首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文以北秦岭造山带华北陆块南缘被动陆缘火山裂谷(大洋?)盆地、早古生代岛弧-弧后盆地和晚古生代岛弧-蛇绿杂岩等构造相带为研究重点,综合利用同位素年代学、古生物年代学、岩石学、岩石地球化学和同位素地球化学等实测数据,系统研究和探讨了北秦岭造山带被动陆缘大洋扩张向俯冲增生造山转换的时限.研究显示:华北陆块南缘由晚新元古代大洋扩张作用转化为板块俯冲作用的转换时限为早奥陶世,约472Ma左右.北秦岭造山带在古生代期间至少存在两期板块俯冲增生造山作用,时代上向南变新,空间上向南向洋内迁移.两次俯冲增生造山作用分别构筑了北秦岭造山带早古生代岛弧-弧后盆地和晚古生代岛弧-俯冲杂岩两条构造相带.  相似文献   

2.
内蒙古北山造山带自北向南发育红石山-百合山、月牙山-洗肠井和帐房山-玉石山3条蛇绿构造混杂岩带。其中北部的2条蛇绿岩带揭示了北山造山带两阶段演化的历史:月牙山-洗肠井蛇绿混杂岩带洋壳形成于530~520 Ma,沿该带多处保存较完好的蛇绿岩洋壳残块(洋壳结构具向北变新特征),与北侧的早古生代公婆泉岩浆弧(由南向北岛弧成熟度变高)共同指示了北山洋向北俯冲消减的过程,即490 Ma初始俯冲,450~440 Ma为俯冲峰期,430~420 Ma为同碰撞阶段,400 Ma的双峰式岩浆岩组合指示了北山洋的消亡和后造山伸展的过程;红石山-百合山蛇绿混杂岩带是发育在雀儿山-圆包山岛弧基础上的SSZ型蛇绿岩,弧后开裂洋壳的形成与南侧最早发育的岛弧岩浆作用年龄接近(340~320 Ma),310~290 Ma俯冲峰期造成南侧白山岩浆弧大量的岩浆活动,早二叠世末期(275 Ma)的辉长岩和花岗岩侵位及早—中二叠世双堡塘组下部的角度不整合均反映了红石山洋盆的闭合。前人所划"石板井-小黄山蛇绿岩带"实为一条早古生代发育的深大断裂,沿带发育中基性侵入体及少量超基性岩,后期(志留纪末)叠加有较强的韧性剪切变形。中生代以来的走滑作用和逆冲推覆构造改造了古生代的构造格架,使红石山-百合山蛇绿混杂岩带向北左行切错了十余千米,北山南部的中—新元古界推覆至下古生界之上。对内蒙古北山造山带时空结构的厘定,有助于中亚造山带造山作用过程的理解及其对古生代地壳增生的深入研究,也对银额盆地晚古生代新层系油气资源勘查起到基础支撑。  相似文献   

3.
滇西昌宁─孟连带南部地层地质问题   总被引:1,自引:1,他引:1  
滇西孟连以南,整合于南段组浊积岩之上的拉巴群硅质岩含晚二叠世早期放射虫化石,南段组时代不仅限于石炭纪,可能延入二叠纪。二者为晚古生代思茅地块的外陆坡沉积。其西面的南基河杂岩(新名)由层序混乱的晚古生代硅质岩、泥岩和少量砂岩、玄武岩构成。放射虫化石证据表明,硅质岩时代不仅限于晚泥盆世-早二叠世,还延入晚二叠世,而有的砂岩时代为早石炭世,它们是经过强烈构造变动的古特提斯洋的沉积记录。昌宁-孟连带向南可能延至泰国北部的清迈带,而非东北部的难河带。  相似文献   

4.
于田县幅、伯力克幅地质调查新成果及主要进展   总被引:2,自引:9,他引:2  
发现其曼于特早古生代蛇绿混杂岩带和二叠纪普鲁-阿羌裂谷型火山岩带。确定苏巴什蛇绿混杂岩带的形成时代为石炭纪-中二叠世。查明阿尔金断裂延人西昆仑表现为转换断层的性质。认为其曼于特蛇绿混杂岩与库地蛇绿岩相当,代表震旦纪-早古生代原特提斯多岛洋内亲塔里木板块的小洋盆;苏巴什蛇绿混杂岩带归属于晚古生代古特提斯沟-弧-盆体系,为弧后陆缘小洋盆消减的产物,该盆地于中二叠世末褶皱,代表晚古生代弧-陆碰撞后的大陆增生;晚二叠世-三叠纪沉积及巴颜喀拉山群奠基于特提斯洋盆之上,在接受大量陆缘碎屑沉积的同时向北侧的古生代增生造山带之下俯冲,形成了昆仑山最南侧、规模最大的晚三叠世-侏罗纪二长花岗岩带,并最终实现洋-陆转化。  相似文献   

5.
滇西昌宁─孟连带南部地层地质问题   总被引:4,自引:2,他引:4  
吴浩若  杜越 《地层学杂志》1994,18(3):221-227
滇西孟连以南,整合于南段组浊积岩之上的拉巴群硅质岩含晚二叠世早期放射虫化石,南段组时代不仅限于石炭纪,可能延入二叠纪。二者为晚古生代思茅地块的外陆坡沉积。其西面的南基河杂岩(新名)由层序混乱的晚古生代硅质岩、泥岩和少量砂岩、玄武岩构成。放射虫化石证据表明,硅质岩时代不仅限于晚泥盆世-早二叠世,还延入晚二叠世,而有的砂岩时代为早石炭世,它们是经过强烈构造变动的古特提斯洋的沉积记录。昌宁-孟连带向南可能延至泰国北部的清迈带,而非东北部的难河带。  相似文献   

6.
根据嫩江—黑河地区古生代地质体岩石组合特征,恢复原岩建造类型,并在分析岩浆作用、变质作用、构造组合关系及同位素年代学资料基础上,探讨嫩江—黑河晚古生代陆陆碰撞带的形成机制。研究认为,早石炭世兴安地块和松嫩地块开始沿嫩江—黑河一线汇聚拼贴,早石炭世洋陆俯冲阶段形成了岛弧与弧后盆地沉积;晚石炭世—早二叠世陆陆碰撞过程中形成花岗闪长岩和二长花岗岩侵位;早二叠世碰撞后伸展阶段形成了中二叠世弧后残余盆地。总体具有从俯冲-碰撞造山向造山后伸展演化的特点。  相似文献   

7.
中昆仑北部地区构造地层学初步研究   总被引:8,自引:0,他引:8  
中昆仑北部造山带可分为 5个构造地层区 :白干湖、求勉雷克、大九坝、祁漫塔格南缘和祁漫塔格北缘。白干湖和求勉雷克构造地层区出露前寒武纪变质结晶基底 ;早古生代期间 ,祁漫塔格洋沿鸭子泉—阿特阿特坎河断裂向北西俯冲碰撞 ,在祁漫塔格北缘沉积了古海沟岛弧浊积岩、晚泥盆世蛇绿混杂岩 ,在祁漫塔格南缘被动大陆边缘上发育晚泥盆世前陆磨拉石沉积 ;晚古生代早期 ,昆中求勉雷克地区简单剪切滑覆 ,在祁漫塔格南、北缘形成浅海相沉积 ,而大九坝地区由于断层高角度伸展 ,沉积了一套海相碳酸盐岩建造 ;晚古生代晚期 ,特提斯洋沿昆中断裂斜向俯冲 ,在大九坝出露了托库孜达坂蛇绿混杂岩和早二叠世前陆盆地堆积 ;晚三叠世陆相火山岩出露于祁漫塔格山南缘。  相似文献   

8.
对甘肃北山红柳园地区三个井组下部玄武岩和墩墩山群安山质火山岩进行了LA-ICP-MS锆石U-Pb年龄测定,三个井组火山岩形成于420Ma±15Ma,相当于晚志留世;墩墩山群火山岩形成于367Ma±10Ma,相当于晚泥盆世。测年结果表明,晚志留世北山古生代洋盆已经俯冲消亡,并开始碰撞造山,而晚泥盆世墩墩山群火山岩则是北山早古生代洋盆碰撞造山后裂谷拉伸作用的产物,标志北山及相邻地区晚泥盆世进入到新的构造演化阶段——晚古生代板内伸展阶段。  相似文献   

9.
东天山板块构造基本特征   总被引:22,自引:1,他引:22  
依据沉积建造、构造岩石组合、变形、变质、古生物分区、地壳结构、地球物理、地球化学等特征重新划分了东天山的板块构造格局,并对区内5个二级板块单元的基本特征进行了对比总结。康古尔塔格—喀尔力克岛弧系发育泥盆—石炭系岛弧拉斑玄武岩—安山岩,为活动大陆边缘产物;阿奇山—雅满苏岛弧系发育石炭系,4个火山—沉积旋回表明其为典型的活动边缘,无序地层苦水组为海沟区浊积岩;北山可二分,北部与中天山可对比,为早古生代岛弧,南部可与南天山对比,为晚古生代弧后盆地。康古尔塔格—黄山深断裂为准噶尔板块与塔里木板块的分界线,沿断裂发现有巨型韧性剪切带、混杂岩、海沟杂砂岩、大洋岩残片、无序拼合混杂带、碰撞花岗岩等,表明康—黄断裂为南北两板块的俯冲—碰撞带。  相似文献   

10.
沟-弧-盆体系恢复对于研究增生造山过程和解析成矿作用具有重要指示意义,多宝山岛弧带是我国重要的铜钼多金属成矿区带,其沟-弧-盆体系恢复对成矿地质背景研究及拓展区域找矿具有重要意义。通过对多宝山地区早古生代地层、岩石和构造的野外调研和系列编图,结合最新的年代学资料,重新厘定了含矿地层单位——多宝山组、铜山组的形成时代和层位:确定多宝山组形成时代为寒武纪芙蓉世-早奥陶世,铜山组形成时代为早-中奥陶世;将铜山组置于多宝山组之上,暗示地表以下保存有规模较大的主要成矿地质体——多宝山组,由此扩大了深部找矿空间。在此基础上,重建了多宝山岛弧带早古生代地层序列。在多宝山岛弧带西北侧多宝山-三卡一带划分出早古生代俯冲增生杂岩带,根据俯冲增生杂岩带与岩浆弧、伴生沉积盆地的沉积建造及时空关系,划分出弧前盆地、弧间盆地、弧后盆地等构造单元,建立了多宝山岛弧带古生代沟-弧-盆体系格架,认为多宝山岛弧带西北侧多宝山-三卡一带存在早古生代洋盆,并于奥陶纪发生南东向俯冲。指出岩浆弧靠近俯冲增生杂岩带一侧是成矿有利部位,为多宝山岛弧带铜多金属矿的成矿背景和成矿地质条件研究提供了理论依据。  相似文献   

11.
How ophiolitic mèlanges can be defined as sutures is controversial with regard to accretionary orogenesis and continental growth.The Chinese Altay,East junggar,Tianshan,and Beishan belts of the southern Central Asian Orogenic Belt(CAOB) in Northwest China,offer a special natural laboratory to resolve this puzzle.In the Chinese Altay,the Erqis unit consists of ophiolitic melanges and coherent assemblages,forming a Paleozoic accretionary complex.At least two ophiolitic melanges(Armantai,and Kelameili) in East Junggar,characterized by imbricated ophiolitic melanges,Nb-enriched basalts,adakitic rocks and volcanic rocks,belong to a Devonian-Carboniferous intra-oceanic island arc with some Paleozoic ophiolites,superimposed by Permian arc volcanism.In the Tianshan,ophiolitic melanges like Kanggurtag,North Tianshan,and South Tianshan occur as part of some Paleozoic accretionary complexes related to amalgamation of arc terranes.In the Beishan there are also several ophiolitic melanges,including the Hongshishan,Xingxingxia-Shibangjing,Hongliuhe-Xichangjing,and Liuyuan ophiolitic units.Most ophiolitic melanges in the study area are characterized by ultramafic,mafic and other components,which are juxtaposed,or even emplaced as lenses and knockers in a matrix of some coherent units.The tectonic settings of various components are different,and some adjacent units in the same melange show contrasting different tectonic settings.The formation ages of these various components are in a wide spectrum,varying from Neoproterozoic to Permian.Therefore we cannot assume that these ophiolitic melanges always form in linear sutures as a result of the closure of specific oceans.Often the ophiolitic components formed either as the substrate of intra-oceanic arcs,or were accreted as lenses or knockers in subduction-accretion complexes.Using published age and paleogeographic constraints,we propose the presence of (1) a major early Paleozoic tectonic boundary that separates the Chinese Altay-East Junggar multiple subduction system  相似文献   

12.
The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction–accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, U- Pb and Ar–Ar ages from the eastern Beishan orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan–Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes.  相似文献   

13.
The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9–1.0 Ga and ca. 420–440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484–383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310–254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298–269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298–246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.  相似文献   

14.
文章评述了增生造山作用的研究历史和进展,认为增生造山作用贯穿地球历史,是大陆增生的重要方式。用大陆边缘多岛弧盆系构造理解造山带的形成演化,提出巨型造山系的形成与长期发育的大洋岩石圈俯冲制约的两侧或一侧的多岛弧盆系密切相关。在多岛弧盆系演化过程中的弧 弧和弧 陆碰撞,弧前和弧后洋盆的消减冲杂岩的增生,洋底高原、洋岛/海山、外来地块(体)拼贴等一系列碰撞和增生造山作用形成大陆边缘增生造山系。大洋岩石圈最终消亡形成对接消减带,大洋岩石圈两侧的多岛弧盆系转化的造山系对接形成造山系的联合体。拼接完成后往往要继续发生大陆之间的陆 陆碰撞造山作用、陆内汇聚(伸展)作用,后者叠加在增生造山系上,使造山过程更加复杂。对接消减带是认识造山系形成演化的关键。大洋两侧多岛弧盆系经历的各种造山过程可以从广义上理解为一个增生造山过程。多岛弧盆系研究对于划分造山带细结构非常重要,是理解造山系物质组成、结构和构造的基础,并制约了造山后陆内构造演化。大陆碰撞前大洋两侧多岛弧盆系及陆缘系统更完整地记录了威尔逊旋回,记录的信息更加丰富。根据多岛弧盆系的思路对特提斯大洋演化提出新的模式,认为西藏冈底斯带自石炭纪以来受到特提斯大洋俯冲制约,三叠纪发生向洋增生造山作用,特提斯大洋于早白垩世末最终消亡。  相似文献   

15.
保山地块西缘早古生代增生造山作用   总被引:1,自引:0,他引:1       下载免费PDF全文
在保山地块西缘泸水-潞西构造带内, 出露一套构造混杂岩.主体为强变形的震旦系-古生界蒲满哨群、公养河群浅变质碎屑岩夹碳酸盐岩及火山岩等复理石浊积岩系等构成, 另有硅质岩、杂砂岩、灰岩、砾岩、玄武岩及花岗岩等弱变形的构造块体.岩石时代从震旦纪至古生代, 跨度大, 高度混杂, 并有从东向西变新的逐势, 表现为后退式增生.构造样式早期为同斜倒转冲断作用的叠瓦构造, 后期表现为近N-S向剪切.玄武安山岩、流纹岩类具弧火山岩特征, 而玄武岩类则为板内火山岩, 2种火山岩分别对应岛弧与弧后拉张洋盆产物.寒武纪、奥陶纪侵位的花岗岩也分为东西2个带, 西晚东早, 代表了保山陆块西缘岩浆弧的一部分.这样就记录了洋壳俯冲消亡、增生楔形成过程的沉积、火山-岩浆、变质和构造变形的地质事件群, 也记录了保山地块西缘早古生代增生造山形成过程的地质事件, 并证明了泸水-潞西构造带在震旦纪-古生代存在一洋盆.   相似文献   

16.
为了研究东昆仑南缘布青山复合增生型构造混杂岩带的物质组成、构造属性及形成演化历史,在前人资料基础上从构造混杂岩带物质组成、形成时代、构造属性等方面对其进行综合研究.研究结果表明,布青山复合增生型构造混杂岩带是一条分隔东昆仑造山带与巴颜喀拉造山带的增生型构造边界,主要由元古代-古生代不同构造属性的大型构造混杂岩块与混杂基质组成.构造混杂岩块包括中元古代中深变质基底岩块(苦海岩群)、寒武纪蛇绿岩岩块、奥陶纪蛇绿岩岩块、石炭纪蛇绿岩岩块、石炭纪洋岛/海山玄武岩岩块、奥陶纪中酸性弧岩浆岩岩块、格曲组磨拉石沉积等.基质岩系主要为一套强烈构造变形的早中二叠世马尔争组浊积岩系.该混杂岩带记录了东昆仑南缘布青山地区东特提斯洋(布青山洋)自新元古代晚期开启以来,从晚寒武世-中三叠世长期持续向北的洋壳消减及俯冲增生过程,并于中三叠世晚期布青山洋消减完毕而使巴颜喀拉地块与东昆仑地块碰撞拼合.该次造山事件导致了不同类型、不同时代构造岩块与马尔争组浊积岩强烈混杂,最终形成了布青山复合增生型构造混杂岩的基本构造格架.   相似文献   

17.
《Gondwana Research》2013,24(4):1316-1341
Subduction-related accretion in the Junggar–Balkash and South Tianshan Oceans (Paleo-Asian Ocean), mainly in the Paleozoic, gave rise to the present 2400 km-long Tianshan orogenic collage that extends from the Aral Sea eastwards through Uzbekistan, Tajikistan, Kyrgyzstan, to Xinjiang in China. This paper provides an up-to-date along-strike synthesis of this orogenic collage and a new tectonic model to explain its accretionary evolution.The northern part of the orogenic collage developed by consumption of the Junggar–Balkash Ocean together with Paleozoic island arcs (Northern Ili, Issyk Kul, and Chatkal) located in the west, which may have amalgamated into a composite arc in the Paleozoic in the west and by addition of another two, roughly parallel, arcs (Dananhu and Central Tianshan) in the east. The western composite arc and the eastern Dananhu and Central Tianshan arcs formed a late Paleozoic archipelago with multiple subduction zones. The southern part of the orogenic collage developed by the consumption of the South Tianshan Ocean which gave rise to a continuous accretionary complex (Kokshaal–Kumishi), which separated the Central Tianshan in the east and other Paleozoic arcs in the west from cratons (Tarim and Karakum) to the south. Cross-border correlations of this accretionary complex indicate a general southward and oceanward accretion by northward subduction in the early Paleozoic to Permian as recorded by successive southward juxtaposition of ophiolites, slices of ophiolitic mélanges, cherts, island arcs, olistostromes, blueschists, and turbidites, which are mainly Paleozoic in age, with the youngest main phase being Late Carboniferous–Permian. The initial docking of the southerly Tarim and Karakum cratons to this complicated late Paleozoic archipelago and accretionary complexes occurred in the Late Carboniferous–Early Permian in the eastern part of the Tianshan and in the Late Permian in the western part, which might have terminated collisional deformation on this suture zone. The final stages of closure of the Junggar–Balkash Ocean resembled the small ocean basin scenario of the Mediterranean Sea in the Cenozoic. In summary, the history of the Altaids is characterized by complicated multiple accretionary and collisional tectonics.  相似文献   

18.
金沙江(-哀牢山)弧盆系是西南三江多岛弧盆系的重要组成部分,恢复其时空格架及其形成演化过程对理解古特提斯多岛弧盆系的时空格局具有重要意义。根据新的地质调查资料、研究成果并结合分析数据,系统总结了金沙江弧盆系不同构造单元的物质组成及其构造属性,讨论了其构造演化过程及其对VMS型矿床的控制作用。金沙江洋壳发育时限主要为晚志留世—二叠纪,古洋壳地幔受到了早期俯冲带物质富集组分的影响,主体形成于弧后盆地的构造环境。江达-德钦-维西岩浆弧为一复杂的陆缘弧,经历了俯冲消减(300~260 Ma)、早碰撞聚合(255~250 Ma)、同碰撞伸展(249~237 Ma)和晚碰撞造山(236~212 Ma)等构造事件叠加改造,形成了不同类型、不同环境的岩浆活动及其盆地。金沙江带新发现的贡觉榴辉岩、维西退变榴辉岩等高压变质带,为恢复金沙江古特提斯洋的俯冲-碰撞造山的复杂演化过程提供了重要证据。在此基础上,结合区域地质资料,构建了金沙江弧盆系的演化历史,认为经历了晚志留世—早二叠世金沙江(-哀牢山)弧后洋盆扩张、早二叠世晚期—晚二叠世洋壳俯冲消减、早三叠世—晚三叠世弧-陆碰撞造山与盆-山转换、晚三叠世末期后碰撞陆内造山至陆内汇聚-走滑转换等阶段的演化过程,每个阶段控制着不同类型的VMS型矿床。  相似文献   

19.
藏东南碧土带瓦浦组火山岩形成的大地构造环境   总被引:6,自引:3,他引:3  
首次对藏东南原称的瓦浦组进行系统的岩石化学研究 ,发现它包括了两套不同时代和大地构造环境下形成的火山岩。瓦浦组火山熔岩由下部的玄武岩夹玄武安山岩和上部的流纹岩组成 ,是古特提斯洋盆中的洋岛火山岩 ,其时代初定为早二叠世—晚二叠世早期。在觉马—巴格和扎西所见的岩层是以钙质浊积岩为主的火山 -沉积岩系 ,火山岩为岛弧拉斑玄武岩 ,属晚三叠世早期活动大陆边缘产物。上述发现为碧土带是复杂的造山带拼贴体、古特提斯主洋盆是开阔的多岛洋和晚三叠世活动大陆边缘可能属马里亚纳型提供了重要证据  相似文献   

20.
Many ophiolite complexes like those of Oman and New Caledonia represent fragments of ancient oceanic crust and upper mantle generated at supra‐subduction zone environments and have been obducted onto the adjacent rifted continental margin together with the accretionary complexes and intra‐oceanic arcs. The Lajishan ophiolite complexes in the Qilian orogenic belt along the NE edge of the Tibet‐Qinghai Plateau are one of several ophiolites situated to the south of the Central Qilian block. Our geological mapping and petrological investigations suggest that the Lajishankou ophiolite complex consists of serpentinite, wehrlite, pyroxenite, gabbro, dolerite, and pillow and massive basalts that occur in a series of elongate fault‐bounded slices. An accretionary complex composed mainly of basalt, radiolarian chert, sandstone, mudstone, and mélange lies structurally beneath the ophiolite complex. The Lajishankou ophiolite complex and accretionary complex were emplaced onto the Qingshipo Formation of the Central Qilian block which shows features typical of turbidites deposited in a deep‐water environment of passive continental margin. Our geochemical and geochronological studies indicate that the mafic rocks in the Lajishankou ophiolite complex can be categorized into three distinct groups: massive island arc tholeiites, 509 Ma back‐arc dolerite dykes, and 491 Ma pillow basaltic and dolerite slices that are of seamount origin in a back‐arc basin. The ophiolite and accretionary complex constitute a Cambrian‐early Ordovician trench‐arc system within the South Qilian belt during the early Paleozoic southward subduction of the South Qilian Ocean prior to Early Ordovician obduction of this system onto the Central Qilian block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号