首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

2.
Mafic microgranular enclaves, composed of diopside and rare magnesium biotite phenocrysts in a groundmass of diopside, biotite, apatite, Fe-Ti-oxides, and alkali feldspar, are associated with Neoproterozoic Piquiri potassic syenite in southern Brazil. Co-genetic mica and clinopyroxene cumulates present inclusions of pyrope-rich garnet in diopside phenocrysts. Textural evidence, as well as the chemical and mineralogical composition, suggest that enclaves crystallized from a lamprophyric magma and co-mingled with the host syenitic magma. The contrasting temperature between both magmas and the consequent chilling was important for the preservation of some early-crystallized minerals in the mafic magma. Diopside groundmass grains contain micro-inclusions of K-rich augite and phlogopite, and some clinopyroxene phenocrysts and elongate groundmass crystals have potassium-rich cores. The pyrope-rich garnet have high #mg number (67–68), with appreciable amounts of Na2O and K2O comparable to pyrope synthesized at 5 GPa. The extremely high K2O contents of K-rich augite micro-inclusions suggest non-equilibrium with the parental magma, whereas the other K-rich clinopyroxenes are similar to K-clinopyroxenes produced at 5–6 GPa. K-clinopyroxene and garnet in mafic microgranular enclaves suggest that lamprophyric magma started its crystallization at upper mantle conditions, and chilled clinopyroxenes with measurable amounts of K2O are taken as evidence that co-mingling began still at mantle pressures.  相似文献   

3.
Phlogopite-amphibole-pyroxenite xenoliths contained in the alkali basic-ultrabasic subvolcanic complex in Langao, Shaanxi Province, are composed of diopside, Ti-rich pargasite, phlogopite apatite, sphene and ilmenite, which have subsolidus metamorphism-deformation textures such as triple-points, cataclastic boundaries and kink-bands. Mineral chemical characteristics show that the diposide, Ti-rich paragasite and phlogopite are derived from the mantle and are the products of mantle metasomatism. Compared with normal mantle-derived spinel-lherzolites, the xenoliths are enriched in TiO2, Fe2O3, CaO, Na2O and K2O, with apparent depletion in MgO. Chondrite-normalized REE patterns and primordial-mantle normalized trace elements data show that they are enriched in REE (especially LREE) and incompatible trace elements. The petrographic, mineralogical and petrochemical characteristics indicate that the xenoliths are metasomatized mantle xenoliths, which offers the evidence for mantle metasomatism and represents the anomalous mantle beneath the Early Paleozoic rift in northern Daba Mountains. The agents of mantle metasomatism are probably derived from the rising of mantle hot plumes. The processes of metasomatism varied from limited-range fluid metasomatism in deep mantle (>90 km) to pervasive metasomatism of silicate melt. This project was financially supported by the National Natural Science Foundation of China (No. 49402035).  相似文献   

4.
ULTRAMAFIC XENOLITHS FROM A KAMAFUGITE LAVA IN CENOZOIC VOLCANIC FIELD OF WEST QINLING, CHINA AND ITS GEOLOGICAL IMPLICATION  相似文献   

5.
Within the ‘glimmerite’ nodules occurring within kimberlite pipes we recognize the MARID suite consisting of varying proportions of mica, amphibole, rutile, ilmenite and diopside. Banding of some specimens is interpreted as cumulate layering. All specimens were deformed either before incorporation into the host kimberlite or during intrusion. Compared with minerals in peridotite xenoliths, the MARID ones are lower in Al2O3 and Cr2O3, but richer in total iron. The MARID micas, amphiboles, diopsides, ilmenites and probably rutiles contain substantial Fe2O3 indicative of oxidizing conditions. The amphibole is potassic richterite. Micas of the megacryst suite in kimberlite have less total iron and Fe2O3 than micas of the MARID suite. We suggest that the rocks of the MARID suite crystallized under oxidizing conditions from a magma, chemically similar to kimberlite, within the higher parts of the upper mantle: the presence of amphibole restricts the depth to less than ~ 100 km. A xenolith containing olivine and orthopyroxene as well as minerals similar to but not the same compositionally as MARID-types is interpreted as a metasomite, possibly representing wall-rock of a magma body from which MARID-suite rocks crystallized.  相似文献   

6.
Experiments have been performed in the multicomponent (natural) bulk system to constrain the conditions of generation and differentiation of a K-rich group II kimberlite (now also referred to as orangeite). The group II composition examined was saturated in olivine, orthopyroxene, and garnet at near liquidus conditions in the pressure range 4 to 10 GPa. In the range 2 to 3 GPa, the liquidus phase was olivine only. The potassic nature of the melts in the bulk compositions studied was ensured by the absence of any K-bearing phase in the residual assemblage at P > 4 GPa. Phlogopite is destabilized toward higher pressures by a carbonation reaction of the type phlogopite + CO2 = enstatite + garnet + K2CO3 (liquid) + H2O leading to alkalic, carbonatitic liquids coexisting with a garnet-peridotite (harzburgite or lherzolite) residue over a wide pressure-temperature space at pressures in excess of 4 GPa. Evidently, CO2-bearing systems do not favor the stability of phlogopite and/or K-richterite amphibole at pressures in excess of 4 to 5 GPa, and it is suggested that the carbonate-bearing and potassic character of any mantle melt originating from this depth is most likely the product of a two-stage process: either a carbonate-bearing protolith is invaded by a potassic melt or fluid (probably supercritical), or a potassic protolith (after metasomatism) has been invaded by a carbonatite melt.  相似文献   

7.
Eclogitic xenoliths consisting of tschermakitic augite and pyrope garnet, together with variable amounts of kaersutitic hornblende, are common in a volcanic breccia of Lower Oligocene age at Kakanui, New Zealand. The breccia also contains xenocrysts of these minerals, and xenoliths of peridotite. Modal analyses are given of a number of the eclogitic xenoliths, and chemical analyses of two of them and their component minerals. They are compared with similar xenoliths from Hoggar (Algeria), Salt Lake Crater (Hawaii), and Delegate (Australia), with eclogite xenoliths from kimberlites, and with garnet peridotites. These three types of igneous eclogites can be characterized by the nature of their clinopyroxene: tschermakitic in the xenoliths from basaltic rocks, jadeitic in the xenoliths from kimberlites, and chrome diopside in the garnet peridotites. The eclogitic xenoliths in basaltic rocks probably crystallized in the mantle at depths of about 60 km, but their rarity in contrast to the numerous occurrences of peridotite xenoliths poses some significant problems.  相似文献   

8.
A petrological model for the upper mantle and lower crust under the northern part of the Arabian Plate (Syria) has been derived on the basis of petrology of upper mantle and lower crustal xenoliths occurring in the Neogene to Quaternary alkali basalts of the Shamah volcanic fields. The xenolith suite has been classified by texture mineralogy and chemistry into the following groups: (1) Type I metasomatised and dry Cr diopside xenoliths with protogranular to porphyroclastic textures; (2) Type II Al augite spinal and garnet pyroxenite and websterite which have igneous and/or porphyroclastic textures and abundant phlogopite and/or amphibole; (3) Cr-poor megacrysts; and (4) mafic lower crustal xenoliths. Estimates of Type I xenolith temperatures are 990–1070°C with pressure between 13 and 19 kbar. Type II xenoliths yield temperatures of 930–1150°C and pressures in the range 12—13 kbar. The lower crustal xenolith mineral assemblages and geothermometry based on coexisting minerals suggest equilibration conditions between 6 and 8 kbar and 820–905°C. Mantle plumes, which may be the source of the volatile flux, have implications for melt generation in the Arabian basalt provinces. It is estimated that the lithosphere beneath the Arabian Plate is less than 80 km thick. Xenolith data and geophysical studies indicate that the Moho is located at a depth of 40–37 km and that the crust-mantle transition zone has a thickness of 8–5 km and occurs at a depth of 27–30 km. The boundary between an upper granitic crust and a lower mafic crust occurs at a depth of 19 km. Type I dry xenoliths show a low overall concentration of REE (La/Yb =1–2 and Sm = 0.7–1.1 times chondrite), whereas Type I hydrous xenoliths are LREE enriched (La/Yb=6–9 and Sm=1.1–1.3 times chondrite). Type II xenoliths show high overall LREE enrichment. Petrological and geochemical data for the lower crustal xenoliths indicate that these xenoliths represent basaltic cumulates crystallised at lower crustal pressures.  相似文献   

9.
The paper presents data on inclusions in minerals of the least modified potassic lamprophyres in a series of strongly carbonatized potassic alkaline ultramafic porphyritic rocks. The rocks consist of diopside, kaersutite, analcime, apatite, and rare phlogopite and titanite phenocrysts and a groundmass, which is made up, along with these minerals, of potassic feldspar and calcite. The diopside and kaersutite phenocrysts display unsystematic multiple zoning. Chemically and mineralogically, the rock is ultramafic foidite and most likely corresponds to monchiquite. Primary and secondary melt inclusions were found in diopside, kaersutite, apatite, and titanite phenocrysts and are classified into three types: sodic silicate inclusions with analcime, potassic silicate inclusions with potassic feldspar, and carbonate inclusions, which are dominated by calcite. Heating and homogenization of the inclusions show that the potassic lamprophyres crystallized from a heterogeneous magma, with consisted of mixing mafic sodic and potassic alkaline magmas enriched in a carbonatite component. The composition of the magmas was close to nepheline and leucite melanephelinite. The minerals crystallized at 1150–1090°C from the sodic melts and at 1200–1250°C from the potassic ones. The sodic mafic melts were richer in Fe than the potassic ones, were the richest in Al, Mn, SO3, Cl, and H2O and poorer in Ti and P. The potassic mafic melts were not lamproitic, as follows from the presence of albite in the crystallized primary potassic melt inclusions. The diopside, the first mineral to crystallize in the rock, started to crystallize in the magmatic chamber from sodic mafic melt and ended to crystallize from mixed sodic–potassic melts. The potassic mafic melts were multiply replenished in the chamber in relation to tectonic motions. The ascent of the melts to the surface and rapidly varying P–T parameters of the magma were favorable for multiple separations of carbonatite melts from the alkaline mafic ones and their mixing and mingling.  相似文献   

10.
岚皋金云角闪辉石岩类捕虏体:地幔交代作用的证据   总被引:6,自引:2,他引:6  
产于陕西岚皋地区碱质基性-超基性潜火山杂岩中的金云角闪辉石岩类捕虏体,主要由透辉石、富钛韭闪石、金云母、磷灰石、榍石、及钛铁矿组成。捕虏体发育三联晶、碎裂边、肯克变形等固相线下变形变质结构,矿物学特征表明,透辉石、富钛韭闪石、金云母为地幔来源,是地幔交代作用的产物;与正常地幔尖晶石二辉橄榄岩相比,捕虏体富TiO2、Fe2O3、CaO、Na2O、K2O,贫MgO,其稀土元素具富集特征,尤其富集LREE;微量元素分配型式显示了富亲石不相容元素的特征。岩相学、矿物学及岩石化学特征表明:该类捕虏体为交代地幔捕虏体,它代表了北大巴山早古生代裂谷作用时期的异常地幔,是地幔交代作用的产物。交代营力可能源于地幔热缕的上升,交代过程推测为深处小范围的流体交代及随后硅酸岩熔体的“弥散”性交代  相似文献   

11.
大兴安岭北部诺敏河地幔金云母及钾质地幔熔体研究   总被引:2,自引:1,他引:1  
隋建立  李霓  樊祺诚  徐义刚 《岩石学报》2014,30(12):3587-3594
在大兴安岭北部诺敏河第四纪钾质火山岩携带的地幔捕虏体中,发现少量金云母矿物和富钾地幔熔体。金云母颗粒大小1~5mm,呈网脉状充填在橄榄石和辉石、石榴子石等地幔矿物间隙。电子探针研究表明地幔橄榄石、单斜辉石、斜方辉石和石榴石等矿物几乎不含钾质成分(K2O0.01%),而金云母矿物成分具有高钾(K2O~10%)、高钛(Ti O25.41%~7.74%)的特点,暗示区域地幔钾的富集与金云母矿物有密切关系。地幔金云母的成因往往与富钾地幔流体/熔体的交代作用有关,在地幔捕虏体矿物反应边的硅酸盐熔体(囊体)中,发现富硅、富钾的熔体,K2O 4%~8%。结合前人地幔熔体研究,认为区域地幔经历了多期、不同成分地幔熔体的富集作用,其中富钾熔体对地幔钾质成分的富集起到重要作用。诺敏钾质火山正是富钾地幔部分熔融的产物,钾质熔体成分的来源可能与俯冲再循环的壳源物质有关。  相似文献   

12.
The occurrence of a rare mantle-derived chrome-diopside megacryst (~8 mm), containing inclusions of olivine, in a lamprophyre dyke from the late Cretaceous polychronous (~100 – 68 Ma) Mundwara alkaline complex of NW India is reported. The olivine inclusions are forsteritic (Fo: 85.23) in composition, and their NiO (0.09 wt%) and CaO (0.13 wt%) contents imply derivation from a peridotitic mantle source. The composition of the chrome diopside (Cr2O3: 0.93 wt ) (Wo45.27 En48.47 Fs5.07 and Ac1.18) megacryst is comparable to that occurring in the garnet peridotite xenoliths found in diamondiferous kimberlites from Archaean cratons. Single pyroxene thermobarometry revealed that this chrome diopside megacryst was derived from a depth range of ~100 km, which is relatively much deeper than that of the chrome-diopside megacrysts (~40–50 km) reported in spinellherzolite xenoliths from the alkali basalts of Deccan age (ca. 66–67 Ma) from the Kutch, NW India. This study highlights that pre- Deccan lithosphere, below the Mundwara alkaline complex, was at least ~100 km thick and, likely, similar in composition to that of the cratonic lithosphere.  相似文献   

13.
Data obtained on lamprophyres from the carbonatite–volcanic unit in the lower horizon of the Tomtor Massif indicate that the rocks and zoned diopside and kaersutite phenocrysts in them are enriched in incompatible elements more significantly than is typical of alkaline ultramafic rocks of the Maymecha–Kotui and Kola provinces. The concentrations of these elements and their indicator ratios in the cores and intermediate zones of the diopside and kaersutite phenocrysts significantly vary, and this suggests that the minerals might have crystallized from different melts. This is consistent with the earlier conclusions, which were derived from studying melt inclusions, that the phenocrysts crystallized from mixing alkaline mafic melts of sodic and potassic types and different Mg–number which were enriched in the carbonatite component. The cores of the diopside phenocrysts started to crystallize from sodic mafic magma in a magmatic chamber, while the intermediate and outermost zones of this mineral crystallized from mixed sodic–potassic mafic melts. The carbonatite component was separated from the sodic mafic melt at high temperature (>1150°C) during diopside core crystallization. The bulk compositions of the alkaline lamprophyres and of the diopside and kaersutite phenocrysts contain lower normalized concentrations of HREE than LREE. This led us to conclude that the parental sodic and potassic mafic melts were derived from an enriched mantle source material under garnet–facies parameters, as is typical of continental rifts. It is noteworthy that the potassic mafic melt was derived at greater depths and lower degrees of melting of the mantle source than the sodic melt. The iron–rich sodic melt from which the cores of the diopside phenocrysts started to crystallize was enriched in V, REE, Y, and volatile components (H2O, CO2, F, Cl, and S). The onset of carbonate–silicate liquid immiscibility was marked by the redistribution of REE and Y into the carbonatite melt. The potassic, more Mg–rich mafic melt from which the intermediate and outermost zones of the diopside phenocrysts crystallized was enriched in Ti, Nb, Zr, and REE and always remained homogeneous when this mineral crystallized.  相似文献   

14.
New data on metasomatic processes in the lithospheric mantle in the central part of the Arkhangelsk diamondiferous province (ADP) are presented. We studied the major- and trace-element compositions of minerals of 26 garnet peridotite xenoliths from the V. Grib kimberlite pipe; 17 xenoliths contained phlogopite. Detailed mineralogical, petrographic, and geochemical studies of peridotite minerals (garnet, clinopyroxene, and phlogopite) have revealed two types of modal metasomatic enrichment of the lithospheric-mantle rocks: high temperature (melt) and low-temperature (phlogopite). Both types of modal metasomatism significantly changed the chemical composition of the peridotites. Low-temperature modal metasomatism manifests itself as coarse tabular and shapeless phlogopite grains. Two textural varieties of phlogopite show significant differences in chemical composition, primarily in the contents of TiO2, Cr2O3, FeO, Ba, Rb, and Cs. The rock-forming minerals of phlogopite-bearing peridotites differ in chemical composition from phlogopite-free peridotites, mainly in higher FeO content. Most garnets and clinopyroxenes in peridotites are the products of high-temperature mantle metasomatism, as indicated by the high contents of incompatible elements and REE pattern in these minerals. Fractional-crystallization modeling gives an insight into the nature of melts (metasomatic agents). They are close in composition to picrites of the Izhmozero field, basalts of the Tur’ino field, and carbonatites of the Mela field of the ADP. The REE patterns of the peridotite minerals make it possible to determine the sequence of metasomatic enrichment of the lithospheric mantle beneath the V. Grib kimberlite pipe.  相似文献   

15.
Silicate-oxide symplectites in complex mineral intergrowths are relatively common in upper mantle xenoliths and in xenoliths in the Jagersfontein Kimberlite, South Africa.Harzburgites of olivine and high-Al (1.9–3.6 wt%), Ca (0.6–0.9 wt%) and Cr (0.3–0.9 wt%) enstatite contain symplectites of spinel and diopside, or spinel, diopside and lower-Al (0.8–2.2 wt%), Ca (0.1–0.4 wt%) and Cr (0.02–0.8 wt%) enstatite. From textures and mineral chemistries these symplectites are interpreted to have formed by mineral unmixing and migration from Al–Ca–Cr discrete enstatite to adjoining mineral interfaces.Garnet harzburgites are composed of large (0.5–1 cm) olivine, equally large discrete low-Al (0.6–1.1 wt%), Ca (0.1–0.5 wt%), and Cr (0.1–0.3 wt%) enstatite and smaller interstitial garnet, diopside, and high-Cr and low-Al spinel. Symplectites are composed of either spinel+diopside+garnet, or garnet+spinel. Spinel diopside garnet symplectites have cores of spinel+diopside, resembling symplectites inharzburgites, but surrounded by rims of garnet or garnet+undigested globular spinel. From textures and chemistries we suggest that the spinel+diopside cores formed from Ca-Al-Cr-rich orthopyroxene initially as a nonstoichiometric homogeneous single phase clinopyroxene enriched in Fe, Cr and Al. This was followed by decomposition of the clinopyroxene to diopside+spinel, and subsequent garnet formation in a prograde reaction with olivine or enstatite. In bothharzburgites andgarnet harzburgites the metastable cellular structures may also have formed by the simultaneous precipitation of pyroxene and spinel. In all cases there is a strongly preferred embayment of symplectite bodies into olivine. Olivine appears to have activated adjacent  相似文献   

16.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

17.
Two suites of ultramafic xenoliths have been found in ultrapotassic lavas from the 0.9 Ma old Torre Alfina volcano sited at the northern border of the Vulsinian district (Central Italy). One group of Xenoliths consists of spinel-bearing lherzolites, harzburgites, minor wherlites and dunites with a maximum size of 3–4 cm. Some samples contain discrete laths of phlogopite. A second class consists of phlogopite-rich, glass-bearing peridotites. The first suite displays textural characteristics such as triple points, deformed olivine with well developed kink banding and porphyroclastic textures indicating equilibration at high pressure. Pressure estimates give values in the range 1.3–2.5 GPa, corresponding to mantle depths in the area, where the present-day Moho is about 25 km deep. Equilibration temperatures have been estimated in the range between 950–1000°C. The chemical composition of some phases, such as the very high Fo contents of olivines (up to Fo94 in harzburgites), Mg content of orthopyroxenes and Cr/Cr+Al ratios of clinopyroxenes and spinels, suggest that these xenoliths represent peridotites which suffered different degrees of partial melting before being incorporated into the Torre Alfina magma. On the other hand, the occurrence of phlogopite speaks for metasomatic events. The phlogopite-rich, glass-bearing xenoliths consist of phlogopite, olivine, clinopyroxene, rare orthopyroxene and glass. Apatite is the most common accessory. Olivine is present in both euhedral and strained crystals. A few relics of protogranular textures are also observed. Textural and chemical evidence suggests that these xenoliths represent mica-rich peridotites which have undergone phlogopite breakdown during rapid rise to the surface with the development of a K-rich liquid which reacted with mafic phases producing a rapid growth of olivine and, to a lower extent, pyroxene. Originally, these xenoliths may have represented intensively metasomatized upper mantle. However, a cumulitic origin from previous potassic magmatic events cannot be excluded. The host lavas have compositions intermediate between high-silica lamproite and Roman-type ultrapotassic rock. They have high abundances of incompatible elements and radiogenic Sr, coupled with high Mg content, MgO/CaO, Ni and Cr. These features support a genesis in a residual upper mantle which has suffered partial melting with the extraction of basaltic liquids, followed by metasomatic events which caused an enrichment in incompatible elements and radiogenic Sr. The presence of mantle-derived ultramafic xenoliths in the torre Alfina lavas testifies for a rapid uprise of the magma which reached the surface without suffering fractional crystallization and significant interaction with the upper crust. Accordingly, the Torre Alfina lavas represent an unique example of primitive potassic liquid in Central Italy.  相似文献   

18.
Minerals of various mantle-derived xenoliths from the Hannuoba basalt in Hebei Province have been studied by means of IR spectroscopy. The results show that all xenoliths from the mantle at depths <75 km contain trace amounts of water (0.45%-11.6×10-2 % H2O). The data of about 0.1% H2O contained in primary pyrolite estimated by earlier studies may be on the high side. The water might enter the frameworks of olivine, pyroxene and garnet earlier than it entered those of amphibole and phlogopite. The presence of water in amphibole and phlogopite may be a local phenomenon of water enrichment, which is related to relatively small-scale magmatic or metasomatic events although they can contain a hundred times more water than pyroxene contains. There is a little more water (1.11%-3.01×10-2 % of H2O mostly) in xenoliths from the Hannuoba basalt than in those from mid-ocean ridge basalt and kimberlites of South Africa (less than 1×10-2 % of H2O mostly). This indicates the heterogeneity of water in time and spa  相似文献   

19.
东北黑龙江小古里河-科洛-五大连池-二克山火山岩带是我国近代保存最好的火山群之一,此带火山岩的岩石化学特点全都强碱富钾,K2O/Na2O>1.2,属于一套高钾过碱性火山岩。通过对东北钾质火山岩及金云母橄榄岩地幔捕虏体中钾质矿物金云母、白榴石的成分、结晶环境与岩浆成分及来源关系的研究,认为在岩石圈伸展构造背景下,地幔金云母橄榄岩的低度部分熔融形成钾质岩浆,钾质岩浆上升到地壳浅部经历了白榴石的结晶作用。岩浆演化晚期,因钾质矿物大量晶出导致岩浆相对富钠而出现他形霞石和方钠石等填隙矿物。火山岩及地幔捕虏体中富挥发分矿物金云母、白榴石、磷灰石、霞石和方钠石还提供了钾质岩浆富含H2O、F、Cl、P等挥发分的证据。  相似文献   

20.
Abstract The Rockley Volcanics from near Oberon, New South Wales occur within the aureole of the Carboniferous Bathurst Batholith and have been contact metamorphosed at P ∼ 100 ± 50MPa (10.5kbar) and a maximum T ∼ 565°C in the presence of a C–O–H fluid. Prior to contact metamorphism the volcanics were regionally metamorphosed and altered with the extensive development of actinolite, chlorite, plagioclase, quartz and calcite. The contact metamorphosed equivalents of these rocks have been subdivided into: Ca-poor (cordierite + gedrite), Mg-rich (amphibole + olivine + spinel), mafic (amphibole + plagioclase) and Ca-rich (amphibole + garnet + diopside; diopside + plagioclase; garnet + diopside + wollastonite) rocks.
The chemistry of the minerals in the hornfelses was controlled by the bulk rock chemistry and fluid composition. Pargasites and hastingsites as well as an unusual phlogopite with blue green pleochroism, are found in Ca-rich hornfelses. A comparison of the assemblages with experimentally derived equilibria suggests that the fluid phase associated with the Ca-rich hornfelses was water-rich (Xco2= 0.1 to 0.3) while that associated with the Mg-rich hornfelses was enriched in CO2 (Xco2 > 0.7). The different hornfels types have reacted to contact metamorphism independently in both their solid and fluid chemistries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号