首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
厚层地下冰地段路堤建筑中的两个重要问题   总被引:6,自引:5,他引:6  
在厚层地下冰地段修筑路堤,必须十分注意防止路堤下多年冻土上限的下降。为了研究各种因素对路堤下上限的影响,我们于1971年在青海省祁连山南麓的热水地区,选择多年冻土下界附近的厚层地下冰地段,修  相似文献   

2.
青藏铁路普通路基下冻土过程动态评价   总被引:1,自引:0,他引:1  
本文主要利用青藏铁路北麓河厚层地下冰试验段中普通路基下部冻土温度的监测资料,对路基下部冻土温度变化和热收支特征进行了分析,并对修筑普通路基后多年冻土热融蚀敏感性和热稳定性进行了计算。结果表明,修筑普通铁路路基后,虽然多年冻土人为上限有较大幅度抬升,但原天然上限以下多年冻土温度却逐年升高,表现为显著的吸热状态。同时冻土热融蚀敏感性增强,冻土热稳定性下降,对路基热稳定性将产生较大的影响。  相似文献   

3.
王生廷  盛煜  吴吉春  李静  黄龙 《冰川冻土》2020,42(4):1186-1194
多年冻土地下冰作为一种特殊的存在形式, 对高原生态、 冻土环境以及冻土工程建设等都有深刻影响, 但是目前对于青藏高原地下冰储量的研究很少。以祁连山中东部大通河源区为例, 基于源区地貌分类、 冻土分布等研究, 利用源区多年冻土钻孔数据和公路地质勘测资料, 在水平和垂直两个方向上估算了多年冻土层地下冰储量。计算表明: 大通河源区多年冻土层2.5~10.0 m深度范围内地下冰总储量为(11.70±7.24) km3, 单位体积含冰量为(0.396±0.245) m3。其中冰缘作用丘陵和冰缘湖沼平原等地貌区含冰量较高, 而冰缘作用台地、 冲积洪积平原则含冰量较低。在垂向上多年冻土上限附近含冰量最高, 并随深度增大而缓慢减小。随着未来气候变暖、 多年冻土退化以及环境变化, 准确把握多年冻土区地下冰储量和分布特点对生态、 水文地质、 地质灾害预估、 冻土工程建设具有深远意义。  相似文献   

4.
青藏高原多年冻土层中地下冰储量估算及评价   总被引:12,自引:7,他引:5  
过去几十年来,沿青藏公路/铁路多年冻土区已经完成了数千个钻孔的钻探工作.经过仔细筛选,对其中的697个钻孔剖面的地下冰分布状况和其中9261个重量含水量的分布特征进行了分析.在水平方向上,依据地下冰的分布特征,把青藏公路/铁路沿线的多年冻土划分成少冰冻土、多冰冻土、富冰冻土、饱冰冻土和含土冰层5个含冰量类别,并详细统计了各类冻土沿公路所占里程.在垂向上,将每个钻孔划分出3个深度段:即多年冻土上限以下1m范围内、上限下深1~10m段及上限下10m以下段,统计了各深度地下冰储量.青藏公路沿线多年冻土的平均厚度为38.79m,平均含水量为17.19%,据此初步估算出青藏高原多年冻土区地下冰的总储量为9528km3.  相似文献   

5.
多年冻土区输电线路塔基基础附近活动层厚度和地下冰变化与基础稳定性密切相关,塔基施工的热扰动和混凝土基础的热效应使得基础周围冻土易发生退化,不利于基础的稳定。高密度电法是冻土工程环境研究中常用的地球物理方法,其探测结果的可靠性和分辨能力受数据采集方式、目标体地电结构影响。为减小对输电线路塔基附近冻土特征识别的不确定性,通过建立基础周围多年冻土地电模型的正反演模拟,发现活动层处于融化状态时各种装置方式数据采集均能较好地反映活动层厚度的起伏,但由于冻融锋面附近显著的电阻率差异,难以识别多年冻土层内的地下冰空间分布特征。而活动层处于冻结状态时进行探测能显著提高对多年冻土层内的地下冰空间分布特征识别精度,其中偶极-偶极装置可较好地识别高、低含冰量区域的发育位置和形态特征。在青藏直流输电线路塔基基础附近冻土探测中证实了方法的有效性,探测结果揭示了施工过程和基础热效应导致的塔基基础附近的地下冰退化。以上研究表明,通过正反演模拟,根据具体探测目标选择合适的探测时机和数据采集方式,能显著提高高密度电法探测结果的有效性和精度。  相似文献   

6.
通过探地雷达在多年冻土区的应用条件的分析,结合正演模拟和实例勘察,对比分析探地雷达对多年冻土区厚层地下冰的分布、埋藏深度、赋存情况以及对冻土类型的识别的有效性。研究结果表明,厚层地下冰与周围地质体存在巨大的介电常数差异,雷达波的相位特征、振幅大小、反射波和反射波组都出现较大的不同,使得探地雷达能有效地勘察厚层地下冰的各种特征;同时,对不同类型的冻土,因冰晶体的赋存情况及分布不同,结合坑探、钻探等其他地质勘察手段,也能有效地区分。  相似文献   

7.
青藏铁路北麓河试验段冻土工程地质特征及评价   总被引:43,自引:16,他引:27  
牛富俊  张建明  张钊 《冰川冻土》2002,24(3):264-269
冻土问题是青藏铁路建设的难题之一,为良好的解决这一问题,详细了解线路通过地区的冻土工程地质特征并对其做出工程地质评价至关重要.在目前完成的青藏铁路北麓河试验段的冻土勘察工作表明,该试验段的土层以富含厚层地下冰的细粒土为主,试验段地下水丰富,全段高温与低温多年冻土都有分布,冻土上限深度一般为2~3m.综合上述特征,该试验段综合评价为不良和极差冻土工程地质地段.在类似地区进行铁路建设,工程措施设计和采用中要充分考虑冻土工程地质特征,否则可能导致工程建设的隐患甚至所采取工程措施的失败.  相似文献   

8.
青藏高原多年冻土区钻孔灌注桩承载特性试验研究   总被引:2,自引:0,他引:2  
通过对青藏高原风火山地区的桥梁钻孔灌注桩进行现场静载试验, 研究了厚层地下冰地区高温不稳定冻土地段桥梁钻孔灌注桩的基桩承载力和变形特性, 结果表明: 厚层地下冰地区冻土如果受到扰动, 其恢复过程非常缓慢;钻孔灌注桩的桩端阻力对整个桩基的承载力贡献较小, 基桩周围土体的剪切变形大部分为塑性变形, 沉降特性呈现出较为典型的摩擦桩特征;基桩轴力的荷载传递特性和桩侧阻力的发挥与桩顶所加荷载大小、桩周冻土的性质以及地温密切相关.  相似文献   

9.
青藏铁路沿线天然场地多年冻土变化   总被引:2,自引:2,他引:0  
基于青藏铁路沿线30个天然场地2006—2015年地温观测资料,对多年冻土天然上限(以下称冻土上限)及其变化、不同深度冻土地温及其变化进行分析,研究了近期多年冻土时空变化特征。观测结果表明,冻土上限为0.88~9.14 m,平均为3.54 m。在冻土上限下降的场地中,冻土上限下降幅度为0.05~2.22 m,平均为0.51 m;冻土上限下降速率为0.01~0.25 m/a,平均为0.07 m/a。高温冻土区冻土上限下降幅度与下降速率分别大于低温冻土区的0.47 m与0.06 m/a。总体而言,冻土上限附近和15 m深度地温呈上升趋势。其中,冻土上限附近地温升温幅度为0.01~0.60℃,平均为0.16℃;冻土上限附近地温升温速率为0.001~0.067℃/a,平均为0.018℃/a。低温冻土区上限附近地温升温幅度与升温速率分别大于高温冻土区0.12℃和0.014℃/a。15 m深度地温升温幅度为0.01~0.48℃,平均为0.10℃,15 m深度地温升温速率为0.002~0.054℃/a,平均为0.011℃/a。低温冻土区15 m深度地温升温幅度和升温速率分别大于高温冻土区0.11℃和0.012℃/a。个别观测场地受局地因素影响,出现了冻土上限抬升和冻土地温下降的情形。  相似文献   

10.
青藏500kV直流联网工程穿越青藏高原多年冻土区,冻土特有的工程问题将对工程设计、施工和安全运营产生重要影响。由于输电线路属于点线结构的工程特点,即塔基的稳定性关系到整条线路的稳定性,而塔基点位又具有一定的可调性,因此,多年冻土及厚层地下冰的分布特征对于输电线路的选线、选位较其他线性工程更具重要意义。本文主要在输电线路沿线冻土分布的基础上,重点对微地貌条件下冻土和厚层地下冰的分布发育规律进行了分析和研究。并在此基础上,结合输电线路工程特点,就线路的选线选位的原则进行了分析和确定。  相似文献   

11.
为准确了解青藏高原多年冻土退化过程及其环境效应,中国科学院寒区旱区环境与工程研究所和德国海德堡大学环境物理研究所共同组成科研小组,先后对我国三江源区、西昆仑甜水海地区进行了多年冻土退化过程的前期勘察研究工作.首次在人烟稀少的玉树-不冻泉沿线等地建立了3个长期综合观测研究站.在技术手段上,除应用常规的坑探、水土取样、水分现场观测、地面调查外,主要应用了最新的双天线、多回路探地雷达勘测技术,对不同地貌条件下的活动层结构特征、上限附近冻土结构、冷生组构等诸多方面进行了快速勘察,同时还进行了水分场分布规律、盐份迁移过程的初步研究.研究结果表明:地表景观特征对热质迁移规律、地温场具有重要影响;青藏高原新疆甜水海地区的低温(<-4℃)冻土与高原东部和腹地的高温(>-1℃)冻土在地质背景和地下冰发育情况等方面有所区别;甜水海地区生态环境在过去30多年的时间里已发生重大改变:地表植被发生大面积退化,地表普遍发生不同程度盐渍化;在该地区发现大量小型冻胀丘、石环等冰缘现象的存在.探地雷达勘察结果显示,地表地貌单元、植被分布、地表水分条件的变化均对多年冻土上限变化和地下冰的赋存产生重要影响.  相似文献   

12.
测地雷达在寒区浅层地质调查中的应用   总被引:2,自引:3,他引:2  
顾钟炜 《冰川冻土》1994,16(3):283-288
本综述了测地雷达技术在寒区浅层地质调查中的应用,包括:圈出地下冰,探测多年冻土构造、冻土上限、冰丘内部构造,测量河、湖冰厚度,多年冻土冻结核防护坝的勘深和监测,以及探测埋设的管道及其周围上层状态的变化等。  相似文献   

13.
加拿大不列颠希哥伦比亚大学地理系马凯(J.R.Mackay)教授应中国科学院兰州冰川冻土所的邀请于1982年10月20日至11月5日访问我国。在兰州期间,马凯教授就多年冻土、冰楔、地下冰等作了专题讲座,参观该所冻土力学、冻土热物理和低温等实验室和展览室,并参观了西北铁路科研所。此后又到天山站访问。  相似文献   

14.
青藏铁路格拉段多年冻土上限的确定方法   总被引:1,自引:0,他引:1  
影响多年冻土地区建筑物稳定性的主要部位是冻土上限附近及其上部的季节融化层.准确确定多年冻土上限的位置及掌握其变化规律是冻土地区工程勘察的基本工作和重要内容.介绍了青藏铁路多年冻土上限的勘察和确定方法.  相似文献   

15.
古冻土存在的依据和判别标志主要是古冻土遗迹(深埋藏多年冻土层、古冻土上限、融化夹层、厚层地下冰)和古冰缘现象(古冻胀丘、古融冻褶皱、砂楔、土楔、冰楔假型、风成沙丘、黄土层、厚层泥炭和腐殖质层等)。文章结合大量的测年数据,利用古代和现代冻土以及冰缘现象的时空分布差异综合分析对比,将全新世以来青藏高原多年冻土演化过程和环境变化划分为6个较明显的时段:早全新世的气候剧变期(10800aB.P.至8500~7000aB.P.)、中全新世大暖期(8500~7000aB.P.至4000~3000aB.P.)、晚全新世寒冷期(4000~3000aB.P.至1000aB.P.)、晚全新世温暖期(1000aB.P.至500aB.P.)、全新世末小冰期(500aB.P.至100aB.P.)及近代升温期(100aB.P.至今);同时,概述了各时段高原冻土的发育条件、分布范围及总面积,和当时高原上的古气候、古地理环境。  相似文献   

16.
青藏高原多年冻土区是世界上中低纬度多年冻土面积最大的区域,气候变化引起青藏高原多年冻土区年平均地温上升、地下冰融化、多年冻土退化等问题。借助ARCGIS技术手段,通过地下冰计算模型和Stefan公式计算研究区不同气候变化情景模式下的地下冰体积含冰量和活动层厚度变化。结果表明:在未来几十年内多年冻土的分布范围将不会发生显著变化,多年冻土的主要退化形式为地下冰的消融、低温冻土向高温冻土转化;但本世纪末多年冻土将发生大范围的退化。这一过程将引起热融滑塌、热融沉陷等冻土热融灾害。将Nelson热融灾害风险性评价模式进行修正,对研究区灾害风险性进行评估区划。最大的危险区主要分布在西昆仑山南麓、青南山原中部、冈底斯山和念青唐古拉山南麓、喜马拉雅山南麓部分区域,在未来几十年内有加剧的趋势。  相似文献   

17.
兰州黄土在冻融过程中水热输运实验研究   总被引:6,自引:0,他引:6  
李述训  程国栋 《冰川冻土》1996,18(4):319-324
实验表明,当上边界面温度按正弦变化,下边界面温度保持某一固定值时,冻结均匀的兰州黄土融化后,相变界面附近的含水量明显增大。同样,对初始均匀融化的兰州黄土试样,经冰融循环作用后,冰土层内最大融化深工附近的含水量大于附近区域的含水量。试样内水分在冻融作用下的这种积累特征,与天然情况下多年冻土上限附近出现的水分富积现象相类似。由于在冻结和融化过程中,水分将向相变界面附近迁移,多年冻土上限附近地下冰的形成  相似文献   

18.
地下冰作为多年冻土区别于其他土体的显著特征,对寒区水文、生态环境和工程建设等都有深刻影响。为准确估算多年冻土层地下冰储量,基于黄河源区地貌及其成因类型,结合岩性组成、含水率等105个钻孔的野外实测数据,估算了黄河源区多年冻土层3.0~10.0 m深度范围内地下冰储量,并讨论了浅层地下冰的空间分布特征。研究结果表明:黄河源区多年冻土层3.0~10.0 m深度范围内地下冰总储量为(49.62±17.95) km3,平均单位体积含冰量为(0.293±0.107) m3/m3;在水平方向上,湖积湖沼平原、冰缘作用丘陵等地貌单元含冰量较高,而侵蚀剥蚀台地、冲洪积平原等地貌单元含冰量较低;在垂向上,多年冻土上限附近含冰量较高,并随深度呈减小的趋势。  相似文献   

19.
朱建立 《青海地质》1995,4(1):49-53
叶青-勒那曲引水线路根据地质构造、地貌特征、特理地质现象,共划分六个区段。德曲段:山脊寒冻网化碎石破型,山坡融冻泥流及顺河断层发育;解吾曲下段;冻土沼泽发育,南北构造活动较强烈,区域稳定性及边坡稳定性较差;解吾曲上游段:山区和丘陵区断裂发育,在喜山末期有强烈的活动,滑坡、冰丘等不良地质现明极为发育;玛尕曲-洛曲南段:厚层地下冰发育,近期活动断裂明显,洛曲南岩-多曲东岸段:缓坡区有厚层地下冰,多年冻  相似文献   

20.
本图编制的主要依据是冰土、地下冰的分布及土层含冰量的大小。采用三级区划原则,共分出三个冻土工程地质区,15个冻土工程地质亚区和43个不同类型的冻土工程地质地段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号