首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
嫩江—八里罕断裂带岭下韧性剪切带变形特征   总被引:4,自引:1,他引:3  
嫩江-八里罕断裂带位于东北地区中部、大兴安岭的东缘,为松辽盆地的西缘控盆断裂.断裂带传统认识上被认为是一条NNE向的深大断裂,其性质为正断层或拆离断层.笔者野外地质考察过程中,在断裂带中南段吉林省白城市岭下地区发现韧性剪切带,通过对该韧性剪切带构造要素系统测量和统计、显微构造观察、有限应变测量、石英组构EBSD(电子背散射衍射)分析和古应力值测量,明确了岭下剪切带变形程度为初糜棱岩-糜棱岩、石英组构以低温底面组构为主,滑移系为{0001},变形温度在400℃左右的变形特征,并初步认为嫩江-八里罕断裂带曾经历左旋走滑变形阶段;结合断裂带相关年代学资料,确定走滑时间为早白垩世中期(134~113 Ma),其形成机制与西太平洋伊泽纳崎板块向欧亚大陆俯冲的运动与NWW向NNW转向有关.  相似文献   

2.
沿红河断裂带(RRFZ)分布的点苍山变质核杂岩是一个不完整的变质核杂岩,它由两个特征迥异的单元组成,包括被同构造二长花岗岩侵入角闪岩相构造岩组成的下盘和绿片岩相的拆离断层带。下盘岩石包括具有高温构造组合,具有指示左行走滑剪切运动方向的L型糜棱岩或LS型糜棱岩。拆离断层带是一个上盘向E到SE伸展剪切的低温剪切带,由具有剪应变和压应变的典型S-L糜棱岩构成。低温构造岩也包括发育于下盘的几个糜棱岩化似斑状二长花岗岩侵入体。变质核杂岩与西侧覆盖未变质的中生代沉积岩并置,东部受第四纪断层作用影响为沿洱海分布的更新世-全新世沉积盆地。通过对点苍山变质核杂岩的构造研究,结合邻区变质核杂岩的地质年代学及古地磁学分析,我们认为:位于东南亚红河断裂和实皆断裂带之间的扇形区域内出现的变质核杂岩与渐新世-中新世时期区域性伸展作用有关,而伸展作用是由印支地块的差异性旋转产生的,其原因是由于约33Ma开始斜向俯冲的印度板块的顺时针旋转和回退所致。  相似文献   

3.
敦密断裂带白垩纪两期重要的变形事件   总被引:1,自引:1,他引:0  
本文报道了敦密断裂带糜棱岩中黑云母~(40)Ar/~(39)Ar定年结果和大规模走滑-逆冲断裂的几何学、运动学特征及其形成时代,以便揭示断裂带两期变形事件的构造属性。黑龙江省密山市花岗质糜棱岩中黑云母~(40)Ar/~(39)Ar加权平均年龄为132.2±1.2Ma,它是敦密断裂带经历伸展事件的冷却年龄,也是东北亚大陆边缘在早白垩世Hauterivian期-Albian期发生强烈区域伸展作用的产物。密山市至辽宁省清原县系列大型走滑-逆冲断层和断层相关褶皱揭示出在晚白垩世晚期-末期发生右旋走滑-逆冲事件,该事件规模大,影响范围广,导致整个断裂带遭受到强烈改造,形成对冲式断裂系统。将研究区走滑-逆冲断裂与山东省郯庐断裂带中段挤压构造对比,认为郯庐断裂带北段和中段在晚白垩世末期都发生了强烈的走滑-逆冲事件,它们具有相同的构造特征和构造属性。  相似文献   

4.
沿红河断裂带(RRFZ)分布的点苍山变质核杂岩是一个不完整的变质核杂岩,它由两个特征迥异的单元组成,包括被同构造二长花岗岩侵入角闪岩相构造岩组成的下盘和绿片岩相的拆离断层带。下盘岩石包括具有高温构造组合,具有指示左行走滑剪切运动方向的L型糜棱岩或LS型糜棱岩。拆离断层带是一个上盘向E到SE伸展剪切的低温剪切带,由具有剪应变和压应变的典型S-L糜棱岩构成。低温构造岩也包括发育于下盘的几个糜棱岩化似斑状二长花岗岩侵入体。变质核杂岩与西侧覆盖未变质的中生代沉积岩并置,东部受第四纪断层作用影响为沿洱海分布的更新世—全新世沉积盆地。通过对点苍山变质核杂岩的构造研究,结合邻区变质核杂岩的地质年代学及古地磁学分析,我们认为:位于东南亚红河断裂和实皆断裂带之间的扇形区域内出现的变质核杂岩与渐新世—中新世时期区域性伸展作用有关,而伸展作用是由印支地块的差异性旋转产生的,其原因是由于约33Ma开始斜向俯冲的印度板块的顺时针旋转和回退所致。  相似文献   

5.
构造分析表明,哀牢山-红河构造带哀牢山段由3个不同变形域组成,它们可能代表该构造带所经历的3期左行走滑。第一期左行走滑发生于构造带的整个东部高级带,变形体制为拉张性走滑,并形成角闪岩相L型构造岩。第二期走滑形成东部高级带的强变形带,变形体制接近简单剪切并形成绿片岩相L-S型糜棱岩。第三期左行走滑主要发生于西部低级带,变形体制为挤压性走滑,形成一左行逆冲的整体构造格局,并在变形带上形成千糜岩。地质年代学数据证明,三期左行走滑的形成时代分别是:58~56Ma以前、27Ma到22Ma、13~12Ma左右。哀牢山-红河构造带第一期走滑可…  相似文献   

6.
大别山东缘早期郯庐韧性剪切带 5个糜棱岩中白云母 4 0 Ar/39Ar总体年龄为 187~ 196Ma,其中三个给出了 188.7± 0 .7Ma、189.7±0 .6Ma、192 .5± 0 .7Ma的可靠坪年龄 ,指示了同造山期左旋走滑热事件。起源于华北、华南板块陆—陆碰撞过程中的这期断裂平移活动 ,发生在高压、超高压岩片抬升至中地壳后的早侏罗世 ,推测为陆内俯冲速度差造成的转换断层。晚期郯庐韧性剪切带糜棱岩及其中白云母 4 0 Ar/39Ar年龄 ,指示了 12 8Ma前 (早白垩世 )发生的又一次左旋走滑冷却事件。在这期断裂带左行平移的同时 ,大别造山带东段出现了大规模的岩…  相似文献   

7.
红河断裂带莺歌海段地质构造特征   总被引:3,自引:0,他引:3  
红河入海后的地质构造特征研究是当前红河断裂带研究的薄弱环节.结合莺歌海地区重力和地震资料解释与前人研究成果,系统总结了红河断裂带莺歌海盆地内的几何学、运动学特征,并根据莺歌海盆地沉积中心迁移规律获得了红河断裂带的年代学数据.研究认为:红河断裂带在入海口附近分叉,其中Tien Lang断层折向NE,呈马尾状展布;在莺歌海盆地内红河断裂带分支为A(Ⅰ号断层)、B、C和D(莺西断层)4条断层,其中A断层是最主要的一条分支断层.莺歌海盆地内的分支断层均呈近NW-SE走向,延伸420~500km,其地震解释剖面上发育的典型花状构造和马尾状Tien Lang断层共同指示该断层具有走滑运动性质;红河断裂带对莺歌海盆地的沉积具有明显的控制作用,盆地沉积中心变化规律揭示红河断裂带在30~15.5Ma期间具有左行走滑运动性质,15.5~5.5Ma期间为左行向右行转换阶段,发生了强烈的构造反转作用,5.5Ma以来具有右行走滑运动特征.  相似文献   

8.
准噶尔盆地南缘断裂带显微构造特征与活动时代   总被引:1,自引:0,他引:1  
对准噶尔盆地南缘霍尔果斯-玛纳斯-吐谷鲁逆断裂带中的断层泥和构造岩显微构造进行了研究,并对断裂带中的石膏、石英脉和断层泥进行了ESR测年。显微构造研究表明,断裂带至少经历了3期构造变形,断层泥和石英碎粒中既发育有线状擦痕、阶步等粘滑活动显微构造,也发育有剪切滑动、定向排列等蠕滑活动变形现象。ESR测年结果显示,霍尔果斯-玛纳斯-吐谷鲁逆断裂带形成于1.5Ma前,在0.4~1.0 Ma和0.08~0.12 Ma期间进行了二次再调整。断裂活动时间与青藏高原阶段性隆升的时间一致,说明准噶尔盆地南缘霍尔果斯-玛纳斯-吐谷鲁逆断裂带的形成与青藏高原的隆升过程密切相关。   相似文献   

9.
龙门山断裂带西南段晚第四纪活动性调查与分析   总被引:5,自引:2,他引:3       下载免费PDF全文
基于高分辨率SPOT影像解译、关键地点的野外构造地貌调查和活动断裂测量以及错断沉积物的光释光测年(OSL),确定了龙门山断裂带西南段主要活动断裂的分布特征及其晚第四纪活动特征,发现后龙门山断裂带--五龙-冷碛镇断裂是一条晚更新世活动的右旋走滑断裂,没有明显的挤压逆冲活动形迹.根据次级断层的地层切割关系和沉积物测年结果,确定了沿该断裂带晚更新世两期走滑活动事件:一期发生在86~88ka,另一期发生在36~48ka.中央断裂带--双石-西岭断裂也具有右旋走滑活动特征,但其活动性相对较弱.这两条主要断裂在全新世没有明显的活动形迹,表明龙门山断裂带西南段构造活动性较弱.现今以中小地震为主,地震震源机制解显示以走滑应力机制占主导,与现今应力测量确定的逆冲应力状态不一致.这些观察和测试结果为龙门山断裂带西南段未来强震危险性评价提供了重要的依据.  相似文献   

10.
哀牢山—红河构造带哀牢山段可划分为东部高级变质带和西部低级变质带。构造分析表明:该构造带由3个不同变形域组成,可能代表其经历的3期左行走滑。第1期走滑发生在整个高级变质带,为拉张性左行走滑,形成角闪岩相L型构造岩。第2期走滑形成高级变质带中的高应变带,变形体制接近简单剪切,形成绿片岩相L-S型糜棱岩。第3期主要发生在低级变质带,为挤压性走滑,形成左行逆冲构造格局,并形成低绿片岩相千糜岩。地质年代学数据证明,3期左行走滑的形成时代分别是:距今58~56Ma、27~22Ma和13~12Ma±。哀牢山—红河构造带第1期左行走滑可能对应于印度与欧亚大陆距今60Ma左右的初始碰撞;第2期变形与青藏高原最强的挤压隆升期一致;第3期事件可能代表距今16~13Ma开始的青藏高原物质进一步东挤。哀牢山—红河构造带的3期主要左行走滑均发生在新生代印度与欧亚大陆的汇聚过程中。  相似文献   

11.
鲜水河断裂带位于青藏高原东缘,是中国大陆内部地震活动性最强的大型活动断裂带之一。大量研究证据表明,鲜水河断裂带色拉哈—康定段未来几十年内发生破坏性强震的风险较高。目前正在规划建设的国家重大交通基础建设工程——川藏铁路,将在康定折多山地区直接穿越鲜水河活动断裂带。本研究通过高分辨率卫星影像的地质地貌解译和详细的野外构造地质填图,新发现一条发育于色拉哈断裂和折多塘断裂之间折多山花岗岩体内的长约24km的全新世活动断层,该断裂空间上可分成北、中、南三段,呈(正滑)左旋右阶雁行状排列,并将其命名为“木格措南断裂”。该活动断裂的发现对完善鲜水河断裂带色拉哈—康定段的精细几何图像和构造组合特征,准确评价鲜水河断裂带的地震危险性具有重要意义,并为川藏铁路施工建设和安全运营提供了重要科学数据支撑。  相似文献   

12.
龙泉山断裂带隐伏断层氡气特征及其活动性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
龙泉山断裂构造带作为龙门山推覆带的前陆隆起,严格控制了成都平原东边界,其活动性历来受到人们的关注。通过对龙泉山断裂带的氡气进行测量,可以有效地判断隐伏断层的位置及其活动性。测量结果显示,龙泉山断裂带北段东坡活动性强于西坡,主断层的活动性明显强于边缘隐伏断层,4条断层的活动性由强到弱依次为合兴场断层红花塘断层龙泉驿断层松林场断层。龙泉山断裂带同一条断层在地表由多个破碎带组成,其氡气异常特征与断层活动性和破碎带特征呈正相关性,即断层活动性越强,氡气异常特征越显著。龙泉山断裂带氡气平均异常浓度是背景值的9.6倍,将各异常带峰值浓度与背景值进行对比分析,大致归纳出了龙泉山地区隐伏断层活动性的相对判别标准。  相似文献   

13.
The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10−20 m2. Water permeability as low as 10−20 m2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.  相似文献   

14.
龚正  李海兵  唐方头  吴羿锋  王磊 《地质学报》2023,97(7):2111-2125
2008年汶川地震促使人们思考青藏高原东南缘走向和规模与龙门山断裂带相近的丽江- 小金河断裂的活动历史,但受限于地质条件制约断裂尤其是其北段相关研究极其薄弱。基岩断裂带的物质组成与结构特征是断层长期活动的产物,蕴含丰富的历史活动信息。本文以丽江- 小金河断裂盐源段多个天然剖面为研究对象,通过详细的断裂带宏观结构调查、断层岩显微构造及XRD分析发现:① 断层破碎带以一套厚度>20 m的破裂面密集带为特征,优势破裂面走向为NE20°~30°,推测为丽江- 小金河断裂长期活动形成的张剪性破裂;② 断层带核部以断层角砾岩和断层泥为主,灰岩角砾岩黏土矿物含量~2%,以伊利石和伊蒙混层为主,粉砂岩断层泥黏土矿物含量~52%,以坡缕石和绿泥石为主,石英含量36%,缺失长石类矿物。断裂带宏观结构和断层岩微观结构特征均表现为角砾呈棱角状,砾径差异极大且呈零散状分布,符合快速滑动特征,指示断层滑移方式为黏滑。此外,核部断层岩带统计厚5~8 m,这一规模相对于龙门山映秀- 北川断裂带核部180~280 m和安县- 灌县断裂带核部40~50 m显著偏小,表明前者自形成以来的活动性远低于后者,两者的地震行为并不能简单类比。结合断裂在宏观结构特征、断层岩成分与种类以及所反映的滑动方式与隆升剥蚀量的差异,认为丽江- 小金河断裂更可能是鲜水河断裂切断锦屏山- 龙门山构造带之后形成的,晚新生代与龙门山断裂带具有不同的活动历史。  相似文献   

15.
通过野外地质调查及对各断陷典型地震剖面和构造发育史剖面的综合研究,系统探讨了研究区深大断裂对断陷盆地群的控制作用。以西拉木伦河-长春-延吉板块拼接带、赤峰-开原超岩石圈断裂为边界,将研究区自南向北分为辽西盆地区、辽北盆地区和吉西盆地区等3个一级构造分区;根据控盆断裂及其断陷盆地群的时空分布、断陷构造样式、不同时期伸展量等特征将辽北盆地区分为西部、中西部、中东部等3个二级断陷区。西拉木伦河断裂控制了西部区断陷的形成和分布;嫩江—八里罕断裂和孙吴—大庆—阜新断裂对中西部断陷区的控盆效应大体相近;孙吴—大庆—阜新断裂与佳木斯—伊通断裂共同对中东部断陷区起着重要的控制作用;昌图断陷主要受佳木斯—伊通断裂所控制。辽北盆地区主要表现为双断式地堑,断陷群的形成和分布不仅受北北东向断裂控制,也受到近东西向的西拉木伦河断裂和赤峰—开原断裂重新活动的控制。中西部断陷区伸展率具有从九佛堂组沉积期—沙海组沉积期—阜新组沉积期依次减小的变化规律。中东部断陷区与中西部断陷区存在明显差异,NNE向与近EW向深大断裂对两区构造分区控制程度不同。  相似文献   

16.
受地壳内部持续运动和沉积、风化等自然动力及人类生产与生活活动影响,活断层微地貌形态往往比较复杂,传统测量方法较难快速、高效地获取大范围内精细化的活断层微地貌形态,激光雷达扫描技术的出现和发展为活断层微地貌的精细化与定量化研究提供了新的技术手段。以川西理塘毛垭坝盆地北缘的正断层崖为研究对象,利用地面LiDAR获取活断层微地貌高精度点云后,经过点云配准、滤波、重采样和三角构网处理后,建立了0.05 m分辨率的数字高程模型和真彩色三维模型,在此基础上分析了断层崖地貌特征,并获取了正断层错动两期最新地貌面的精确垂直位错量。研究结果表明,地面LiDAR技术是精细测量活断层微地貌形态和量化相关地貌特征参数的有效手段,提高了活断层微地貌形态测量的精度和认识水平。  相似文献   

17.
塔里木盆地柯坪断隆断裂构造分析   总被引:24,自引:5,他引:24       下载免费PDF全文
柯坪断隆内断裂发育,笔者根据野外及地震数据对各主要断裂和二级断裂进行了分析,认为柯坪塔格断裂形成于晚第三纪,沙井子断裂早期与柯坪塔格具有不同的发育历史,阿合奇断裂形成于挤压而非走滑的背景下,皮羌断裂和印干走滑断裂其实是协调作用的捩断层。萨尔干断裂是一条假走滑断层,实际上应该是一条撕裂断层。在挤压背景下形成了二类主要的断裂构造组合样式;叠瓦推覆体、构造窗。笔者认为柯坪断隆上的构造其实是印度板块和欧亚板块远程碰撞造山和板内变形的一种表现。  相似文献   

18.
《International Geology Review》2012,54(13):1575-1615
Salinia, as originally defined, is a fault-bounded terrane in westcentral California. As defined, Salinia lies between the Nacimiento fault on the west, and the Northern San Andreas fault (NSAF) and the main trace of the dextral SAF system on the east. This allochthonous terrane was translated from the southern part of the Sierra Nevada batholith and adjacent western Mojave Desert region by Neogene-Quaternary displacement along the SAF system. The Salina crystalline basement formed a westward promontory in the SW Cordilleran Cretaceous batholithic belt, relative to the Sierra Nevada batholith to the north and the Peninsular Ranges batholith to the south, making Salinia batholithic rocks susceptible to capture by the Pacific plate when the San Andreas transform system developed. Proper restoration of offsets on all branches of the San Andreas system is a critical factor in understanding the Salinia problem. When cumulative dextral slip of 171 km (106 mi) along the Hosgri–San Simeon–San Gregorio–Pilarcitos fault zone (S–N), or dextral slip of 200 km (124 mi) along the Hosgri–San Simeon–San Gregorio–Pilarcitos–northern San Andreas fault system, is added to the cumulative dextral slip of 315–322 km (196–200 mi) along the main trace of the SAF north of the San Emigdio–Tehachapi mountains, central California, there is a minimum amount of cumulative dextral slip of 486 km (302 mi) or a maximum amount of cumulative dextral slip of 522 km (324 mi) along the entire SAF system north of the Tehachapi Mountains. When these sums are compared with the offset distance (610–675 km or 379–420 mi) between the batholithic rocks associated with the Navarro structural discontinuity (NSD) in northern California, and those in the ‘tail’ of the southern Sierra Nevada granitic rocks in the San Emigdio–Tehachapi mountains, central California, a minimum deficit of from ~100 km (~62 mi) to a maximum deficit of ~189 km (~118 mi) is needed to restore the crystalline rocks associated with the NSD with the crystalline terranes within the San Emigdio and Tehachapi mountains – the enigma of Salinia. Two principal geologic models compete to explain the enigma (i.e. the discrepancy between measured dextral slip along traces of the SAF system and the amount of separation between the Sierra Nevada batholithic rocks near Point Arena in northern California and the Mesozoic and older crystalline rocks in the San Emigdio and Tehachapi mountains in southern California). (i) One model proposes pre-Neogene (>23 Ma), Late Cretaceous or Maastrichtian (<ca. 71 Ma) to early Palaeocene or Danian (ca. 66 Ma) sinistral slip of 500–600 km (311–373 mi) along the Nacimiento fault and of the western flank of Salinia from the eastern flank of the Peninsular Ranges (sinistral slip but in the opposite sense to later Neogene (<23 Ma) dextral slip along and within the SAF system. (ii) A second model proposes that the crystalline rocks of Salinia comprise a series of 100 km- (60 mi-) scale allochthonous (extensional) nappes that rode southwestward above the Rand schist–Sierra de Salinas (SdS) shear zone subduction extrusion channels. The allochthonous nappes are from NW–SE: (i) Farallon Islands–Santa Cruz Mountains–Montara Mountain, and adjacent batholithic fragments that appear to have been derived from the top of the deep-level Sierra Nevada batholith of the western San Emigdio–Tehachapi mountains; (ii) the Logan Quarry–Loma Prieta Peak fragments that appear to have been derived from the top of a buried detachment fault that forms the basement surface beneath the Maricopa sub-basin of the southernmost Great Valley; (iii) The Pastoria plate–Gabilan Range massif that appears to have been derived from the top of the deep-level SE Sierra Nevada batholith; and (iv) the Santa Lucia–SdS massif, which appears to be lower batholithic crust and underlying extruded schist that were breached westwards from the central to western Mojave Desert region. In this model, lower crustal batholithic blocks underwent ductile stretching above the extrusion channel schists, while mid- to upper-crustal level rocks rode southwestwards and westwards along trenchward dipping detachment faults. Salinian basement rocks of the Santa Lucia Range and the Big Sur area record the most complete geologic history of the displaced terrane. The oldest rocks consist of screens of Palaeozoic marine metasedimentary rocks (the Sur Series), including biotite gneiss and schist, quartzite, granulite gneiss, granofels, and marble. The Sur Series was intruded during Cretaceous high-flux batholithic magmatism by granodiorite, diorite, quartz diorite, and at deepest levels, charnockitic tonalite. Local nonconformable remnants of Campanian–Maastrichtian marine strata lie on the deep-level Salinia basement, and record deposition in an extensional setting. These Cretaceous strata are correlated with the middle to upper Campanian Pigeon Point (PiP) Formation south of San Francisco. The Upper Cretaceous strata, belonging to the Great Valley Sequence, include clasts of the basement rocks and felsic volcanic clasts that in Late Cretaceous time were brought to a coastal region by streams and rivers from Mesozoic felsic volcanic rocks in the Mojave Desert. The Rand and SdS schists of southern California were underplated beneath the southern Sierra Nevada batholith and the adjacent Salinia-Mojave region along a shallow segment of the subducting Farallon plate during Late Cretaceous time. The subduction trajectory of these schists concluded with an abrupt extrusion phase. During extrusion, the schists were transported to the SW from deep- to shallow-crustal levels as the low-angle subduction megathrust surface was transformed into a mylonitic low-angle normal fault system (i.e. Rand fault and Salinas shear zone). The upper batholithic plate(s) was(ere) partially coupled to the extrusion flow pattern, which resulted in 100 km-scale westward displacements of the upper plate(s). Structural stacking, temporal and metamorphic facies relations suggest that the Nacimiento (subduction megathrust) fault formed beneath the Rand-SdS extrusion channel. Metamorphic and structural relations in lower plate Franciscan rocks beneath the Nacimiento fault suggest a terminal phase of extrusion as well, during which the overlying Salinia underwent extension and subsidence to marine conditions. Westward extrusion of the subduction-underplated rocks and their upper batholithic plates rendered these Salinia rocks susceptible to subsequent capture by the SAF system. Evidence supporting the conclusion that the Nacimiento fault is principally a megathrust includes: (i) shear planes of the Nacimiento fault zone in the westcentral Coast Ranges locally dip NE at low angles. (ii) Klippen and/or faulted klippen are locally present along the trace of the Nacimiento fault zone from the Big Creek–Vicente Creek region south of Point Sur near Monterey, to east of San Simeon near San Luis Obispo in central California. Allochthonous detachment sheets and windows into their underplated schists comprise a composite Salinia terrane. The nappe complex forming the allochthon of Salinia was translated westward and northwestward ~100 km (~62 mi) above the Nacimiento megathrust or Franciscan subduction megathrust from SE California between ca. 66 and ca. 61 Ma (i.e. latest Cretaceous–earliest Palaeocene time). Much, or all, of the westward breaching of the Salinia batholithic rocks likely occurred above the extrusion channels of the Rand-SdS schists; following this event, the Franciscan Sur-Obispo terrane was thrust beneath the schists, perhaps during the final stages of extrusion in the upper channel. Later, the Sur-Obispo terrane was partially extruded from beneath the Salinia nappe terrane, during which time the upper plate(s) underwent extension and subsidence to marine conditions. Attenuation of the Salinia nappe sequence during the extrusion of the Franciscan Complex thinned the upper crust, making the upper plates susceptible to erosion from the top of the Franciscan Complex near San Simeon, where it is now exposed. In the San Emigdio Mountains, the relatively thin structural thickness of the upper batholithic plates made them susceptible to late Cenozoic flexural folding and disruption by high-angle dip–slip faults. The ~100 km (~62 mi) of westward and northwestward breaching of the Salinia batholithic rocks above the Rand-SdS channels, and the underlying Nacimiento fault followed by ~510 km (~320 mi) of dextral slip from ~23 Ma to Holocene time along the SAF system, allow for the palinspastic restoration of Salinia with the crystalline rocks of the San Emigdio–Tehachapi mountains and the Mojave terrane, resolving the enigma of Salinia.  相似文献   

19.
正断层的阶区构造及生长机制:以狼山山前断层带为例   总被引:2,自引:0,他引:2  
正断层带在生长过程中内部发育有阶区构造,阶区在正断层的相互作用、连接过程中起重要控制作用,同时阶区还影响地表径流和沉积盆地的发展、流体的运移和圈闭的形成。位于内蒙古河套断陷西缘的狼山山前断裂是晚新生代以来持续活动的大型正断层系统,断层带内部发育有不同类型的阶区构造。识别出了两种类型阶区的连接方式,一种是两条平行断层之间的斜坡从"软连接"到"硬连接"的演化过程;另一种是楔状阶区通过一条断层向另一条断层扩展的方式连接产生。基岩中的先存构造要素控制并影响山前正断层的展布方位及阶区的形态:基底内部NNE向糜棱面理控制山前断层带的走向,早期向SE倾斜的逆冲断层面被正断层局部利用。沿断层倾向方向,山前正断层逐渐向盆地方向扩展,最新活动的断层位于盆地边缘甚至盆地内部;沿断层走向方向,狼山山前正断层逐渐向南西侧扩展。  相似文献   

20.
The Tan-Lu fault zone (TLFZ) is the largest of the major faults in eastern China. Many strong earthquakes have occurred on its section in North China, but no quake greater than M  6 has been documented in history at its northeastern section, the Yilan-Yitong fault (YYF) in Northeast China. It is usually considered that this fault has been inactive since late Quaternary and incapable of generating moderate-sized quakes. This conclusion is, however, questioned by our recent work based on high-resolution satellite image interpretation and field investigation. We found a 70-km-long surface scarp near Fangzheng county in Heilongjiang province (HLJP) and a 20-km-long scarp near Shulan county in Jilin province (JLP), and both are associated with the YYF. The trenches across these two scarps reveal a 14C displacement date of 1730 ± 40 years BP at Fangzheng and of 4410 ± 30 years BP at Shulan. The dextral offsets of the Songhua River and Second Songhua River and nearly horizontal fault striations indicate that the new activity of the YYF has been dominated by dextral strike slipping with a normal component. These new data suggest that, at least for partial sections, the YYF has been active since the Holocene, implying a potential seismic hazard. However, current quake-protection standards in this region are very low due to the previous view that the YYF fault has not been active since the late Quaternary. If an M  7 quake takes place on this fault, it will be a devastating event. Therefore, it is necessary to conduct a detailed study on the whole YYF and to reassess its future seismic risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号