首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
西昆仑库地蛇绿岩地质、地球化学及其成因研究   总被引:16,自引:0,他引:16       下载免费PDF全文
西昆仑库地蛇绿混杂岩由方辉橄榄岩和纯橄榄岩等地幔变质橄榄岩、豆荚状铬铁矿、堆晶橄榄岩、堆晶辉石岩和辉长岩、辉绿岩墙、块状和枕状玄武岩等组成。强亏损方辉橄榄岩为主的地幔岩组合,二辉石的低Al含量和铬尖晶石的高Cr#,以及岩石的富Mg、Ni和贫Al、Ca特征一致表明地幔橄榄岩类是经较高程度部分熔融后的地幔残余,与消减带之上蛇绿岩中的同类岩石相近。岩石富Rb、Ba、U、Th、LREE,说明地幔残余岩石受到了来自消减带的洋壳重熔组分的混染。堆晶岩以辉石岩和辉长岩为主,可能属PPG系列,指示岩浆是在消减带环境和含水条件下熔融的。辉长岩为低Ti蛇绿岩型,代表洋内弧后盆地早期环境或弧前环境。辉绿岩和玄武岩为洋中脊拉斑玄武岩和岛弧拉斑玄武岩的过渡类型;玄武岩和辉绿岩相比富Ba、Th、LREE,贫Ta,指示玄武岩较辉绿岩更多地受到来自消减带洋壳重熔组分的影响。库地蛇绿岩形成时的古构造环境是消减带之上的弧间或弧后盆地。  相似文献   

2.
蛇绿岩中铬铁岩母岩浆的富Ca特征:矿物包裹体证据   总被引:1,自引:0,他引:1       下载免费PDF全文
铬铁矿作为蛇绿岩中的重要矿产,其成矿母岩浆性质及演化一直存在较大争议.铬铁矿的矿物包裹体同时或先于铬铁矿结晶,其成分和类别能很好地记录成矿母岩浆性质和演化过程.土耳其Pozant?-Karsant?蛇绿岩不同类型铬铁岩的铬铁矿中发现了多种类型包裹体:不含水硅酸盐矿物(如橄榄石和单斜辉石)、含水硅酸盐矿物(如角闪石和金云母)、复合型矿物包裹体(如蛇纹石、硅灰石和单斜辉石的复合型包裹体)和不常见矿物(如磷灰石、铂族元素硫化物).含水矿物包裹体的出现以及矿物的高Mg#特征(如橄榄石Fo=95.4~97.1;单斜辉石Mg#=92.0~99.9;角闪石Mg#=88.9~99.8)表明结晶铬铁矿的母岩浆具有富水、富Mg的特征.同时,除钙铬榴石和磷灰石的包裹体外,在铬铁矿中首次发现富Ca矿物方解石和硅灰石,其中方解石和菱镁矿以复合型包裹体形式产出,硅灰石则分布于蛇纹石矿物包裹体中.这些富Ca矿物的出现以及硅酸盐矿物的高CaO含量均揭示了铬铁岩母岩浆的富Ca特征.母岩浆中的Ca组分可能来源于俯冲板块中富Ca岩石/矿物的部分熔融,Ca离子的大量出现使得Cr3+在熔体中更加稳定,同时富Ca矿物的结晶促进了岩浆中Cr的进一步富集而利于铬铁矿的大量结晶沉淀.   相似文献   

3.
Garnet peridotites occur in quartzofeldspathic gneisses in the Northern Qaidam Mountains, western China. They are rich in Mg and Cr, with mineral compositions similar to those in mantle peridotites found in other orogenic belts and as xenoliths in kimberlite. Garnet‐bearing lherzolites interlayered with dunite display oriented ilmenite and chromite lamellae in olivine and pyroxene lamellae in garnet that have been interpreted to indicate pressures in excess of 6 GPa. However, some garnet porphyroblasts include hornblende, chlorite and spinel + orthopyroxene symplectite after garnet; some clinopyroxene porphyroblasts include abundant actinolite/edenite, calcite and lizardite in the lherzolite; some olivine porphyroblasts (Fo92) include an earlier generation Mg‐rich olivine (Fo95–99), F‐rich clinohumite, pyroxene, chromite, anthophyllite/cummingtonite, Cl‐rich lizardite, carbonates and a new type of brittle mica, here termed ‘Ca‐phlogopite’, in the associated dunite. The pyrope content of garnet increases from core to rim, reaching the pyrope content (72 mol.%) of garnet typically found in the xenoliths in kimberlite. The simplest interpretation of these observations is that the rock association was formerly mantle peridotite emplaced into the oceanic crust that was subjected to serpentinization by seawater‐derived fluids near the sea floor. Dehydration during subduction to 3.0–3.5 GPa and 700 °C transformed these serpentinites into garnet lherzolite and dunite, depending on their Al and Ca contents. Pseudosection modelling using thermocalc shows that dehydration of the serpentinites is progressive, and involved three stages for Al‐rich and two stages for Al‐poor serpentinites, corresponding to the breakdown of the key hydrous minerals. Static burial and exhumation make olivine a pressure vessel for the pre‐subduction mineral inclusions during ultrahigh‐pressure (UHP) metamorphism. The time span of the UHP event is constrained by the clear interface between the two generations of olivine to be very short, implying rapid subduction and exhumation.  相似文献   

4.
刘建国  王建 《地质学报》2016,90(6):1182-1194
西昆仑库地蛇绿岩发育小规模的铬铁矿床,矿体呈豆荚状和层状、似层状,均与纯橄岩紧密伴生。这些纯橄岩主要由橄榄石和副矿物尖晶石组成,与方辉橄榄岩相比,橄榄岩中的橄榄石粒径粗(平均2.5mm),Mg#(88~90)低,这与它们全岩低Mg#(90)值,富Al_2O_3、TiO_2、Cr_2O_3、Fe_2O_3相吻合,与熔融残余成因的纯橄岩明显不同,反映了其很可能是由熔体与方辉橄榄岩反应而成。矿体主要由块状、浸染状及脉状铬铁矿石组成;铬铁矿石中的尖晶石具有低而相对稳定的Cr#(43~56),低于富铬型铬铁矿矿床中的铬铁矿(Cr#60)。块状矿石与纯橄岩呈突变接触,矿石中的尖晶石呈浑圆状,包裹有较多橄榄石、辉石等硅酸盐矿物及角闪石等含水硅酸盐矿物;浸染状铬铁矿石中的尖晶石与橄榄石颗粒构成交织结构,或呈云朵状,沿橄榄石颗粒边界相互连接,矿石的结构构造显示了熔/岩反应成因特征。通过计算分析,我们认为该区富铝型铬铁矿石是由拉斑玄武质熔体与地幔橄榄岩反应而成,由于熔体中含有较高的H_2O,参与反应的熔体可能源于弧后扩张脊环境。  相似文献   

5.
The Neoproterozoic Korab Kansi mafic-ultramafic intrusion is one of the largest (100 km2) intrusions in the Southern Eastern Desert of Egypt. The intrusion consists of Fe-Ti-bearing dunite layers, amphibole peridotites, pyroxenites, troctolites, olivine gabbros, gabbronorites, pyroxene gabbros and pyroxene-hornblende gabbros, and also hosts significant Fe-Ti deposits, mainly as titanomagnetite-ilmenite. These lithologies show rhythmic layers and intrusive contacts against the surrounding granites and ophiolitic-island arc assemblages. The wide ranges of olivine forsterite contents (Fo67.9-85.7), clinopyroxene Mg# (0.57–0.95), amphibole Mg# (0.47–0.88), and plagioclase compositions (An85.8-40.9) indicate the role of fractional crystallization in the evolution from ultramafic to mafic rock types. Clinopyroxene (Cpx) has high REE contents (2–30 times chondrite) with depleted LREE relative to HREE, like those crystallized from ferropicritic melts generated in an island-arc setting. Melts in equilibrium with Cpx also resemble ferropicrites crystallized from olivine-rich mantle melts. Cpx chemistry and its host rock compositions have affinities to tholeiitic and calc-alkaline magma types. Compositions of mafic-ultramafic rocks are depleted in HFSE (e.g. Nb, Ta, Zr, Th and U) relative to LILE (e.g. Li, Rb, Ba, Pb and Sr) due to the addition of subduction-related hydrous fluids (rich in LILE) to the mantle source, suggesting an island-arc setting. Fine-grained olivine gabbros may represent quenched melts approximating the primary magma compositions because they are typically similar in assemblage and chemistry as well as in whole-rock chemistry to ferropicrites. We suggest that the Korab Kansi intrusion crystallized at temperatures ranging from ~700 to 1100 °C from ferropicritic magma derived from melting of metasomatized mantle at <5 Kbar. These hydrous ferropicritic melts were generated in the deep mantle and evolved by fractional crystallization under high ƒO2 at relatively shallow depth. Fractionation formed calc-alkaline magmas during the maturation of an island arc system, reflecting the role of subduction-related fluids. The interaction of metasomatized lithosphere with upwelling asthenospheric melts produced the Fe and Ti-rich ferropicritic parental melts that are responsible for precipitating large quantities of Fe-Ti oxide layers in the Korab Kansi mafic-ultramafic intrusion. The other factors controlling these economic Fe-Ti deposits beside parental melts are high oxygen fugacity, water content and increasing degrees of mantle partial melting. The generation of Ti-rich melts and formation of Fe-Ti deposits in few layered intrusions in Egypt possibly reflect the Neoproterozoic mantle heterogeneity in the Nubian Shield. We suggest that Cryogenian-Tonian mafic intrusions in SE Egypt can be subdivided into Alaskan-type intrusions that are enriched in PGEs whereas Korab Kansi-type layered intrusions are enriched in Fe-Ti-V deposits.  相似文献   

6.
橄榄石是地幔橄榄岩和辉石岩的主要组成矿物,但也经常以斑晶和捕虏晶的形式出现在玄武质岩石中。结合近年来在地幔橄榄岩的主要元素(如Mg和Fe)组成特征以及Li、Mg和Fe稳定同位素地球化学方面的研究成果,重点对橄榄石的地球化学特征与华北克拉通岩石圈地幔演化过程之间的联系进行了讨论,旨在加深对华北克拉通岩石圈地幔演化过程的理解。现有研究表明:地幔橄榄岩中橄榄石的矿物学特征、元素和同位素地球化学组成能够很好地指示岩石圈地幔的特征及其演化过程,因而具有重要的意义。对于克拉通地区的地幔橄榄岩来说,橄榄石的Mg#通常可以指示岩石圈地幔的属性,古老、难熔的地幔橄榄岩中的橄榄石一般具有较高的Mg#(〉92),而新生的岩石圈地幔橄榄岩中的橄榄石则具有较低的Mg#(〈91)。因此,地幔橄榄岩中橄榄石的Mg#在一定程度上具有年龄意义。橄榄岩中橄榄石的Li、Mg和Fe同位素组成也可以明确指示岩石圈地幔的属性及其所经历的演化过程,正常地幔的δ7Li、δ26Mg和δ57Fe组成相对均一,如果上述同位素组成偏离正常地幔值,则说明岩石圈地幔经历了熔体/流体的交代作用。华北克拉通地区地幔橄榄岩捕虏体中橄榄石的Li、Mg和Fe同位素组成研究表明:该区的岩石圈地幔经历了多个阶段、不同来源的熔体/流体的改造过程。  相似文献   

7.
Important mafic–ultramafic masses have been located for the first time in the intersection area between the Keraf Shear Zone and the Nakasib Suture Zone of the Nubian Shield. The masses, comprising most of the members of the ophiolite suite, are Sotrebab and Qurun complexes east of the Nile, and Fadllab complex west of the Nile. The new mafic–ultramafic masses are located on the same trend of the ophiolitic masses decorating the Nakasib Suture. A typical complete ophiolite sequence has not been observed in these complexes, nevertheless, the mafic–ultramafic rocks comprise basal unit of serpentinite and talc chlorite schists overlain by a thick cumulate facies of peridotites, pyroxenites and layered gabbros overlain by basaltic pillow lavas with dolerite dykes and screens of massive gabbros. Associated with pillow lavas are thin layers of carbonates and chert. The best section of cumulate mafic–ultramafic units has been observed in Jebel Qurun and El Fadlab complexes, comprising peridotites, pyroxenites and layered gabbros. Dolerite dykes and screens of massive gabbros have been observed with basaltic pillow lava sections in Wadi Dar Tawaiy. The basal ultramafic units of the complexes have been fully or partly retrograded to chlorite magnetite schist and talc to talc-carbonate rocks (listowenites), especially in the Jebel Qurun and Sotrebab complexes. Petrographically, the gabbros (layered and massive) and the basaltic pillow lavas show mineral assemblages of epidote amphibolite facies. The mafic members from the three complexes show a clear tholeiitic trend and oceanic floor affinity. The pillow lavas plot in the field of oceanic floor basalt, namely in the back arc field. Primitive mantle normalized spider diagram of the pillow lavas reveals a closer correspondence to Enrich-Mid-Oceanic Ridge Basalt (E-MORB) type, which is confirmed by the flat chondrite normalized Rare Earth Elements (REE) pattern. Field, petrographical and geochemical evidence supports ophiolitic origin of the three complexes. The newly discovered ophiolitic complexes mark the western continuation of the Nakasib Suture Zone.  相似文献   

8.
In the high-pressure meta-ophiolites of Western Liguria (Italy), serpentinized ultramafites host bodies of eclogite, metarodingite and Ti-clinohumite ± Ti-chondrodite-bearing rocks. The latter contain relics of augite, ilmenite and apatite, which suggest derivation from pristine Fe-Ti-rich gabbros. The composition of relict mantle clinopyroxene in the host serpentinites indicates primary depleted peridotite compositions. Compared with their inferred protoliths, the Ti-clinohumite dikelets and the host serpentinites display significant changes in their major and trace element concentrations, indicating element exchange between the two rock systems. In particular, the Fe-Ti-rich gabbros were depleted in CaO and FeO and were strongly enriched in MgO. Analogous compositional variations are shown by altered gabbros enclosed in serpentinized peridotites from the obducted ophiolite sequences of the Northern Apennine. This evidence suggests that the observed Mg-enrichment recorded by the Ti-clinohumite metagabbros occurred in oceanic environments as the result of diffusive exchange between ultramafites and gabbros in presence of fluids related to serpentinization of the ultramafic country rocks. Alteration of the gabbro and concomitant Mg-uptake mostly caused extensive chloritization of the igneous plagioclase. Survival of igneous ilmenite and augite and their reaction with the hydrothermal chlorite during high-pressure metamorphism produced the observed Ti-clinohumite and Ti-chondrodite assemblages. The data presented thus indicate that crystallization of Ti-clinohumite assemblages was facilitated by a stage of oceanic alteration leading to Mg-enrichment of original Fe-Ti-rich gabbros. We suggest that during alteration, Mg-metasomatism occurred prior to rodingitization and was related to the earlier stages of peridotite serpentinization. Survival of oceanic chemical heterogeneities in the Ti-clinohumite rocks, indicates that element mobility during high-pressure recrystallization of these rocks was on a limited scale. This allowed preservation of their pre-subduction alteration features. Received: 13 July 1998 / Accepted: 3 November 1998  相似文献   

9.
河北承德铁马哈叭沁超贫铁矿床的成因与成矿时代   总被引:4,自引:1,他引:3  
河北承德一带基性-超基性岩中的超贫铁矿石(全铁TFe含量<20%)资源在河北的铁精矿产量中占有重要地位,其中以铁马哈叭沁超贫铁矿床贡献最大。本研究以铁马哈叭沁岩体中的超贫铁矿石即钒钛磁铁矿化的角闪石岩中的角闪石为研究对象,通过电子探针分析和40Ar/39Ar测年,结合野外地质特征,探讨了超贫铁矿床的成矿时代及矿床成因。野外和岩相学特征表明,铁马哈叭沁超贫铁矿床为岩浆晚期分异型铁矿床。电子探针分析表明,角闪石岩中角闪石主量元素变化范围较小,具有富Ca、富Mg、富Na、贫K的特征,属于韭闪石和镁绿钙闪石。角闪石成因矿物学研究表明,角闪石岩主要为幔源成因,并受到了地壳物质的混染。角闪石岩中角闪石单矿物的40Ar/39Ar年龄为379~401 Ma,表明成岩成矿时代为泥盆纪,形成于白乃庙岛弧与华北克拉通北缘发生弧-陆碰撞后的伸展阶段。  相似文献   

10.
The chromitite-bearing peridotites of the Zambales mafic-ultramafic complex form the lowermost level of the Zambales ophiolite, which exposes a complete ophiolitic sequence. The chromitites occur close to the peridotite/gabbro transition zone.The chromite orebodies are structurally classified into three major types: (1) concordant tabular deposits, (2) strings of pods and (3) pocketlike deposits.Concordant tabular deposits show a gradational transition from chromitite to host rock (modal grading) and are characterized by the parallelism of ore and host-rock structures. Primary magmatic features like inch-scale layering, size grading, glomeroporphyric chromite aggregates, skeletal chromite growth and adcumulus growth (cumulus textures) are common.The concordant chromite bodies are often tectonically disrupted and boudined forming strings of pods or fault-controlled pocketlike deposits. With increasing tectonization chromite shows pull-apart textures and lineations (plastic deformation), shearing, prismatic jointing, brecciation and mylonitization (brittle deformation). Recrystallization of cataclastic chromite occurs on a microscopic scale.Plastic deformation is caused by mantle flow and/or the volume increase of the peridotites during serpentinization. The influence of mantle flow is indicated by the orientation of the pod strings and lineations in chromitite perpendicular to the ridge axis. Brittle deformation of chromite (cataclasis) and disruption by faults is related to the emplacement of the ophiolite.  相似文献   

11.
Neyriz ophiolite in Abadeh Tashk area appears as four major separated massifs in an area with 125 km2, south of Iran. Peridotites including harzburgite, dunite, and lesser low-Cpx lherzolite are the major constituents of the ophiolite with very minor mafic rocks. Usual gabbros of ophiolite complexes are virtually absent from the study area. Mineral modality associated with bulk rock and mineral chemistry of the peridotites show a progression from fertile to ultra-refractory character, reflected by a progressive decrease in modal pyroxenes and in Al2O3, CaO, SiO2, Sc, Ta, V, and Ga values of the studied rocks by approaching chromite deposits. The Neyriz peridotites vary from low-Cpx lherzolite (MgO, 41.97–43.1 wt.%; Al2O3, 0.8–1.3 wt.%) with low content of Cr# spinel (36.7–37.6) and Fo olivine (90.79–91.5) to harzburgite (MgO, 44.31–45.25 wt.%;Al2O3, 0.29–0.45 wt.%; Cr# spinel, 58.2–73.45; Fo olivine, 91.23–91.56), and then to dunite (MgO, 45.9–49.2 wt.%; Al2O3, 0.18–0.48 wt.%) with higher content of Cr# spinel (74.34–79.36) and Fo olivine (91.75–94.68). Compared to modern oceanic settings, mineral and rock composition of low-Cpx lherzolite plot within the field of mid-ocean-ridge environment, whereas those of harzburgite and dunite fall in the field of fore-arc peridotites. As a result of the studies on minerals and whole rock chemistry along with rock interrelationships, we contend that the peridotites were subsequently affected by percolating hydrous boninitic melt from which the high-Cr–Mg, low-Ti chromitites were formed within mantle wedge above the supra-subduction zone in a fore-arc setting.  相似文献   

12.
错不扎蛇绿岩位于雅鲁藏布江缝合带西段北亚带,岩体呈北西-南东走向带状产出,主要由地幔橄榄岩和辉长岩脉组成。地幔橄榄岩主体为方辉橄榄岩,详细的矿物学及岩石地球化学研究表明,错不扎方辉橄榄岩中橄榄石为镁橄榄石,斜方辉石主要为顽火辉石,而单斜辉石主要为顽透辉石和透辉石,铬尖晶石具有高Al和高Mg(Mg#=60~70)特征。稀土配分图解显示其具有轻稀土亏损而重稀土富集的左倾型亏损地幔源区特征,(La/Yb)N=0.11~0.60,模拟结果显示其为经历了15%~20%部分熔融后的残余,与快速扩张大洋中脊环境下形成的深海橄榄岩的熔融程度(10%~22%)较为一致。此外,错不扎方辉橄榄岩轻稀土含量明显高于部分熔融模型中LREE的含量,而且,在微量元素原始地幔标准化图解中富集大离子亲石元素Rb、Sr和高场强元素Ta、Hf和Ti,这一特征指示错不扎方辉橄榄岩在大洋中脊环境形成后又受到后期俯冲带熔/流体的改造。结合南北两带不同蛇绿岩体构造环境的对比,笔者认为雅鲁藏布江西段南北两带蛇绿岩体具有相似的形成环境,两者在地理位置以及产状方面的差别可能是受到构造侵位的影响。  相似文献   

13.
Many Neo-Tethyan ophiolitic bodies are well exposed as thrust-slices in Central Anatolia and are predominantly represented by massive hornblende gabbros, most of which are cut by Supra Subduction Zone (SSZ) plagiogranites. The allochthonous gabbros are distinct from their autochthonous counterparts, with their mineralogy including both igneous hornblende, relict diopside rimmed by replacement hornblende and their chemical composition corresponding mostly to gabbro rather than diorite.The results of major and trace element analyses of forty-two samples, and REE analyses of nine samples, indicate that the hornblende gabbros are SSZ-type and formed from a wet magma by high-degree partial melting of peridotite possibly coupled with contamination by predominantly neighbouring-slab derived fluids within an intra-oceanic back-arc basin. The mafic magmas then underwent high-level fractional crystallization involving titaniferous magnetite, diopside, tschermakite and possibly olivine. Emplacement was followed by extensive ocean–floor metamorphism, which has induced crystallization (or recrystallization) of chlorite, biotite, amphiboles and mobilisation of most of the major elements such as alkali and alkali earth elements, and some LREE.  相似文献   

14.
An unusual association of chromite and hornblende was found in the spessartites of andesite composition, occurring as a dike swarm associated with a Cretaceous granite batholith. The spessartites are largely porphyritic with phenocrysts of either hornblende or augite. One dike, comprising a finegrained spessartite, exhibits distinct chilled selvages of aphanitic facies. The chromites in the fine-grained and augite-spessartites are significantly higher in Cr/ (Cr+Al) than those occurring rarely as inclusions in the phenocrystic hornblendes in the hornblende spessartite, although both are similar in Mg/ (Mg+Fe), Fe2O3, and TiO2. The phenocrystic hornblendes are titaniferous pargasite with high Mg/ (Mg+Fe), and differ in their higher octahedral Al from the groundmass hornblendes including those in the fine-grained spessartite. The crystallization sequence in the phenocrystic hornblende-bearing spessartites is Al-rich chromite, phenocrystic hornblende, and plagioclase without pyroxene, suggesting a high water content in the magma and the start of the crystallization at relatively high pressures. The finegrained spessartite from which the porphyritic spessartites have been derived by fractionation of dominant mafic minerals, has the high Mg-value and Cr content equivalent to those in primitive, undifferentiated basalts, although still andesitic in SiO2 content. Chemically similar magnesian andesites, although uncommon, found in some orogenic calc-alkalic suites may represent a magma composition in equilibrium with mantle peridotite under the condition of high water pressures.  相似文献   

15.
富铝型豆荚状铬铁矿床的成矿模式   总被引:2,自引:0,他引:2  
富铝型豆荚状铬铁矿床系指产于PTG系列蛇绿岩套地幔橄榄岩中的矿石,以富铝(Al2O3>20%)、低铬(Cr2O3<45%)为特征的铬铁矿床。该类型矿床以萨尔托海、贺根山及洪古勒楞铬铁矿床为代表。含富铝型铬铁矿床的岩体以伴有丰富的基性分凝体、含长地幔橄榄岩的出现以及矿石四周发育绿泥石薄壳而区别于含富铬型铬铁矿床的岩体。作者的研究表明富铝型铬铁矿床是原始地幔岩不同程度部分熔融再造的产物。富铬矿浆代表高度部分熔融的最终残余。富铝型铬铁矿床的成矿模式有两种:一为原始地幔岩中低度部分熔融再造的产物,以缺失高熔杂岩带为特征,属中低熔再造成矿模式,以洪古勒楞矿床为代表;另一种为原始地幔岩高度熔融再造的产物,以发育高熔杂岩带为特征,基性熔体与富铬矿浆之间曾发生了再平衡作用,属高熔再造-再平衡成矿模式,以萨尔托海及贺根山矿床为代表。  相似文献   

16.
寻找超高压地幔矿物的储存库——豆荚状铬铁矿   总被引:20,自引:2,他引:20  
沿印度河—雅鲁藏布江缝合线出露的罗布莎蛇绿岩块位于拉萨南东 2 0 0km处 ,含有地幔矿物群。罗布莎蛇绿岩主要由地幔方辉橄榄岩、堆晶岩和蛇纹混杂岩组成。由 60~ 70种矿物组成的一个地幔矿物群出现在方辉橄榄岩相内的豆荚状铬铁矿中。这些矿物包括 :自然元素矿物 :金刚石、石墨、金、铜、铁、镍、硅、铬、铝、钨、锌、铅、锡 ;铂族矿物 :铱锇矿、锇铱矿、铱锇钌矿、含锇铱矿、含铱钌矿、Ir Os硫化物 ;合金 :FeSi,FeNi,SiC ,CrC ,NiC ,NiCrC ,Au Ag ,Ag Au ,Ag Sn ,AlFe ,IrFe ,NiFeCr,NiIrFe ,FeC ,FePtPd ;硫 (砷 )化物 :黄铁矿、毒砂、镍黄铁矿、闪锌矿、方铅矿、三方闪锌矿 ;氧化物 :铬铁矿、含硅镁尖晶石、刚玉、方镁石、金红石、方铁矿、锰方铁矿、CaO、石英 ;磷酸盐 :磷灰石 ;硅酸盐 :橄榄石、斜顽辉石、铬透辉石、锆石、榍石、硅线石、蓝晶石、角闪石、白云母、黑云母、金云母、钙铬榴石、钙铁榴石、镁铝榴石、铬绿泥石、蛇纹石、八面体假象蛇纹石、八面体假象绿泥石 ;碳酸盐 :方解石、白云石等。文中只介绍几个矿物 ,如金刚石、碳硅石、富Cr铬铁矿、富Si顽辉石、富Mg橄榄石、锆石、含硅镁尖晶石、八面体硅酸盐以及含水硅酸盐的深部爆破结构。这些矿物信息对地幔研究具有重要意义。  相似文献   

17.
Several Precambrian mafic–ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic–Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.  相似文献   

18.
青藏高原西部蛇绿岩类型:岩石学与地球化学证据   总被引:22,自引:0,他引:22  
对青藏高原西部地区的班公湖蛇绿岩、狮泉河蛇绿岩、雅鲁藏布江西段蛇绿岩和普兰—当穷蛇绿岩带中代表性岩体的地质学、岩石化学、稀土元素、微量元素、Pb、Sr同位素地球化学研究表明,青藏高原西部地区4条蛇绿岩中的地幔橄榄岩主要为方辉橄榄岩和少量纯橄岩,岩石化学成分具有富镁、贫铝、钙、碱的特点;论述了地幔橄榄岩轻稀土元素富集是由于先经历了较强的部分熔融,后经历了俯冲消减过程中的流体交代的二次过程;微量元素中大离子亲石元素Rb、不活动元素Nb、Zr、Hf和放射性生热元素Th等元素的丰度较高,以及Ti、Sm、Y、Yb等强不相容元素亏损的特点,与交代地幔岩特征类似;Pb、Sr同位素组成具有明显的壳源组分混入的特点,说明青藏高原西部的蛇绿岩曾受洋壳俯冲消减过程中的流体交代作用,蛇绿岩产于SSZ构造环境。对比青藏高原东部、三江、西昆仑地区以及形成于典型的SSZ环境的Troodos蛇绿岩中的地幔橄榄岩,就岩石化学富MgO、轻稀土元素富集而言,它们具有与青藏高原西部基本一致的地质地球化学特征,结合与俯冲岩浆作用有关的玻安岩和埃达克岩产出,说明可能包括三江、西昆仑库地在内的青藏高原不同时代蛇绿岩都主要形成于俯冲消减环境,属于SSZ型蛇绿岩。  相似文献   

19.
Chromites occurring in different modes have been characterized from ophiolites of Rutland Island, a part of Burma-Andaman-Java subduction complex in the Bay of Bengal. Chromite mainly occurs as massive chromitite pods in mantle ultramafic tectonite and as thin massive chromitite bands together with minor disseminations in crustal ultramafic cumulate. Other than pods chromite also appears as: (a) anhedral restitic grains, (b) strings occurring as exsolved phases and as (c) symplectitic intergrowth with orthopyroxene in mantle tectonite. The chromites occurring as massive chromitite pods and bands contain high Cr (Cr#—73 to 80). Restitic chromite grains in mantle ultramafics are high-Mg (Mg#—58), high-Al (Al2O3—34 wt.%) and intermediate-Cr (Cr#—37) chromites. The bivariant plots of TiO2 wt.% vs 100Cr#, Mg# vs Cr# and Cr-Al-Fe3+ ternary discrimination diagram show that the massive and disseminated chromites fall in the boninitic field. The (Al2O3)melt and (FeO/MgO)melt values for the massive chromitites are estimated as 10 wt.% to 11 wt.% and 0.67–1.78 respectively, corroborating a boninitic parentage. Massive chromitite on Fe2+/Fe3+ vs Al2O3 wt.% and TiO2 wt.% vs Al2O3 wt.% plots occupy mainly the field of supra-subduction zone peridotites. High-Mg olivine (Fo91?93), high-Mg orthopyroxene (En~90) and high-Cr chromites of Rutland ophiolite are all supportive of boninitic source at supra-subduction zone setting. 57Fe Mössbauer study of chromite of beach placer shows that chromites occur in partly inverse spinel structure with iron distribution as Fe3+(A)Fe2+(A)Fe2+(B) which might be a result of oxidation. The olivine-spinel geothermometry shows 650–700°C re-equilibration temperature which is much lower than near crystallization temperature (950–1,050°C) derived from orthopyroxene-clinopyroxene assemblage. At supra-subduction setting an oxidizing hydrous fluid derived from subducting slab might have a major influence during the formation of Rutland ophiolite in this part of Burma-Java subduction complex.  相似文献   

20.
Mesozoic ophiolites crop out discontinuously in the Indo‐Myanmar Ranges in NE India and Myanmar, and represent the remnants of the Neotethyan oceanic lithosphere. These ophiolites in the Indo‐Myanmar Ranges are the southern continuation of the Neotethyan ophiolites occurring along the Yarlung Zangbo Suture Zone in southern Tibet farther northwes, as indicated by their coeval crystallization ages and geochemical compositions. The Kalaymyo ophiolite is located in the central part of the Indo‐Myanmar Ranges (Myanmar). The Kalaymyo ophiolite are composed of olivine (Fo = 89.8–90.5), orthopyroxene (En86‐91Wo1‐4Fs8‐10; Mg#=89.6–91.9), clinopyroxene (En46‐49Wo47‐50Fs3‐5; Mg# = 90.9–93.6) and spinel (Mg# = 67.1–78.9; Cr# = 13.5–31.5), and have relatively homogeneous whole‐rock compositions with Mg# of 90.1–90.8 and SiO2 (41.5–43.65 wt.%), Al2O3 (1.66–2.66 wt.%) and CaO (1.45–2.67 wt.%) contents. They display Light Rare Earth Element (LREE)‐depleted chondrite‐normalized REE patterns and show a slight enrichment from Pr to La. The Kalaymyo peridotites are characterized by Pd‐enriched chondrite‐normalized PGE patterns with superchondritic (Pd/Ir)CN ratios (1.15–2.36). Their calculated oxygen fugacities range between QFM–0.57 and QFM+0.90. These features collectively suggest that the Kalaymyo peridotites represent residual upper mantle rocks after low to moderate degrees (5–15%) of partial melting at a mid‐ocean‐ridge environment. The observed enrichment in LREE and Pd was a result of their reactions with enriched MORB‐like melts, percolating through these already depleted, residual peridotites. The Kalaymyo and other ophiolites in the Indo‐Myanmar Ranges hence represent mid‐ocean ridge–type Tethyan oceanic lithosphere derived from a downgoing plate and accreted into a westward migrating subduction–accretion system along the eastern margin of India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号