首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
He  Jun  Yang  Xiao-Hua  Li  Jian-Qiang  Jin  Ju-Liang  Wei  Yi-Ming  Chen  Xiao-Juan 《Natural Hazards》2014,75(2):199-217

Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.

  相似文献   

2.
Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.  相似文献   

3.
Under the current condition of climate change, droughts and floods occur more frequently, and events in which flooding occurs after a prolonged drought or a drought occurs after an extreme flood may have a more severe impact on natural systems and human lives. This challenges the traditional approach wherein droughts and floods are considered separately, which may largely underestimate the risk of the disasters. In our study, the sudden alternation of droughts and flood events (ADFEs) between adjacent seasons is studied using the multivariate L-moments theory and the bivariate copula functions in the Huai River Basin (HRB) of China with monthly streamflow data at 32 hydrological stations from 1956 to 2012. The dry and wet conditions are characterized by the standardized streamflow index (SSI) at a 3-month time scale. The results show that: (1) The summer streamflow makes the largest contribution to the annual streamflow, followed by the autumn streamflow and spring streamflow. (2) The entire study area can be divided into five homogeneous sub-regions using the multivariate regional homogeneity test. The generalized logistic distribution (GLO) and log-normal distribution (LN3) are acceptable to be the optimal marginal distributions under most conditions, and the Frank copula is more appropriate for spring-summer and summer-autumn SSI series. Continuous flood events dominate at most sites both in spring-summer and summer-autumn (with an average frequency of 13.78% and 17.06%, respectively), while continuous drought events come second (with an average frequency of 11.27% and 13.79%, respectively). Moreover, seasonal ADFEs most probably occurred near the mainstream of HRB, and drought and flood events are more likely to occur in summer-autumn than in spring-summer.  相似文献   

4.
为了深入研究近60年来多种气候、水文要素对海河流域干旱变化的影响,采用Mann-Kendall非参数检验法对流域内气温、降水、径流等要素进行了分析,并采用Z指数法对流域的干旱特征进行了研究。结果表明:20世纪50年代以来,海河流域经历了湿润-正常-干旱的变化过程;21世纪初,流域北部地区出现偏旱现象,多次干旱的面积覆盖率低于40%,少部分干旱覆盖率较高,最高达98%;从时间上看,1980年是发生干旱现象的一个临界点,无论是从发生次数还是覆盖面积上,1980年以后要明显大于1980年以前。从干旱发生频率上分析,海河流域发生轻度和一般干旱的高频地区多分布在滦河流域以及北部山区,中部平原地区干旱爆发频率相对较低,重大干旱事件则在中南部平原地区发生频率更高。综合全部干旱事件,滦河流域为干旱频发区,其次为海河流域东部地区,西部地区则频率相对较低。  相似文献   

5.
East River, one of the major tributaries of Pearl River, is the major source of water supply for mega-cites within and in the vicinity of the Pearl River Delta, China. The availability and variability of water resources of the East River basin are therefore of practical importance. This study aims to investigate the probabilistic behavior of hydrological droughts in the East River basin using the trivariate Plackett copula. Daily streamflow data for the period of 1975–2009 from 3 hydrological stations in the East River basin are analyzed. Defining hydrological droughts by drought severity, duration, and minimum flow, secondary return periods are computed. Results show that the Plackett copula satisfactorily models bivariate and trivariate probability distributions of correlated drought variables. Results of risk evaluation show an increasing drought risk from the upper to the lower East River basin. This result is important for basin-scale water resources management in the East River basin.  相似文献   

6.
为提升变化环境下澜沧江-湄公河(简称澜湄)流经国对干旱的抵御能力, 亟需对流域未来干旱趋势进行科学研判。本研究选取了CMIP6的5个GCM模式, 使用3种共享社会经济路径-典型浓度路径组合情景下的驱动数据, 采用分布式水文模型CREST-Snow, 预估了2020—2050年澜湄径流演变和气象、水文干旱发展趋势, 量化了澜沧江梯级水库调度对未来径流的调节作用。结果表明: 2020—2050年, 澜湄流域整体呈湿润趋势, 但极端干湿事件发生频率增加, 其中2020—2029年干旱频发, 2030—2050年更偏湿润, 老挝、泰国2020—2050年干旱发生的频率和强度比流域内其他国家更高; 澜沧江梯级水库可有效提升下游干季径流量, 增幅从上游(99%)至下游(68%)递减, 在缓解湄公河干季旱情方面具有重要作用。未来有待进一步加强澜湄水资源合作, 优化水库调度方式, 促进澜湄流经国水旱灾害防治。  相似文献   

7.
近300a来塔里木河流域旱涝灾害特征分析   总被引:3,自引:1,他引:2  
干旱与洪涝是极端水文事件中最具有代表性的水文事件,在气候变化的影响下旱涝灾害事件越来越引起人们的关注. 采用传统的气象干旱指标-标准化降水指数SPI和小波分析法、反距离加权法以及线性回归分析,研究了近300 a来塔里木河流域旱涝灾害分布特征及关键影响因素. 结果表明:近300 a来塔里木河流域旱涝灾害呈增加的趋势,且洪涝事件较干旱事件明显. 其中,喀什、阿克苏等地的发生频率最高,并表现为群发性;近60 a塔里木河流域自西向东旱涝灾害事件呈交替现象. 小波分析结果表明,塔里木河流域旱涝灾害呈现15 a的周期性,由此推断未来5~10 a研究区湿润化面积仍有扩大的可能. 大气环流指数与多尺度下的SPI指相关性检验表明,PNA对秋季和冬季的SPI值的影响较为显著;旱涝灾害对农牧业的影响较为严重,其中,洪涝灾害的影响大于干旱.  相似文献   

8.
Based on the high correlation of the tree-ring widths of larch and spruce trees with the actual streamflow variations, the streamflow reconstruction of the Guxiang River was developed for the period 1680–2009, with the low and high streamflow periods identified. The reconstruction model accounts for 41.1 % of the instrumental streamflow variance during the period 1957–2007. Some significant cycles (18.1, 8.1, 3.8, 2.9, 2.6, 2.4 and 2.1 years) are found using the multi-taper spectral analysis. The significant correlations with the gridded SPEI dataset revealed that the streamflow reconstruction also represents the drought variation for a large area of the eastern Tien Shan. The streamflow reconstruction of the Guxiang River shows the decreasing trend since the 1970s, and compares well with high and low streamflow periods of the Selenge River previously estimated from tree-ring records. The synoptic climatology analysis reveals that there is the relationship between anomalous atmospheric circulation and extreme hydrological events in the Guxiang River basin.  相似文献   

9.
长江流域陆地水储量与多源水文数据对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王文  王鹏  崔巍 《水科学进展》2015,26(6):759-768
从趋势性、滞后性及相关性三方面,对2002—2013年间GRACE重力卫星反演的长江上游与中游陆地水储量与模型模拟土壤含水量、实测降水和实测径流数据进行了对比分析,并从干旱强度及发展时间两方面评估了标准化陆地水储量指数SWSI、标准化降水指数SPI、标准化径流指数SRI和标准化土壤含水量指数SSMI对区域性干旱的表征能力.结果表明:长江上游地区陆地水储量与降水、径流和土壤水蓄量均无显著变化,而中游地区陆地水储量则与水库蓄量同样具有显著性增加,反映人类活动对中游地区陆地水储量变化有很大影响;各指标指示的各等级干旱月份数量基本相当,但各指标反映的特旱具体月份有较大差别,基于GRACE数据构建的SWSI指标对特大干旱的指示性不好;对比各指标对上游与中游地区干旱事件发展时间,体现出水文干旱、农业干旱对气象干旱存在一定的迟滞关系.  相似文献   

10.
变化环境下东江流域水文干旱特征及缺水响应   总被引:1,自引:0,他引:1       下载免费PDF全文
在干旱事件不确定性和枯期径流变异性的双重影响下,水文干旱特征时序非一致性问题为其联合分布模拟带来困难。基于东江干流测站日径流过程数据,采用游程理论提取水文干旱事件,并结合干旱特征均值变化、时序一致性分析及边缘分布模拟,以确定干旱事件融合及剔除评判标准的合理取值。基于Rosenblatt变换Cramer-von Mises检验统计量拟合方法,构建水文干旱特征两变量联合分布Copula模型,并根据同频法设计两变量组合值。通过对比枯期径流变点分隔子序列干旱特征,分析变化环境下东江流域水文干旱特征及缺水响应。结果表明:水文干旱事件融合和剔除的评判标准值分别取0.1和0.3比较合理。干旱特征两变量之间具有较高的正相关性,但不同时间系列不同变量之间的联合分布及边缘分布最优模型并不一致。流域水库尤其是新丰江水库的径流调节作用,对于缓解东江中下游水文干旱效果明显,超阈联合重现期为2年的设计干旱持续时间、总缺水量和最大日缺水量分别减少了63%~71%、71%~84%和30%~47%,但如果要满足东江河道内最小管理流量目标,其依然分别达到了12~18 d、6 114万~9 030万m3和715.0万~929.0万m3。  相似文献   

11.
利用黄河流域160个气象站1961-2010年逐日综合气象干旱指数(CI)指数, 对比分析两种用逐日CI指数判断月干旱过程的方法. 结果表明: 对重大干旱事件个例来说, 两种方法都能大体描述事件的月干旱过程, 但干旱的强度和范围有所不同. 从干旱发生的范围来看, 两种结果的差别较小, 方法I的识别结果范围更大、更连续, 特别是对青海旱情的判断常常比实际范围大;而方法II的识别结果范围稍小, 大体上能反应干旱的整体范围, 但有时也偶尔会遗漏小部分旱区;从干旱发生的强度来看, 方法I对干旱事实的描述偏轻, 而方法II以重-特旱为主, 与实际情况更相符. 从对黄河流域近50 a月干旱频率的分析结果来看, 两种方法一致表明黄河流域分界线以西的地区常年不容易发生干旱, 而对于分界线以东地区, 两种方法的统计结果有较大差异. 方法I的结果表明, 分界线以东地区干旱的月发生频率较大, 其中, 轻旱的月发生频率最大, 其次为中旱, 而重旱和特旱的发生频率很小;方法II的结果表明, 分界线以东地区干旱的月发生频率在60%~80%左右, 其中重旱的月发生频率最大, 其次为中旱, 轻旱和特旱的发生频率很小. 总体来说, 方法II对黄河流域月干旱情况的评估结果与干旱实际情况更一致.  相似文献   

12.
The Niger River basin is drought-prone, and farmers are often exposed to the vagaries of severe weather and extreme climate events of the region. Spatiotemporal characteristics of drought are important for its mitigation. With 52 years of gauged-based monthly rainfall, the study investigates the potentials of Standardized Precipitation Index (SPI) as standard measure for meteorological drought, its characterization, early warning systems and use in weather index-based insurance. Gamma probability distribution type 2, which best fits the rainfall frequency distribution of the region, was used for the transformation of the skewed rainfall data to derive the SPI. Results showed 9, 5, 5 and 6 drought events of severe to extreme intensities occurred in the headwaters of the basin, inner delta, middle Niger, and lower Niger sub-watersheds, respectively. Their magnitudes were in the range 1–5, 2–6, 2–8 and 2–7, respectively. Spatially, results further showed that the 1970s and 1980s drought events were dominantly of moderate (SPI values ?1 to ?1.49) and severe (SPI values ?1.5 to ?1.99) intensities, respectively, with sporadic cases of severe to extreme drought intensities occurring in 1970s and extreme to exceptional intensities in the 1980s. Further investigations show that 3-month SPI indicated 85% of variance in the standardized cereal crop yield, which suites well as weather index insurance variable. The study therefore proposes SPI weather index-based insurance as a pathway forward to ameliorate the negative impacts on insured farmers in this region in terms of indemnity payouts whenever drought disaster occurs.  相似文献   

13.
The amount and distribution of precipitation play crucial roles in the occurrence of drought in the Weihe River Basin (WRB), China. Using the precipitation data (1960–2010) of 21 meteorological stations, the spatial and temporal characteristics of short-, medium-, and long-term droughts on 3-, 6-, and 12-month time scales, respectively, were examined using the theory of runs and the Standardized Precipitation Index (SPI). The trends of the drought characteristics were analyzed by a modified Mann-Kendall (MMK) test method. Furthermore, comparative analysis of the SPI at different time scales was conducted. The results showed that (1) the main drought type was moderate drought, which occurred frequently in July and October; (2) the drought intensity and frequency were highest in the 1990s, and the drought severity and drought duration in the northwest was more serious than that in the east; (3) an increasing trend of short droughts appeared mainly in the spring and fall; an increasing trend of medium droughts mainly occurred in the 1990s and that of long-term droughts were mainly presented in the northwest region of the WRB; (4) SPI-3 can better reflect precipitation in the current month, SPI-6 has an advantage in characterizing drought persistence, and SPI-12 performs well in capturing extraordinary droughts; and (5) it was also observed that there is a strong relation between the precipitation distribution and drought zones in the basin, and the drought conditions changed continuously with the seasons depending upon the amount and spatial distribution of precipitation .  相似文献   

14.
Investigation on drought characteristics such as severity, duration, and frequency is crucial for water resources planning and management in a river basin. While the methodology for multivariate drought frequency analysis is well established by applying the copulas, the estimation on the associated parameters by various parameter estimation methods and the effects on the obtained results have not yet been investigated. This research aims at conducting a comparative analysis between the maximum likelihood parametric and non-parametric method of the Kendall \(\tau \) estimation method for copulas parameter estimation. The methods were employed to study joint severity–duration probability and recurrence intervals in Karkheh River basin (southwest Iran) which is facing severe water-deficit problems. Daily streamflow data at three hydrological gauging stations (Tang Sazbon, Huleilan and Polchehr) near the Karkheh dam were used to draw flow duration curves (FDC) of these three stations. The \(Q_{75}\) index extracted from the FDC were set as threshold level to abstract drought characteristics such as drought duration and severity on the basis of the run theory. Drought duration and severity were separately modeled using the univariate probabilistic distributions and gamma–GEV, LN2–exponential, and LN2–gamma were selected as the best paired drought severity–duration inputs for copulas according to the Akaike Information Criteria (AIC), Kolmogorov–Smirnov and chi-square tests. Archimedean Clayton, Frank, and extreme value Gumbel copulas were employed to construct joint cumulative distribution functions (JCDF) of droughts for each station. Frank copula at Tang Sazbon and Gumbel at Huleilan and Polchehr stations were identified as the best copulas based on the performance evaluation criteria including AIC, BIC, log-likelihood and root mean square error (RMSE) values. Based on the RMSE values, nonparametric Kendall-\(\tau \) is preferred to the parametric maximum likelihood estimation method. The results showed greater drought return periods by the parametric ML method in comparison to the nonparametric Kendall \(\tau \) estimation method. The results also showed that stations located in tributaries (Huleilan and Polchehr) have close return periods, while the station along the main river (Tang Sazbon) has the smaller return periods for the drought events with identical drought duration and severity.  相似文献   

15.
为准确评价水文干旱,客观合理地构建干旱指数。以汾河上游的月径流为研究对象,首先从逻辑斯特、正态、对数正态、威布尔分布中选择出最优分布,利用最优分布计算标准径流干旱指数(Standardized Streamflow Drought Index, SSDI);其次依据标准正态曲线特点对水文干旱事件进行等级划分;最后将标准径流干旱指数与径流Z指数和距平指数进行分析比较,并根据汾河上游实际干旱情况验证标准径流指数的适用性。结果表明:对数正态分布对汾河上游月径流的拟合程度最佳,根据该分布计算得到的指数以及干旱等级与汾河上游历史记载的旱涝情况基本相符;汾河上游不同干旱等级出现频率相对于时间尺度的变化具有稳定性。  相似文献   

16.
Droughts are complex natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts such as meteorological, agricultural, hydrological, and socio-economical are the most distinguished types. Hydrological drought includes streamflow and groundwater droughts. In this paper, streamflow drought was analyzed using the method of truncation level (at 70 % level) by daily discharges at 54 stations in southwestern Iran. Frequency analysis was carried out for annual maximum series of drought deficit volume and duration. 35 factors such as physiographic, climatic, geologic and vegetation were studied to carry out the regional analysis. According to conclusions of factor analysis, the six most effective factors include watershed area, the sum rain from December to February, the percentage of area with NDVI <0.1, the percentage of convex area, drainage density and the minimum of watershed elevation, explained 89.2 % of variance. The homogenous regions were determined by cluster analysis and discriminate function analysis. The suitable multivariate regression models were ascertained and evaluated for hydrological drought deficit volume with 2 years return period. The significance level of models was 0.01. The conclusion showed that the watershed area is the most effective factor that has a high correlation with drought deficit volume. Moreover, drought duration was not a suitable index for regional analysis.  相似文献   

17.
In this study, application of a class of stochastic dynamic models and a class of artificial intelligence model is reported for the forecasting of real-time hydrological droughts in the Black River basin in the USA. For this purpose, the Standardized Hydrological Drought Index (SHDI) was adopted in different time scales to represent the hydrological drought index. Six probability distribution functions (PDF) were fitted to the discharge time series to obtain the best fit for SHDI calculation. Then, a dynamic linear spatio-temporal model (DLSTM) and artificial neural network (ANN) were used to forecast SHDI. Although results indicated that both models were able to forecast SHDI in different time scales, the DLSTM was far superior in longer lead times. The DLSTM could forecast SHDI up to 6 months ahead while ANN was only capable of forecasting SHDI up to 2 months ahead appropriately. For short lead times (1–6 months), the DLSTM has performed nearly perfect in test phase and CE oscillates between 0.97 and 0.86 while for ANN modeling, CE is between 0.72 and 0.07. However, the performance of DLSTM and ANN reduced considerably in medium lead times (7–12 months). Overall, the DLSTM is a powerful tool for appropriately forecasting SHDI at short time scales; a major advantage required for drought early warning systems.  相似文献   

18.
近50年来中国六大流域径流年内分配变化趋势   总被引:16,自引:0,他引:16       下载免费PDF全文
基于1950年以来的全国六大流域19个重点控制水文站实测月径流量观测资料,以1980年为界,分析各站实测径流量年内分配不均匀系数、集中度以及集中期的变化;采用Mann-Kendall非参数统计检验方法,诊断了各月径流量的变化趋势。结果表明,自1980年以来,全国六大流域的月径流发生了时空变化,除海河的石匣里、响水堡站和黄河花园口站年内径流不均匀性和相对集中度较小以外,其它站的年内径流不均匀性和相对集中度较大,以松辽流域为最大;此外,南方流域各站冬春季(12~3月)的径流均呈现增加的趋势,5月份呈现减少的趋势,7月份呈现增加的趋势;北方流域各站冬春季(1~5月)径流呈现减少的趋势,以海河流域各站、松辽的铁岭、黄河利津站和淮河的吴家渡站减少趋势最为严重。  相似文献   

19.
滦河流域土地利用/覆被变化的水文响应   总被引:3,自引:0,他引:3       下载免费PDF全文
以滦河流域为研究区,利用1985和2000年土地利用数据,结合SWAT分布式水文模型定量评价了流域土地利用/覆被变化的水文效应,并分析了流域地表径流变化与主要景观类型的响应关系。结果表明:SWAT(Soil and Water Assessment Tool)模型可以较好地模拟滦河流域的月流量过程,在研究区具有较好的适用性;1985—2000年流域林地向草地和耕地的转变导致流域年均地表径流和总径流量分别增加了12.6%和5.1%;并使得流域年均地表径流变化空间差异显著,整体呈增加趋势,且主要受到林地变化的影响,而在三道河子以上集水区地表径流的变化则主要受到耕地景观的影响。合理规划土地利用格局,对于流域水资源可持续利用具有重要意义。  相似文献   

20.
受全球气候变化影响,澜沧江-湄公河流域气象水文干旱发生了较大变化,预测未来流域干旱的时空变化与传播特征是应对气候变化、开展澜湄水资源合作的基础。利用SWAT模型通过气陆耦合方式模拟了澜沧江-湄公河流域历史(1960—2005年)和未来时期(2022—2050年,2051—2080年)的水文过程,采用标准化降水指数和标准化径流指数预估并分析了流域未来气象水文干旱时空变化趋势。结果表明:①澜沧江-湄公河流域未来降水呈增长趋势,气象干旱将有所缓解,但降水年内分配不均与流域蒸发的增加,将导致水文干旱更为严峻,干旱从气象到水文的传播过程加剧;②水文干旱具有明显的空间异质性,允景洪和清盛站的水文干旱最为严重,琅勃拉邦、穆达汉和巴色站次之,万象站最弱;③未来流域水文干旱事件发生频次略有减少,但其中重旱、特旱事件占比增加,极端干旱将趋多趋强,且空间变化更加显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号