首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous–Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous–Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE–NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous–Middle Permian is dominated by littoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous–Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic mélanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic mélange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).  相似文献   

2.
王国灿  张孟  张雄华  康磊  廖群安  郭瑞禄  王玮 《地质学报》2022,96(10):3494-3513
准噶尔-吐哈地块与伊犁-中天山地块之间分布着多条时代和类型各不相同的古生代蛇绿混杂岩带,前人一般将这些蛇绿混杂岩统一视为北天山洋盆的纪录,并由此推断该洋盆的时代跨度至少始自寒武纪并一直持续到晚石炭世甚至二叠纪。本文基于近几年在东天山地区地质调查工作的新成果,通过新界定的以康古尔塔格-大草滩蛇绿混杂岩带为代表的北天山洋两侧志留纪—泥盆纪活动大陆边缘物源性质和生物古地理对比,对北天山洋的构造属性和演化过程进行了重新厘定。研究揭示,志留纪—早泥盆世,北天山洋两侧的准噶尔-吐哈地块和伊犁-中天山地块分属于不同的物源体系和生物古地理区系,指示该洋盆具有显著的构造古地理分隔意义。至中泥盆世,北天山洋两侧隶属同一生物大区的珊瑚动物群指示该洋盆已演化至残余洋盆阶段;晚泥盆世晚期—早石炭世,天山地区广泛分布的陆相磨拉石-火山岩建造与下伏岩系之间的区域性角度不整合关系以及南北两侧物源的相互贯通说明东天山段的北天山洋已完全闭合,南北陆块的碰撞缝合应发生在此前的晚泥盆世早期(~370 Ma)。 石炭纪—早二叠世,可能受南部南天山洋北向俯冲及板片后撤作用影响,在前期已经碰撞拼合形成的统一准噶尔- 吐哈-中天山地块之上,沿康古尔-雅山一带重新裂解出具不成熟洋壳的康古尔弧后有限洋盆。该有限洋盆存续至 早二叠世早期(~290 Ma)最终闭合,其与北天山洋盆是两个不同阶段不同性质的洋盆体系。  相似文献   

3.
In the southern Chinese Tianshan, the southernmost part of the Central Asian Orogenic Belt (CAOB), widespread ophiolitic mélanges form distinct tectonic units that are crucial for understanding the formation of the CAOB. However, the timing of tectonic events and the subduction polarity are still in controversy. In order to better understand these geological problems, a comprehensive study was conducted on the Heiyingshan ophiolitic mélange in the SW Chinese Tianshan. Detailed structural analysis reveals that the ophiolitic mélange is tectonically underlain by sheared and weakly metamorphosed pre-Middle Devonian rocks, and unconformably overlain by non-metamorphic and undeformed lower Carboniferous (Serpukhovian) to Permian strata. The igneous assemblage of the mélange comprises OIB-like alkali basalt and andesite, N-MORB-like tholeiitic basalt, sheeted diabase dikes, cumulate gabbro and peridotite. Mafic rocks display supra-subduction signatures, and some bear evidence of contamination with the continental crust, suggesting a continental marginal (back-arc) basin setting. Zircons of a gabbro were dated at 392 ± 5 Ma by the U–Pb LA-ICP-MS method. Famennian–Visean radiolarian microfossils were found in the siliceous matrix of the ophiolitic mélange. Mylonitic phyllite which displays northward-directed kinematic evidence yielded muscovite 40Ar/39Ar plateau ages of 359 ± 2 Ma and 356 ± 2 Ma.These new data, combined with previously published results, suggest that the mafic protoliths originally formed in a back-arc basin in the Chinese southern Tianshan during the late Silurian to Middle Devonian and were subsequently incorporated into the ophiolitic mélange and thrust northward during the Late Devonian to early Carboniferous. Opening of the back-arc basin was probably induced by south-dipping subduction of the Paleo-Tianshan Ocean in the early Paleozoic, and the Central Tianshan block was rifted away from the Tarim block. Closure of the back-arc basin in the early Carboniferous formed the South Tianshan Suture Zone and re-amalgamated the two blocks.  相似文献   

4.
伊宁地块石炭纪火山岩及其对构造演化的约束   总被引:6,自引:3,他引:3  
西天山伊宁地块的构造格局及其演化之认识久存争议,倍受关注。分歧焦点有三:(1)石炭纪有无洋盆存在?(2)若有洋盆,何时闭合?(3)"沟-弧-盆"消亡时究竟是单向俯冲还是双向俯冲?若是单向俯冲,俯冲方向是由北向南或是相反(即俯冲极性)?因此,这些重大地质问题均聚焦于本区的火山岩。石炭纪火山岩是伊宁地块中的最主要建造和指示构造演化的关键层位,争论长久而激烈。本文认为,伊宁地块早石炭世发育弧前-岛弧-弧后盆地钙碱性火山-沉积建造,是塔里木板块北缘的主要组成部分;而晚石炭世碱性系列双峰式火山岩及其沉积组合则是大陆裂谷火山-沉积建造,形成于区域性伸展构造环境,是准噶尔板块与塔里木板块缝合后的陆内建造,因而古洋盆的关闭时限是早石炭世晚期(鄯善运动)。依据区内早石炭世建造的空间分布和变化规律,作者们认为古天山洋盆与当今地学界作为典型的日本沟-弧-盆体系有着极好的相似性和空间分布可对比性。石炭纪火山岩为本区的构造演化研究提供了重要的约束信息。  相似文献   

5.
How ophiolitic mèlanges can be defined as sutures is controversial with regard to accretionary orogenesis and continental growth.The Chinese Altay,East junggar,Tianshan,and Beishan belts of the southern Central Asian Orogenic Belt(CAOB) in Northwest China,offer a special natural laboratory to resolve this puzzle.In the Chinese Altay,the Erqis unit consists of ophiolitic melanges and coherent assemblages,forming a Paleozoic accretionary complex.At least two ophiolitic melanges(Armantai,and Kelameili) in East Junggar,characterized by imbricated ophiolitic melanges,Nb-enriched basalts,adakitic rocks and volcanic rocks,belong to a Devonian-Carboniferous intra-oceanic island arc with some Paleozoic ophiolites,superimposed by Permian arc volcanism.In the Tianshan,ophiolitic melanges like Kanggurtag,North Tianshan,and South Tianshan occur as part of some Paleozoic accretionary complexes related to amalgamation of arc terranes.In the Beishan there are also several ophiolitic melanges,including the Hongshishan,Xingxingxia-Shibangjing,Hongliuhe-Xichangjing,and Liuyuan ophiolitic units.Most ophiolitic melanges in the study area are characterized by ultramafic,mafic and other components,which are juxtaposed,or even emplaced as lenses and knockers in a matrix of some coherent units.The tectonic settings of various components are different,and some adjacent units in the same melange show contrasting different tectonic settings.The formation ages of these various components are in a wide spectrum,varying from Neoproterozoic to Permian.Therefore we cannot assume that these ophiolitic melanges always form in linear sutures as a result of the closure of specific oceans.Often the ophiolitic components formed either as the substrate of intra-oceanic arcs,or were accreted as lenses or knockers in subduction-accretion complexes.Using published age and paleogeographic constraints,we propose the presence of (1) a major early Paleozoic tectonic boundary that separates the Chinese Altay-East Junggar multiple subduction system  相似文献   

6.
东天山大南湖岛弧带石炭纪岩石地层与构造演化   总被引:5,自引:0,他引:5  
详细的地质解剖工作表明,东天山地区大南湖岛弧带石炭纪出露4套岩石地层组合,即早石炭世小热泉子组火山岩、晚石炭世底坎儿组碎屑岩和碳酸盐岩、晚石炭世企鹅山组火山岩、晚石炭世脐山组碎屑岩夹碳酸盐岩。根据其岩石组合、岩石地球化学、生物化石、同位素资料以及彼此的产出关系,认为这4套岩石地层组合的沉积环境分别为岛弧、残余海盆、岛弧和弧后盆地。结合区域资料重塑了大南湖岛弧带晚古生代的构造格架及演化模式。早、晚石炭世的4套岩石地层组合并置体现了东天山的复杂增生过程。  相似文献   

7.
新疆西天山伊犁地块晚古生代火山岩地质特征及构造意义   总被引:8,自引:0,他引:8  
对新疆西天山伊犁盆地晚古生代火山岩时空分布和地质特征、岩石化学等进行系统总结,认为该盆地晚古生代火山岩主要由晚泥盆世至早二叠世的火山岩组成,其形成与南北天山洋盆演化有关.晚泥盆—早石炭世大哈拉军山组火山岩为天山南北洋盆大洋板块俯冲而成的钙碱性火山岩,晚石炭世伊什基里克组火山岩为挤压环境向拉张环境过渡的钙碱性火山岩和碱性火山岩,早二叠世乌郎组火山岩为后造山具裂谷特征的双峰式火山岩组合.  相似文献   

8.
徐梦婧  李才  吴彦旺  解超明 《地质通报》2014,33(7):1061-1066
果芒错蛇绿混杂岩位于狮泉河—永珠—嘉黎蛇绿混杂岩带中段,是该带中保存较好的一套蛇绿混杂岩,其形成环境是确定狮泉河—永珠—嘉黎蛇绿混杂岩带构造属性的重要依据。对果芒错蛇绿混杂岩中的硅质岩进行了地球化学分析,为判断蛇绿混杂岩的形成环境提供新的约束条件。硅质岩通常呈几十厘米夹层产于玄武岩中,含有大量晚三叠世—白垩纪放射虫化石。硅质岩SiO2含量为71.38%~77.67%,Al2O3含量为8.62%~11.51%,MnO/TiO2值为0.28~0.35,(Ce/Ce*)SN值为0.92~0.94,(La/Ce)SN值为1.13~1.17,反映了陆源物质的影响,而V、Ni、Cu和V/Y值高于大陆边缘硅质岩,与洋中脊和大洋盆地硅质岩相似,说明果芒错硅质岩可能形成于受陆源物质影响且与大陆边缘有一定距离的环境中。结合变质橄榄岩、镁铁质岩墙和玄武岩的地球化学特征,初步认为果芒错蛇绿混杂岩的形成环境为靠近大陆边缘的弧后盆地。  相似文献   

9.
The Divrigi and Kuluncak ophiolitic mélanges are located in central Anatolia in the Tauride ophiolite belt. The stratigraphic sequence in the Divrigi ophiolitic mélange includes, from bottom to top, the Upper Jurassic-Lower Cretaceous Akdag limestone, Upper Cretaceous Çalti ultramafic rocks, and the Curek listwaenite. The Divrigi ophiolitic mélange is intruded by the Late Cretaceous-Eocene Murmano pluton. The above stratigraphic sequence is followed by the Eocene-Paleocene Ekinbasi metasomatite and the Quaternary Kilise Formation.

The oldest sequence of rocks in Kuluncak ophiolitic mélange in the GuvenÇ area is the Karadere serpentine/ultramafic body overlain successively by the Kurtali gabbro, Gundegcikdere radiolarite, the GuvenÇ listwaenites, and the Buldudere Formation. All of these units are Late Cretaceous in age. The Karamagra siderite deposit in the Hekimhan area probably was formed in the Lower Cretaceous at the contact between Çalti ultramafic rocks and the Buldudere Formation. The Kuluncak ophiolitic mélange was intruded by a subvolcanic trachyte in the Late Cretaceous. The Eocene-Paleocene Konukdere metasomatite, the Miocene Yamadag volcanic rocks, and Quaternary slope deposits are late in the stratigraphic sequence in the GuvenÇ area.

The Kuluncak ophiolitic mélange in the Karakuz area is similar to that at GuvenÇ; however, gabbro, radiolarite, and Miocene volcanic rocks are not present. The Miocene is represented by the Ciritbelen Formation at Karakuz and the Karakuz iron deposit is hosted by a Late Cretaceous subvolcanic trachyte.

The rareearth and trace-element concentration of serpentinite in the Divrigi and Kuluncak ophiolitic mélanges indicate that all of the ultramafics and their alteration products were derived from a MORB, which was depleted in certain elements and oxides. The results expressed in this study support the idea that the Divrigi and Kuluncak ophiolitic mélanges within the Tauride ophiolite belt originated from Northern Tauride oceanic lithosphere (Poisson, 1986), instead of a northern branch of Neo-Tethys (Sengor and Yilmaz, 1981).  相似文献   

10.
再论冀北古缝合带的证据   总被引:4,自引:0,他引:4  
近南北走向的冀北太古宙麻粒岩相古陆核北侧受到近东西走向的古元古代造山带的交切。在陆缘沉积增生带内发现大量残存的古洋壳残片,包括蛇纹石化方辉橄榄岩、且鬣刺结构的苦橄岩、透闪石岩、橄长岩、异剥钙榴岩、细碧岩、退变榴辉岩、基性枕状熔岩和斜长花岗岩等,与陆缘沉积岩一起构成古蛇绿岩混杂带。推断该蛇绿岩混杂带从古元古代开始直到新元古代末有逐步向北后退发育的特点。  相似文献   

11.
吐哈盆地及邻区早二叠世沉积特征与构造发育的耦合关系   总被引:7,自引:0,他引:7  
通过对不同露头剖面和探井资料的分析,在吐哈盆地及邻区区分出三种不同类型沉积相:(1)裂谷型海相火山喷发沉积相;(2)裂谷型陆相火山喷发沉积相;(3)造山带磨拉石相;不同沉积相特征并结合构造分析认为,早二叠世在吐哈及邻区存在二种不同类型的盆地,即前陆盆地和裂谷盆地,同时,还探讨了大陆一大陆碰撞带上两种不同类型盆地的形成机理。  相似文献   

12.
The Late Paleozoic volcanic and sedimentary rocks are widespread in the North Tianshan along the north margin of the Yili block. They consist of basalt, basaltic andesite, andesite, trachyandesite, dacite, rhyolite, tuff, and tuffaceous sandstone. According to zircon sensitive high-resolution ion microprobe (SHRIMP) dating, the age of the Late Paleozoic volcanic rocks in Tulasu basin in western part of North Tianshan is constrained to be Early Devonian to Early Carboniferous (417–356 Ma), rather than Early Carboniferous as accepted previously. Geochemical characteristics of the Early Devonian to Early Carboniferous volcanic rocks are similar to those of arc volcanic rocks, which suggest that these volcanic rocks could be the major constituents of a continental arc formed by the southward subduction of North Tianshan Oceanic lithosphere. Geochemical studies indicate that the magma source of the volcanic rocks might be the mantle wedge mixed with subduction fluid, which is geochemically enriched than primitive mantle but depleted than E-MORB. The calculation shows that the basalt could be formed by ∼10% partial melting of subduction fluid modified mantle wedge. Andesites with high initial 87Sr/86Sr (0.7094–0.7104) and negative εNd(t) (−4.45 to −4.79) values reveal the contribution of continental crust to its source. The calculation of assimilation–fractional crystallization (AFC) shows that the fractional crystallization process of the basaltic magma, which was accompanied with assimilation by different degree of continental crust, produced andesite (7–9%), dacite (∼12%) and rhyolite (>20%).  相似文献   

13.
西天山乌孙山地区大哈拉军山组由玄武岩、安山岩、英安岩、流纹岩及相应的火山碎屑岩组成,安山岩和流纹岩分布最广。LA-ICP-MS锆石U-Pb定年结果表明,火山活动喷发的安山岩与安山质晶屑凝灰熔岩分别形成于353.9Ma±6.5Ma和356.3Ma±4.4Ma,属于早石炭世早期。通过区域对比,西天山大哈拉军山组的火山岩浆作用显示从伊犁中天山板块南北缘向伊犁盆地内部逐渐变年轻的特点,且火山岩喷发时代差别不大(约40Ma)。岩石地球化学研究表明,火山岩属钙碱性系列,富集轻稀土元素,相对亏损重稀土元素。中性火山岩富集大离子亲石元素(如Cs、Rb、Th、U),而相对亏损高场强元素,具有明显的Nb、Ta、Ti负异常,显示出岛弧火山岩的特征;酸性火山岩相对富集Rb、Th、U、Ta等元素,具有明显的Ba、Sr、P、Eu、Ti等元素的负异常。综合伊犁-中天山板块南缘的构造演化特征,认为大哈拉军山组形成于活动大陆边缘环境,产在板块俯冲-碰撞的最后阶段。  相似文献   

14.
The main site and timing of the final closure of the middle segment of the Paleo-Asian Ocean (PAO) has been an issue of hot debate, which hampers us from better understanding the late-stage tectonic evolution of the Central Asian Orogenic Belt (CAOB). Synthesizing the available geological records for the ophiolitic mélanges in the Beishan Orogenic Belt (BOB), we regard the Liuyuan ophiolitic mélange as the main site of the final closure of the middle segment of the PAO. To determine the final closure time of the middle segment of the PAO, this study mainly applied field-based, systematic zircon U-Pb-Hf isotopic analyses for the Carboniferous and Permian sedimentary successions on the northern and southern sides of the Liuyuan ophiolitic mélange. Our results indicate that the late Carboniferous sedimentary successions north of the Liuyuan mélange consisting mainly of interbedded sandstone and siltstone with minor conglomerate show primarily affinity with a local, single source, i.e. the constituent units of the BOB north of the Liuyuan mélange. They were closely associated with the northward subduction of the middle segment of the PAO. By contrast, the unconformably overlying Permian clastic deposition on both sides of the Liuyuan ophiolitic mélange shows comparable lithology that fines from a thick sequence of conglomerate at the base to thin-bedded turbidite sequences up section. These Permian units were probably deposited in a progressively deepening basin within an extensional post-collision regime after the disappearance of the middle segment of the PAO. All the <274–261 Ma sandstones on both sides of the Liuyuan ophiolitic mélange were derived from commingling source regions on both sides of the Liuyuan mélange, as supported by comparable, diagnostic ages and εHf(t) values between the studied detrital zircons and coeval magmatic zircons from the BOB and north Tarim. Such a marked transition from a single, local provenance in the late Carboniferous to commingling provenances at ca. 274–261 Ma indicates the final closure of the middle segment of the PAO prior to the end of the early Permian. In conjunction with available data for the eastern and western segments of the PAO, we establish the eastward-younging, scissor-like closure for the whole PAO during mid Carboniferous to Early Triassic time.  相似文献   

15.
The West Junggar lies in the southwest part of the Central Asian Orogenic Belt (CAOB) and consists of Palaeozoic ophiolitic mélanges, island arcs, and accretionary complexes. The Barleik ophiolitic mélange comprises several serpentinite-matrix strips along a NE-striking fault at Barleik Mountain in the southern West Junggar. Several small late Cambrian (509–503 Ma) diorite-trondhjemite plutons cross-cut the ophiolitic mélange. These igneous bodies are deformed and display island arc calc-alkaline affinities. Both the mélange and island arc plutons are uncomfortably covered by Devonian shallow-marine and terrestrial volcano-sedimentary rocks and Carboniferous volcano-sedimentary rocks. Detrital zircons (n = 104) from the Devonian sandstone yield a single age population of 452–517 million years, with a peak age of 474 million years. The Devonian–Carboniferous strata are invaded by an early Carboniferous (327 Ma) granodiorite, late Carboniferous (315–311 Ma) granodiorites, and an early Permian (277 Ma) K-feldspar granite. The early Carboniferous pluton is coeval with subduction-related volcano-sedimentary strata in the central West Junggar, whereas the late Carboniferous–early Permian intrusives are contemporary with widespread post-collisional magmatism in the West Junggar and adjacent regions. They are typically undeformed or only slightly deformed.

Our data reveal that island arc calc-alkaline magmatism occurred at least from middle Cambrian to Late Ordovician time as constrained by igneous and detrital zircon ages. After accretion to another tectonic unit to the south, the ophiolitic mélange and island arc were exposed, eroded, and uncomfortably overlain by the Devonian shallow-marine and terrestrial volcano-sedimentary strata. The early Carboniferous arc-related magmatism might reflect subduction of the Junggar Ocean in the central Junggar. Before the late Carboniferous, the oceanic basins apparently closed in this area. These different tectonic units were stitched together by widespread post-collisional plutons in the West Junggar during the late Carboniferous–Permian. Our data from the southern West Junggar and those from the central and northern West Junggar and surroundings consistently indicate that the southwest part of the CAOB was finally amalgamated before the Permian.  相似文献   

16.
石炭纪火山岩广泛分布于西天山伊犁陆块周缘,其岩性复杂,并大多与陆源碎屑岩伴生或互层。其中伊宁阿希、尼勒克和那拉提3个剖面的火山岩岩石地球化学特征显示,这些火山岩属于钙碱性系列,由玄武岩、粗玄岩、玄武质安山岩、玄武质粗面安山岩、安山岩、流纹岩、英安岩和粗面岩组成。稀土元素含量较高,轻稀土元素较重稀土元素富集。这些火山岩亏损高场强元素Nb,Ta,Zr等,而富集大离子亲石元素Th,Rb等,因而这些岩石的形成与板块俯冲有关。微量元素地球化学图解进一步表明,这些岩石形成于大陆岛弧环境。与之共生的早、中石炭世浅海—滨海相沉积地层以及伊犁陆块北缘巴音沟—莫托沙拉沟晚泥盆世—早石炭世蛇绿岩带的存在,表明伊犁陆块北缘在石炭纪时其环境为活动大陆边缘,石炭纪火山岩的形成可能与晚泥盆世—中石炭世早期北天山洋盆向南的俯冲作用有关。  相似文献   

17.
The Batinah mélange which overlies the late Cretaceous Semail ophiolite in the northern Oman Mountains comprises mostly sedimentary rocks of deep-water facies, alkalic lavas and intrusives, all of continental margin affinities, together with smaller volumes of Semail ophiolitic and metamorphic rocks. Four intergradational textural types of mélange can be recognized. Sheet mélange has large (>1 km) intact sheets either with little intervening matrix or set in other mélange types, and with an organised sheet orientation fabric. Slab mélange is finer textured (>100 m) and more disrupted. Block mélange has smaller (> m) blocks with some matrix and a weak to random block fabric. Clast mélange is matrix-supported rudite with a weak depositional clast fabric. Structural relationships, particularly the absence of tectonic fabrics, the decreasing strength of fragment fabrics with increasing fragmentation, and the abundance of brittle fragmentation, suggest that these mélange types formed by either gravity-driven sedimentary processes or superficial sliding or thrusting of individual rock slabs.In the slab mélange, long sequences can be pieced together, passing up from Upper Triassic mafic sub-marine extrusives and sediments into radiolarian cherts, hemipelagic and redeposited limestones, and terminating in non-calcareous radiolarities with Mn-deposits of early Cretaceous age. Mafic sills are numerous. These sequences can be matched with sub-ophiolite rocks now exposed in fault corridors through the Semail. These sequences become progressively disrupted upwards in the corridors and can be traced continuously into overlying mélange, which then thins away from the corridors.We argue that, during late Cretaceous emplacement over the Arabian margin, active fault corridors split the Semail slab and acted as conduits up which sub-ophiolite rocks were supplied to the ophiolite surface. There the rocks were redisributed by superficial processes.  相似文献   

18.
中亚造山带西南缘东天山觉罗塔格造山带广泛发育石炭纪火山岩,这些石炭纪火山岩的成因和构造历史一直是该区域地质问题争论的焦点.通过对东天山觉罗塔格造山带石炭纪基性火山岩详细的岩石学、地球化学、锆石U-Pb年代学和Sr-Nd同位素研究,获得了如下认识:(1)东天山觉罗塔格造山带石炭纪基性火山岩分为两期爆发,早期爆发时间为336 Ma,晚期爆发时间为320 Ma.早期336 Ma基性火山岩由玄武岩、玄武安山岩及同成分的火山碎屑岩组成,显示出弧火山岩属性;晚期320 Ma基性火山岩主要由玄武岩和玄武安山岩组成,包括Ⅰ型火山岩和Ⅱ型火山岩,Ⅰ型显示出大洋中脊玄武岩属性,Ⅱ型显示出弧玄武岩特征.(2)石炭纪基性火山岩中发现的大量捕获锆石(371~3 106 Ma)年龄谱系与中天山地块显示为相似的特征,表明它们在石炭纪之前可能同属一个板块,也指示早古生代地壳可能参与了成岩过程.(3)该区域石炭纪火山岩与现今存在的Okinawa Trough和Mariana Trough弧后盆地玄武岩(BABB)很相似,从弧玄武岩向洋中脊玄武岩的演变,反映了石炭纪中天山北部弧后盆地的发展.因此推断早石炭世火山岩为弧后盆地初始裂开阶段的产物,而晚石炭世火山岩为弧后盆地弧后扩张阶段的产物.早石炭世晚期的初始裂开和晚石炭世早期的弧后扩张表明天山洋的俯冲最终结束于晚石炭世末期,包括主大洋和弧后盆地最终关闭,而最终关闭的位置很可能位于中天山以南.   相似文献   

19.
This paper deals with the geochemical features of the two Early Paleozoic ophiolite zones in the central-southem Tianshan region and the central Tianshan igneous rock belt between them.Study results suggest that the central Tianshan belt was an Ordovician volcanic arc with an affinity of continental crust, and the Kumux-Hongluhe ophiolitic zone that is located on the southern margin of central Tianshan has a crustal affinity to back-arc marginal sea.The Aqqikkudug-Weiya ophiolitic zone is an accretionary boundary between the Tuha continental block and the central Tianshan volcanic arc during Late Silurian to Devoniann;Ordovician ophi-olitic blocks,Silurian flysch sequence and HP metamorphic rock relics are distributed along the Aqqikkudug-Weiya zone.Geochemically,ophiolitic rocks in the Aqqikkudug-Weiya zone have an affinity to oceanic crust,reflecting a tectonic setting of paleo-trench or subduction zone .The Early Carboniferous red molasses were deposited unconformably on the pre-Carboniferous meta-mrophosed and ductile sheared volcanic and flysch rocks,providing an upper limit age of the central and southern Tianshan belts.  相似文献   

20.
伊宁地块不是一个之前一贯认为的"均匀地块"或"均一地块",而是以乌孙山-塔勒得近东西向区域性大断裂为界的南、北两大次级构造带("弧-盆"体系)叠加拼贴增生而成,火山岩浆作用为这一新的构造单元划分与建立提供了佐证。南构造带由喀拉峻岛弧带和其北的阿腾套弧后盆地构成,主要发育于晚泥盆世-早石炭世早期,火山岩同位素年龄峰值为355~350Ma,17个年龄平均值为351Ma;北构造带由北而南可再细分出清水河-苏布台弧后盆地→阿吾拉勒叠加岛弧带→特克斯-新源弧前盆地,主要发育于早石炭世中-晚期,同位素年龄峰值集中于345~329Ma,18个火山岩年龄平均值为340Ma。这两个"弧-盆"体系以大哈拉军山组钙碱性火山岩为主体,共生早石炭世海相阿克沙克组弧前及弧后沉积岩组合。大哈拉军山组火山岩主体以岛弧火山岩为主,见有富Nb玄武岩、高镁安山岩等,共生埃达克岩和高分异I型花岗岩等小岩体;在弧后还见有碱性火山岩、碱性球泡流纹岩,共生双峰式火山岩。不仅大哈拉军山组火山岩在各构造相中显著有别,而且共生的阿克沙克组在各构造相中差异极为显著。两大次级构造带具有独立的基底建造史,差异显著的盆地沉积史,独特的火山岩浆史和构造演化史。早晚石炭世之间的鄯善运动使南、北两个次级构造带叠加拼贴,构成统一的伊宁地块,晚石炭世进入统一的陆内构造发展演化阶段,发育以伊什基里克组碱性双峰式火山岩为代表的裂谷火山岩浆建造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号