX in the presence of Fe minerals has been proved to be an important pathway in the formation of Mn(III, IV) (oxy)hydroxides. However, interactions between Mn(II) and As(III) in the presence of Fe minerals are still poorly understood. In this study, abiotic oxidation of Mn(II) on lepidocrocite, and its effect on the oxidation and mobilization of As(III) were investigated. The results show that MnOX species are detected on lepidocrocite and their contents increase with increasing pH values ranging from 7.5 to 8.4. After 10 days, an MnOx component, groutite (α-MnOOH) was found on lepidocrocite. During the simultaneous oxidation of Mn(II) and As(III), and the As(III) pre-adsorbed processes, the presence and oxidation of Mn(II) significantly promotes the removal of soluble As(III). In addition, MnOx formed on lepidocrocite also contributes to the oxidation of soluble and adsorbed As(III) to As(V), the latter being subsequently released into solution. In the process where Mn(II) is pre-adsorbed on lepidocrocite, less As(III) is removed, given that the active sites occupied by MnOx inhibit the adsorption of As(III). In all experiments, the removal percentages of As(III) and the release of As(V) are correlated positively with pH values and initial concentrations of Mn(II), although they are not apparent in the Mn(II) pre-adsorbed system.  相似文献   

16.
Wetlands are significant sources and sinks for arsenic (As), yet the geochemical conditions and processes causing a release of dissolved arsenic and its association with the solid phase of wetland soils are poorly known. Here we present experiments in which arsenic speciation was determined in peatland mesocosms in high spatiotemporal resolution over 10 months. The experiment included a drought/rewetting treatment, a permanently wet, and a defoliated treatment. Soil water content was determined by the TDR technique, and arsenic, iron and sulfate turnover from mass balancing stocks and fluxes in the peat, and solid phase contents by sequential extractions. Arsenic content ranged from 5 to 25 mg kg−1 and dissolved concentrations from 10 to 300 μg L−1, mainly in form of As(III), and secondarily of As(V) and dimethylated arsenic (DMA). Total arsenic was mainly associated with amorphous iron hydroxides (R2 > 0.95, α < 0.01) and deeper into the peat with an unidentified residual fraction. Arsenic release was linked to ferrous iron release and primarily occurred in the intensely rooted uppermost soil. Volumetric air contents of 2-13 % during drought eliminated DMA from the porewater and suppressed its release after rewetting for >30 d. Dissolved As(III) was oxidized and immobilized as As(V) at rates of up to 0.015 mmol m−3 d−1. Rewetting mobilized As(III) at rates of up to 0.018 mmol m−3 d−1 within days. Concurrently, Fe(II) was released at depth integrated rates of up 20 mmol m−3 d−1. The redox half systems of arsenic, iron, and sulfur were in persistent disequilibrium, with H2S being a thermodynamically viable reductant for As(V) to As(III). The study suggests that rewetting can lead to a rapid release of arsenic in iron-rich peatlands and that methylation is of lesser importance than co-release with iron reduction, which was largely driven by root activity.  相似文献   

17.
Oxidation of As(III) by natural manganese (hydr)oxides is an important geochemical reaction mediating the transformation of highly concentrated As(III) in the acidic environment such as acid mine drainage (AMD) and industrial As-contaminated wastewater, however, little is known regarding the presence of dissolved Fe(II) on the oxidation process. In this study, oxidation of As(III) in the absence and presence of Fe(II) by MnO2 under acidic conditions was investigated. Kinetic results showed that the presence of Fe(II) significantly inhibited the removal of As(III) (including oxidation and sorption) by MnO2 in As(III)-Fe(II) simultaneous oxidation system even at the molar ratio of Fe(II):As(III) = 1/64:1, and the inhibitory effects increased with the increasing ratios of Fe(II):As(III). Such an inhibition could be attributed to the formation of Fe(III) compounds covering the surface of MnO2 and thus preventing the oxidizing sites available to As(III). On the other hand, the produced Fe(III) compounds adsorbed more As(III) and the oxidized As(V) on the MnO2 surface with an increasing ratio of Fe(II):As(III) as demonstrated in kinetic and XPS results. TEM and EDX results confirmed the formation of Fe compounds around MnO2 particles or separated in solution in Fe(II) individual oxidation system, Fe(II) pre-treated and simultaneous oxidation processes, and schwertmannite was detected in Fe(II) individual and Fe pre-treated oxidation processes, while a new kind of mineral, probably amorphous FeOHAs or FeAsO4 particles were detected in Fe(II)-As(III) simultaneous oxidation process. This suggests that the mechanisms are different in Fe pre-treated and simultaneous oxidation processes. In the Fe pre-treated and MnO2-mediated oxidation pathway, As(III) diffused through a schwertmannite coating formed around MnO2 particles to be oxidized. The newly formed As(V) was adsorbed onto the schwertmannite coating until its sorption capacity was exceeded. Arsenic(V) then diffused out of the coating and was released into the bulk solution. The diffusion into the schwertmannite coating and the oxidation of As(III) and sorption of both As(V) and As(III) onto the coating contributed to the removal of total As from the solution phase. In the simultaneous oxidation pathway, the competitive oxidation of Fe(II) and As(III) on MnO2 occurred first, followed by the formation of FeOHAs or FeAsO4 around MnO2 particles, and these poorly crystalline particles of FeOHAs and FeAsO4 remained suspended in the bulk solution to adsorb As(III) and As(V). The present study reveals that the formation of Fe(III) compounds on mineral surfaces play an important role in the sorption and oxidation of As(III) by MnO2 under acidic conditions in natural environments, and the mechanisms involved in the oxidation of As(III) depend upon how Fe(II) is introduced into the As(III)-MnO2 system.  相似文献   

18.
As-bearing travertine rocks from Tuscany (Italy), where previous studies suggested the existence of a CO32− ⇔ AsO33− substitution in the calcite lattice, were investigated with X-ray Absorption Spectroscopy (XAS) at the As K-edge (11,867 eV). In two of the studied samples, XANES indicates that As is in the 5+ oxidation state only, and EXAFS analysis reveals a local environment typical of arsenate species. For these samples, the lack of detectable second shell signals suggests a poorly ordered environment, possibly corresponding to an adsorption onto oxide and/or silicate phases. On the other hand, in the third sample XANES reveals a mixed As oxidation state (III and V). This sample also presents evident next nearest neighbor coordination shells, attributed to As-Ca and As-As contributions. The occurrence of next neighbor shells is evidence that part of As is incorporated in an ordered lattice. Furthermore, the local structure revealed by EXAFS is compatible with As incorporation in the calcite phase, as further supported by DFT simulations. The observation of next neighbors shells only in the As(III)-rich sample suggests the substitution of the arsenite group in place of the carbonate one (CO32− ⇔ AsO33−). The conclusion of this work is that uptake of As by calcite is in general less favored than adsorption onto iron oxhydroxides, but could become environmentally important wherever the latter phenomenon is hindered.  相似文献   

19.
Methylmercury can accumulate in fish to concentrations unhealthy for humans and other predatory mammals. Most sources of mercury (Hg) emit inorganic species to the environment. Therefore, ecological harm occurs when inorganic Hg is converted to methylmercury. Sulfate- and iron-reducing bacteria (SRB and FeRB) methylate Hg, but the effects of processes involving oxidized and reduced forms of sulfur and iron on the reactivity of Hg, including the propensity of inorganic Hg to be methylated, are poorly understood. Under abiotic conditions, using a laboratory flow reactor, bisulfide (HS) was added at 40 to 250 μM h−1 to 5 g L−1 goethite (α-FeOOH) suspensions to which Hg(II) was adsorbed (30-100 nmol m−2) at pH 7.5. Dissolved Hg initially decreased from 103 or 104 nM (depending on initial conditions) to 10−1 nM, during which the concentration of Hg(II) adsorbed to goethite decreased by 80% and metacinnabar (β-HgS(s)) formed, based on identification using Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. The apparent coordination of oxygens surrounding Hg(II), measured with EXAFS spectroscopy, increased during one flow experiment, suggesting desorption of monodentate-bound Hg(II) while bidentate-bound Hg(II) persisted on the goethite surface. Further sulfidation increased dissolved Hg concentrations by one to two orders of magnitude (0.5 to 10 nM or 30 nM), suggesting that byproducts of bisulfide oxidation and Fe(III) reduction, primarily polysulfide and potentially Fe(II), enhanced the dissolution of β-HgS(s) and/or desorption of Hg(II). Rapid accumulation of Fe(II) in the solid phase (up to 40 μmol g−1) coincided with faster elevation of dissolved Hg concentrations. Fe(II) served as a proxy for elemental sulfur [S(0)], as S(0) was the dominant bisulfide oxidation product coupled to Fe(III) reduction, based on sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy. In one experiment, dissolved Hg concentrations tracked those of all sulfide species [S(-II)]. These results suggest that S(-II) reacted with S(0) to form polysulfide, which then caused the dissolution of β-HgS(s). A secondary Fe-bearing phase resembling poorly formed green rust was observed in sulfidized solids with scanning electron microscopy, although there was no clear evidence that either surface-bound or mineralized Fe(II) strongly affected Hg speciation. Examination of interrelated processes involving S(-II) and Fe(III) revealed new modes of Hg solubilization previously not considered in Hg reactivity models.  相似文献   

20.
The biomineralization of U(VI) phosphate as a result of microbial phosphatase activity is a promising new bioremediation approach to immobilize uranium in both aerobic and anaerobic conditions. In contrast to reduced uranium minerals such as uraninite, uranium phosphate precipitates are not susceptible to changes in oxidation conditions and may represent a long-term sink for uranium in contaminated environments. So far, the biomineralization of U(VI) phosphate has been demonstrated with pure cultures only. In this study, two uranium contaminated soils from the Department of Energy Oak Ridge Field Research Center (ORFRC) were amended with glycerol phosphate as model organophosphate source in small flow-through columns under aerobic conditions to determine whether natural phosphatase activity of indigenous soil bacteria was able to promote the precipitation of uranium(VI) at pH 5.5 and 7.0. High concentrations of phosphate (1-3 mM) were detected in the effluent of these columns at both pH compared to control columns amended with U(VI) only, suggesting that phosphatase-liberating microorganisms were readily stimulated by the organophosphate substrate. Net phosphate production rates were higher in the low pH soil (0.73 ± 0.17 mM d−1) compared to the circumneutral pH soil (0.43 ± 0.31 mM d−1), suggesting that non-specific acid phosphatase activity was expressed constitutively in these soils. A sequential solid-phase extraction scheme and X-ray absorption spectroscopy measurements were combined to demonstrate that U(VI) was primarily precipitated as uranyl phosphate minerals at low pH, whereas it was mainly adsorbed to iron oxides and partially precipitated as uranyl phosphate at circumneutral pH. These findings suggest that, in the presence of organophosphates, microbial phosphatase activity can contribute to uranium immobilization in both low and circumneutral pH soils through the formation of stable uranyl phosphate minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号