首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 785 毫秒
1.
We found that the suppression of signals for 88Sr, 140Ce and 238U in rock solution caused by rock matrix in ICP-MS (matrix effects) was reduced at high power operation (1.7 kW) of the ICP. To make the signal suppression by the matrix negligible, minimum dilution factors (DF) of the rock solution for Sr, Ce and U were 600, 400 and 113 at 1.1, 1.4 and 1.7 kW, respectively. Based on these findings, a rapid and precise determination method for Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U using FI (flow injection)-ICP-MS was developed. The amount of the sample solution required for FI-ICP-MS was 0.2 ml, so that 1.8 mg sample was sufficient for analysis with a detection limit of several ng g-1. Using this method, we determined the trace element concentrations in the USGS rock reference materials, DTS-1, PCC-1, BCR-1 and AGV-1, and the GSJ rock reference materials, JP-1, JB-1, -2, -3, JA-1, -2 and -3. The reproducibilities (RSD %) in replicate analyses (n=5) of BCR-1, AGV-1, JB-1, -2, -3, JA-1, -2, and -3 were < 6 %, and typically 2.5%. The difference between the average concentrations of this study for BCR-1 and those of the reference values were < 2%. Therefore, it was concluded that the method can give reliable data for trace elements in silicate rocks.  相似文献   

2.
Six low abundance rock reference materials (basalt BIR-1, dunite DTS-1, dolerite DNC-1, peridotite PCC-1, serpentine UB-N and basalt TAFAHI) have been analysed for high field strength elements (Zr, Nb, Hf, Ta, Th and U), Rb, Sr, Mo, Sb, Cs, Tl and Bi at ng g−1 levels (in rock) by magnetic sector inductively coupled plasma-mass spectrometry after HF/HClO4 high pressure decomposition. The adopted method uses only indium as an internal standard. Detection limits were found to be in the range of 0.08 to 16.2 pg ml−1 in solution (equivalent to 0.08 to 16.2 ng g−1 in rock). Our data for high field strength elements, Rb, Sr, Mo, Sb, Cs, Tl and Bi for the six selected low abundance geological reference materials show general agreement with previously published data. Our Ta values in DTS-1 and PCC-1 (1.3 and 0.5 ng g−1) are lower than in previously published studies, providing smooth primitive mantle distribution patterns. Lower values were also found for Tl in BIR-1, DTS-1 and PCC-1 (2, 0.4 and 0.8 ng g−1). Compared with quadrupole ICP-MS studies, the proposed magnetic sector ICP-MS method can generally provide better detection limits, so that the measurement of high field strength elements, Rb, Sr, Mo, Sb, Cs, Tl and Bi at ng g−1 levels can be achieved without pre-concentration, ion exchange separation or other specialised techniques.  相似文献   

3.
Fluorine, chlorine, bromine, iodine and sulfur were determined in seventeen geological reference materials after extraction by pyrohydrolysis. Fluorine, Cl and S (as sulfate ions) were determined in the extraction solution by ion chromatography with detection limits of around 0.2 mg l−1. Bromine and I were measured by ICP-MS with detection limits of 1 μg l−1 for Br and 0.1 μg l−1 for I. For rock samples, using normal extraction conditions (500 mg of sample and 100 ml of final solution) detection limits were 40 mg kg−1 for F and Cl, 15 mg kg−1 for S, 0.2 mg kg−1 for Br and 0.02 mg kg−1 for I. These detection limits may be improved by increasing the amount of sample and hence the concentration of the final solution. Water was also determined using an extraction technique based on H2O degassing, reduction on zinc at 1000 °C and H2 manometry. Our results for fluorine, chlorine, sulfur and water are in good agreement with literature data. Very few reference materials have recommended values for bromine and especially for iodine. Among the analysed samples, three are new reference materials: BHVO-2, BCR-2 and AGV-2.  相似文献   

4.
Abstract. An improved alkali fusion method followed by HF-HNO3-HC1O4 treatment is performed for simultaneous determination of 23 trace elements (Sr, Y, Zr, Nb, Ba, Hf, Ta, Th, U, and REE) by ICP-MS in rock reference materials: basaltic rocks (JB-2, JB-3) and granitic rocks (JG-la, JG-2, JG-3). Our improved method offers several advantages including: (1) suppression of whitish precipitates probably composed of insoluble fluorides by addition of HCIO4, (2) simple and reliable preparation procedure, (3) instrument calibration which enables straightforward simultaneous multi-elemental analysis, and (4) the very low background levels by using pure lithium tetraborate flux. We obtained the analytical results with a reproducibility of mostly <2 % (1) for the basaltic rocks and <7 % for the granitic rocks. The higher relative standard deviation (RSD) values for granitic rocks may be attributed to sample heterogeneity of coarse-grained granitic rocks. The analytical results of the granitic rocks demonstrate that Zr and Hf abundances are consistent with the compiled values and that REE concentrations agree well with recently published data, suggesting that the Li2B4O7 fusion method applied in the present study is suitable for the analysis of the granitic rocks.  相似文献   

5.
Data are reported for rare earth elements (REE), Y, Th, Zr, Hf, Nb and Ta in four geological reference materials using sodium peroxide (Na2O2) sintering and inductively coupled plasma-mass spectrometry. The described procedure was used by students during their thesis work. A compilation of their reference material data acquired over one year of laboratory work demonstrates the ease and reliability of the method and the high reproducibility of the analytical results. Relative standard deviations of up to thirty six measurements of one reference material were lower than 5% for Y and the REE. Reproduciblities of Zr, Hf, Nb, Ta and Th were higher at between 5% and 10%, and can be attributed to the inhomogeneous distribution of zircon and other trace mineral phases and uncorrected drift effects. The concentration data are compared to reference and literature values and demonstrate that the procedure is also accurate. New data on G-3 show some systematic deviations from G-2, which are statistically significant.  相似文献   

6.
7.
Abstract. Primary fluid inclusions in quartz and carbonates from the Kanggur gold deposit are dominated by aqueous inclusions, with subsidiary CO2-H2O inclusions that have a constant range in CO2 content (10–20 vol %). Microthermometric results indicate that total homogenization temperatures have a wide but similar range for both aqueous inclusions (120 to 310C) and CO2-H2O inclusions (140 to 340C). Estimates of fluid salinity for CO2-H2O inclusions are quite restricted (5.9∼10.3 equiv. wt% NaCl), whereas aqueous inclusions show much wider salinity ranging from 2.2 to 15.6 equivalent wt %NaCl.
The 6D values of fluid inclusions in carbonates vary from -45 to -61 %, in well accord with the published δD values of fluid inclusions in quartz (-46 to -66 %). Most of the δ18O and δD values of the ore-forming fluids can be achieved by exchanged meteoric water after isotopic equilibration with wall rock by fluid/rock interaction at a low water/rock ratio. However, the exchanged meteoric water alone cannot explain the full range of δ18O and δD values, magmatic and/or meta-morphic water should also be involved. The wide salinity in aqueous inclusions may also result from mixing of meteoric water and magmatic and/or metamorphic water.  相似文献   

8.
We have developed a new chemical procedure for the quantitative separation of molybdenum (Mo) and rhenium (Re) from a wide variety of geological samples. A single pass anion exchange separation provided complete recovery of pure Mo and Re in a form that was ideal for subsequent isotope and abundance determination by multi-collector inductively coupled plasma-mass spectroscopy (MC-ICP-MS). An enriched 100Mo-97Mo solution, mixed with the sample before digestion, enabled natural mass-dependant isotopic fractionation of Mo to be determined with an external reproducibility of < 0.12‰ (δ98Mo/95Mo, 2 s ). Determination of the concentration of Mo and Re in the same sample was achieved by isotope dilution, with instrumental mass-fractionation of Re being corrected by the simultaneous measurement of the 191Ir/193Ir ratio. We have applied the new procedure to a variety of samples, including seawater, basalt and organic-rich mudrock. The procedure is ideally suited to palaeoredox studies requiring the precise determination of the Mo isotope composition and the Re/Mo ratio from the same sample.  相似文献   

9.
U–Pb age, trace element and Hf isotope compositions of zircon were analysed for a metasedimentary rock and two amphibolites from the Kongling terrane in the northern part of the Yangtze Craton. The zircon shows distinct morphological and chemical characteristics. Most zircon in an amphibolite shows oscillatory zoning, high Th/U and 176Lu/177Hf ratios, high formation temperature, high trace element contents, clear negative Eu anomaly, as well as HREE-enriched patterns, suggesting that it is igneous. The zircon yields a weighted mean 207Pb/206Pb age of 2857 ± 8 Ma, representing the age of the magmatic protolith. The zircon in the other two samples is metamorphic. It has low Th/U ratios, low trace element concentrations, variable HREE contents (33.8 ≥ LuN≥2213; 14.7 ≤ LuN/SmN ≤ 354) and 176Lu/177Hf ratios (0.000030–0.001168). The data indicate that the zircon formed in the presence of garnet and under upper amphibolite facies conditions. The metamorphic zircon yields a weighted mean 207Pb/206Pb age of 2010 ± 13 Ma. These results combined with previously obtained Palaeoproterozoic metamorphic ages suggest a c. 2.0 Ga Palaeoproterozoic collisional event in the Yangtze Craton, which may result from the assembly of the supercontinent Columbia. The zircon in two samples yields weighted mean two-stage Hf model ( T DM2) ages of 3217 ± 110 and 2943 ± 50 Ma, respectively, indicating that their protoliths were mainly derived from Archean crust.  相似文献   

10.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

11.
The USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G were investigated by different analytical techniques. All these materials have a geological (basaltic) matrix and are therefore useful in igneous geochemistry as matrix-matched reference materials for microanalytical techniques. The new GS glasses have trace elements in groups at concentration levels of about < 0.01, 5, 50 and 500 μg g-1. Their major element compositions have been determined by EPMA, and trace elements have been analysed by LA-ICP-MS and two isotope dilution techniques using TIMS and ICP-MS. EPMA and LA-ICP-MS analyses indicated that the USGS reference glasses are homogeneous at the μm to mm scale with respect to major (variations < 1-2%) and most trace elements (variations 1-4%). Trace element data obtained from the different analytical techniques agreed within an uncertainty of 1-5%, indicating that between method results are comparable. Therefore, the preliminary working values for the four USGS GS glasses calculated from these data have a low level of uncertainty.  相似文献   

12.
Thirty-seven trace elements, including rare-earth elements, have been determined by ICP-MS in twenty-eight international rock standards using routine sample preparation techniques. Samples were decomposed by either pressurized HF-HCIO4-aqua regia attack, or by lithium borate fusion. Generally, the ICP-MS data for geological rock standards presented here agree well with certified values. However, the results for light rare earth elements appear to be systematically low in comparison with the published working values.  相似文献   

13.
The paper presents preliminary results of the use of a high resolution double-focussing, magnetic sector inductively coupled plasma-mass spectrometer (HR-ICP-MS) with ultraviolet laser ablation (LA) for the bulk analysis of geological materials fused with Li2B4O7. Detection limits are based on data from precision measurements of a fused SiO2 sample of high purity, and sensitivity data (cps/μg g-1) obtained on the Reference Material (RM) Syenite SY-2. For many trace elements, the detection limits are better than 0.05 μg g-1 using a sample to flux weight ratio of 1:7.
Calibration curves, which are based entirely on RMs, are established for Hf, Ta, Tb, Tm and Lu. They indicate that, even at this early stage in the development of the technique, data accurate to ˜ 25% can be collected. It is concluded that the method may prove to be a valuable supplement to XRF for low level element concentration measurements; it is also very practical, as the same sample discs can be used for both XRF and LA-ICP-MS analyses.  相似文献   

14.
The concentrations of fifty trace elements, including relatively volatile elements and transition metal elements, in fused glasses of Geological Survey of Japan rock reference materials GSJ JR-2, JA-1, JA-2, JB-1a, JB-3, JGb-1 and JF-1 were determined by particle (proton) induced X-ray emission (PIXE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The fused glasses were prepared by rapid fusion and subsequent quenching in welded platinum capsules and were found to be homogeneous for major elements and for trace elements with concentrations of more than 1 μg g-1 within the observed precision (± 10% mean) on a 70 μm sampling scale. The values obtained by PIXE and LA-ICP-MS for the transition elements (Cr, Mn, Fe, Ni and Cu), the relatively volatile elements (Zn, Ga, Rb and Pb) and the refractory elements (Y, Zr, Nb and Th) with concentrations greater than a few μg g-1 showed good agreement (within 10 % relative difference). The values for almost all the elements detected at concentrations higher than 1 μg g-1 as determined by LA-ICP-MS also agreed well with the reference values (mean relative difference < ± 10%), except for B and Cu. The good agreement confirmed the appropriateness of the NIST SRM 600 series glass calibration reference material for LA-ICP-MS analysis of glasses with variable major-element compositions for almost all elements. The concentrations of Cu in all the samples were lower than the reference values, which was attributed to adsorption of the transition metals onto the platinum capsule during preparation.  相似文献   

15.
The concentration of boron was determined in twenty one geochemical reference materials (silicate rocks) by isotope dilution inductively coupled plasma-mass spectrometry. Boron was extracted from the rocks using HF digestion, suppressing boron volatilisation through boron-mannitol complexation. Sample solutions, in a diluted HCl matrix, were analysed by ICP-MS without any separation of boron from the matrix elements. The results obtained were in agreement with the literature data and indicate that using the described procedure, trace amounts of boron can be very easily determined in complex matrices with rapidity and precision. With the instrumentation and reagents used in this study, this procedure can be used for the determination of 0.5 μg g−1 boron in a 15 0 mg silicate rock sample. Replicate analyses of the twenty one geochemical reference materials (GRM), ranging in boron concentration from 1.35 to 15 7 μg g−1, yielded precisions (relative standard deviation) varying between 0.9 and 9.8%.  相似文献   

16.
The results are given for all the determinations made by the co-operating laboratories of major elements in the six NIMROC rock samples (granite, syenite, lujavrite, norite, pyroxenite and dunite) prepared by the National Institute for Metallurgy in 1966. Relevant statistical data are given for the sets of results for each major constituent, and recommended values for all constituents except Al203, Na20, K20and CO2 in dunite, Fe2O3, MgO and CO2 in the granite, Fe23 and CO2 in the norite and CO2 in the pyroxenite.
This report and that on the trace and minor elements issued in 1978 complete the revision of the recommended values. It is suggested that analysts should concentrate rather on those constituents for which the results have shown such a wide scatter that they can be of no usc for reference purposes, than on those for which the ualues are fairly well established.  相似文献   

17.
The high sensitivity, minimal oxide formation and single internal standard capability of high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS) is demonstrated in the direct determination of Sc, Y and REE in the international reference materials: basalts (BCR-1, BHVO-1, BIR-1, DNC-1), andesite (AGV-1) andultramafics (UB-N, PCC-1 and DTS-1). Time consuming ion exchange separation or preconcentration were found to be unnecessary. Smooth chondrite normalized plots of the REE in PCC-1 and DTS-1 were obtained in the range 0.8-50 ng g-1 (0.01-0.1x chondrite). Method precision was found to be digestion dependent with an average external repeatability of 2-4% for the basalts, AGV-1 and UB-N, and 10% for PCC-1 and DTS-1. The mass peak due to 45Sc was completely resolved from 29Si16O and 28Si16O1H spectral interferences using medium resolution, which casts doubt on the accuracy of Sc determinations using quadrupole ICP-MS. Literature values for Y in rock reference materials were found to be approximately 9% high after HR-ICP-MS and XRF analysis.  相似文献   

18.
A combination of EMPA, sensitive high resolution ion microprobe (SHRIMP II) and/or LA-ICP-MS techniques was used to measure the concentration of selenium (Se) in NIST SRM 610, 612, 614 and a range of reference materials. Our new compiled value for the concentration of Se in NIST SRM 610 is 112 ± 2 μg g−1. The concentration of Se in NIST SRM 612, using NIST SRM 610 for calibration, determined using LA-ICP-MS (confirmed using SHRIMP II) was 15.2 ± 0.2 μg g−1. The concentration of Se in NIST SRM 614, using LA-ICP-MS was 0.394 ± 0.012 μg g−1. LA-ICP-MS determination of Se in synthetic geological glasses BCR-2G, BIR-1G, TB-1G and the MPI-DING glasses showed a range in concentrations from 0.062 to 0.168 μg g−1. Selenium in the natural glass, VG2, was 0.204 ± 0.028 μg g−1.  相似文献   

19.
This paper presents an adapted anion exchange column chemistry protocol which allowed separation of high-purity fractions of Cu and Zn from geological materials. Isobaric and non-spectral interferences were virtually eliminated for consequent multiple-collector ICP-MS analysis of the isotopic composition of these metals. The procedure achieved ∼ 100% recoveries, thus ensuring the absence of column-induced isotopic fractionation. By employing these techniques, we report isotopic analyses for Cu and Zn from five geological reference materials: BCR-027 blende ore (BCR), δ65Cu = 0.52 ± 0.15‰ (n = 10) and δ66Zn = 0.33 ± 0.07‰ (n = 8); BCR-030 calcined calamine ore (BCR), δ66Zn = -0.06 ± 0.09‰ (n = 8); BCR-1 basalt (USGS), δ66Zn = 0.29 ± 0.12‰ (n = 8); NOD-P-1 manganese nodule (USGS), δ65Cu = 0.46 ± 0.08‰ (n = 10) and δ66Zn = 0.78 ± 0.09‰ (n = 9); SU-1 Cu-Co ore (CCRMP), δ65Cu = -0.018 ± 0.08‰ (n = 10) and δ66Zn = 0.13 ± 0.17‰ (n = 6). All uncertainties are ± 2s; copper isotope ratios are reported relative to NIST SRM-976, and zinc isotope ratios relative to the Lyon-group Johnson Matthey metal (batch 3-0749 L) solution, JMC Zn. These values agree well with the limited data previously published, and with results reported for similar natural sample types. Samples were measured using a GVi IsoProbe MC-ICP-MS, based at the Natural History Museum, London. Long-term measurement reproducibility has been assessed by repeat analyses of both single element and complex matrix samples, and was commonly better than ± 0.07‰ for both δ66Zn and δ65Cu.  相似文献   

20.
A procedure for the digestion and analysis of quartz samples was developed to measure trace element concentrations in natural quartz. The certified glass sand reference material UNS-SpS was chosen to assess the precision, accuracy and detection limit of the analytical method. Quartz was digested with HF/HNO3 in a closed glassy carbon vessel and analysed by means of quadrupole ICP-MS with external calibration. Analyte concentrations of the sand UNS-SpS were compared with certified and other values from the literature. The abundances of a number of elements (Pr, Gd, Ho and Er) in the reference material are reported here for the first time. The procedure was then applied to three quartz samples from different geological settings to show that trace element data by ICP-MS can distinguish the origin of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号