首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Fracture network modelling plays an important role in many application areas in which the behaviour of a rock mass is of interest. These areas include mining, civil, petroleum, water and environmental engineering and geothermal systems modelling. The aim is to model the fractured rock to assess fluid flow or the stability of rock blocks. One important step in fracture network modelling is to estimate the number of fractures and the properties of individual fractures such as their size and orientation. Due to the lack of data and the complexity of the problem, there are significant uncertainties associated with fracture network modelling in practice. Our primary interest is the modelling of fracture networks in geothermal systems and, in this paper, we propose a general stochastic approach to fracture network modelling for this application. We focus on using the seismic point cloud detected during the fracture stimulation of a hot dry rock reservoir to create an enhanced geothermal system; these seismic points are the conditioning data in the modelling process. The seismic points can be used to estimate the geographical extent of the reservoir, the amount of fracturing and the detailed geometries of fractures within the reservoir. The objective is to determine a fracture model from the conditioning data by minimizing the sum of the distances of the points from the fitted fracture model. Fractures are represented as line segments connecting two points in two-dimensional applications or as ellipses in three-dimensional (3D) cases. The novelty of our model is twofold: (1) it comprises a comprehensive fracture modification scheme based on simulated annealing and (2) it introduces new spatial approaches, a goodness-of-fit measure for the fitted fracture model, a measure for fracture similarity and a clustering technique for proposing a locally optimal solution for  fracture parameters. We use a simulated dataset to demonstrate the application of the proposed approach followed by a real 3D case study of the Habanero reservoir in the Cooper Basin, Australia.  相似文献   

2.
A Review of Some Rock Mechanics Issues in Geothermal Reservoir Development   总被引:1,自引:0,他引:1  
Rock mechanics and geomechanical studies can provide crucial information for economic geothermal reservoir development. Although significant progress has been made in reservoir geomechanics, technical challenges specific to the geothermal area (high temps, data collection, experimentation issues) have prevented widespread use of geomechanics in geothermal reservoir development. However, as the geothermal industry moves to develop more challenging resources using the concept of enhanced geothermal systems (EGS), and to maximize productivity from conventional resources, the need for improved understanding of geomechanical issues and developing specific technologies for geothermal reservoirs has become critical. Rock mechanics research and improved technologies can impact areas related to in-situ stress characterization, initiation and propagation of artificial and natural fractures, and the effects of coupled hydro-thermo-chemo-mechanical processes on fracture permeability and induced seismicity. Rock mechanics/geomechanics research, including experimental and theoretical investigations as well as numerical and analytical solutions, has an important role in optimizing reservoir design and heat extraction strategies for sustainable geothermal energy development. A number of major areas where rock mechanics research can facilitate geothermal systems development are reviewed in this paper with particular emphasis on EGS design and management.  相似文献   

3.
Fracture network modeling is an essential part of the design, development and performance assessment of Enhanced Geothermal Systems. These systems are created from geothermal resources, usually located several kilometers below the surface of the Earth, by establishing a network of connected fractures through which fluid can flow. The depth of the reservoir makes it impossible to make direct measurements of fractures and data are collected from indirect measurements such as geophysical surveys. An important source of indirect data is the seismic event point cloud generated by the fracture stimulation process. Locations of these points are estimated from recorded micro-seismic signals generated by fracture initiation, propagation and slip. This point cloud can be expressed as a set of three-dimensional coordinates with attributes, for example Se ijk ={(x,y,z);?a|x,y,zR,?aI}. We describe two methods for reconstructing realistic fracture trace lines and planes given the point cloud of seismic events data: Enhanced Brute-Force Search and RANSAC. The methods have been tested on a synthetic data set and on the Habanero data set of Geodynamics’ geothermal project in the Cooper Basin of South Australia. Our results show that the RANSAC method is an efficient and suitable method for the conditional simulation of fracture networks.  相似文献   

4.
During fluid injection in enhanced geothermal systems, thermo‐mechanical processes can play an important role. In fact, the phenomena of reservoir seismicity and the variation of injectivity with respect to injection water temperature can be attributed to the induced thermal stresses. In this paper, a three‐dimensional integral equation formulation is presented for calculating thermally induced stresses associated with the cooling of a fracture in a geothermal reservoir. By utilizing Green's function in the integral equation, the three‐dimensional heat flow and stresses in the reservoir are modelled without discretizing the reservoir. The formulation is implemented in a computer program for the solution of injection into an infinite fracture as well as for the injection/extraction in an arbitrarily shaped fracture. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Poro‐mechanical and thermo‐mechanical processes change the fracture aperture and thus affect the water flow pattern in the fracture during the cold water injection into enhanced geothermal systems (EGS). In addition, the stresses generated by these processes contribute to the phenomenon of reservoir seismicity. In this paper, we present a three‐dimensional (3D) partially coupled poro‐thermoelastic model to investigate the poroelastic and thermoelastic effects of cold water injection in EGS. In the model, the lubrication fluid flow and the convective heat transfer in the fracture are modeled by the finite element method, while the pore fluid diffusion and heat conductive transfer in the reservoir matrix are assumed to be 3D and modeled by the boundary integral equation method without the need to discretize the reservoir. The stresses at the fracture surface and in the reservoir matrix are obtained from the numerical model and can be used to assess the variation of in situ stress and induced seismicty with injection/extraction. Application of the model shows that rock cooling induces large tensile stresses and increases fracture conductivity, whereas the rock dilation caused by fluid leakoff decreases fracture aperture and increases compressive total stresses around the injection zone. However, increases in pore pressure reduce the effective stresses and can contribute to rock failure, fracture slip, and microseismic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A phase-field approach for fluid-driven fracture propagation in porous media with varying constant compatible stress boundary conditions is discussed and implemented. Since crack opening displacement, fracture path, and stress values near the fracture are highly dependent on the given boundary conditions, it is crucial to take into account the impact of in situ stresses on fracturing propagation for realistic applications. We illustrate several numerical examples that include the effects of different boundary conditions on the fracture propagation. In addition, an example using realistic boundary conditions from a reservoir simulator is included to show the capabilities of our computational framework.  相似文献   

7.
The role of shear dilation as a mechanism of enhancing fluid flow permeability in naturally fractured reservoirs was mainly recognized in the context of hot dry rock (HDR) geothermal reservoir stimulation. Simplified models based on shear slippage only were developed and their applications to evaluate HDR geothermal reservoir stimulation were reported. Research attention is recently focused to adjust this stimulation mechanism for naturally fractured oil and gas reservoirs which reserve vast resources worldwide. This paper develops the overall framework and basic formulations of this stimulation model for oil and gas reservoirs. Major computational modules include: natural fracture simulation, response analysis of stimulated fractures, average permeability estimation for the stimulated reservoir and prediction of an average flow direction. Natural fractures are simulated stochastically by implementing ‘fractal dimension’ concept. Natural fracture propagation and shear displacements are formulated by following computationally efficient approximate approaches interrelating in situ stresses, natural fracture parameters and stimulation pressure developed by fluid injection inside fractures. The average permeability of the stimulated reservoir is formulated as a function of discretized gridblock permeabilities by applying cubic law of fluid flow. The average reservoir elongation, or the flow direction, is expressed as a function of reservoir aspect ratio induced by directional permeability contributions. The natural fracture simulation module is verified by comparing its results with observed microseismic clouds in actual naturally fractured reservoirs. Permeability enhancement and reservoir growth are characterized with respect to stimulation pressure, in situ stresses and natural fracture density applying the model to two example reservoirs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The hydraulic fracturing technique has been widely applied in many fields, such as the enhanced geothermal systems (EGS), the improvement of injection rates for geologic sequestration of CO2, and for the stimulations of oil and gas reservoirs. The key points for the success of hydraulic fracturing operations in unconventional resources are to accurately estimate the redistribution of pore pressure and stresses around the induced fracture and predict the reactivations of preexisting natural fractures. The pore pressure and stress regime around hydraulic fracture are affected by poroelastic and thermoelastic phenomena as well as by fracture opening compression. In this work, a comprehensive semi-analytical model is used to estimate the stress and pore pressure distribution around an injection-induced fracture from a single well in an infinite reservoir. The model allows the leak-off distribution in the formation to be three-dimensional with the pressure transient moving ellipsoidically outward into the reservoir from the fracture surface. The pore pressure and the stress changes in three dimensions at any point around the fracture caused by poroelasticity, thermoelasticity, and fracture compression are investigated. With Mohr-Coulomb failure criterion, we calculate the natural fracture reactivations in the reservoir. Then, two case studies of constant water injection into a hydraulic fracture are presented. This work is of interest in the interpretation of microseismicity in hydraulic fracturing and in the estimation of the fracture spacing for hydraulic fracturing operations. In addition, the results from this study can be very helpful for the selection of stimulated wells and further design of the refracturing operations.  相似文献   

9.
水力压裂是青海共和盆地干热岩地热资源开发的难点技术问题之一。本文基于升级改造的大尺寸真三轴水力压裂物理模拟实验系统模拟干热岩储层高温高压环境,利用青海共和盆地露头岩心进行水力压裂物理模拟实验,揭示干热岩储层水力裂缝的起裂和扩展规律。通过物理模拟实验发现:干热岩储层裂缝起裂可以通过文中提出的起裂模型判断起裂方式和预测起裂压力;水力裂缝在岩石基质中的扩展形态简单,仅沿最大主应力方向延伸;但是水力裂缝会受到岩石中弱面的影响,发生转向沿弱面延伸,形成较复杂的裂缝形态。因此,建议在干热岩储层实际施工中,在天然裂缝发育较丰富的层段开展水力压裂,以实现复杂裂缝网络提取地热能。  相似文献   

10.
This paper presents an approach to modelling fracture networks in hot dry rock geothermal reservoirs. A detailed understanding of the fracture network within a geothermal reservoir is critically important for assessments of reservoir potential and optimal production design. One important step in fracture network modelling is to estimate the fracture density and the fracture geometries, particularly the size and orientation of fractures. As fracture networks in these reservoirs can never be directly observed there is significant uncertainty about their true nature and the only feasible approach to modelling is a stochastic one. We propose a global optimization approach using simulated annealing which is an extension of our previous work. The fracture model consists of a number of individual fractures represented by ellipses passing through the micro-seismic points detected during the fracture stimulation process, i.e. the fracture model is conditioned on the seismic points. The distances of the seismic points from fitted fracture planes (ellipses) are, therefore, important in assessing the goodness-of-fit of the model. Our aims in the proposed approach are to formulate an appropriate objective function for the optimal fitting of a set of fracture planes to the micro-seismic data and to derive an efficient modification scheme to update the model parameters. The proposed objective function consists of three components: orthogonal projection distances of the seismic points from the nearest fitted fractures, the amount of fracturing (fitted fracture areas) and the volumes of the convex hull of the associated points of fitted fractures. The functions used in the model update scheme allow the model to achieve an acceptable fit to the points and to converge to acceptable fitted fracture sizes. These functions include two groups of proposals: one for updating fracture parameters and the other for determining the size of the fracture network. To increase the efficiency of the optimization, a spatial clustering approach, the Distance-Directional Transform, was developed to generate parameters for newly proposed fractures. A simulated dataset was used as an example to evaluate our approach and we compared the results to those derived using our previously published algorithm on a real dataset from the Habanero geothermal field in the Cooper Basin, South Australia. In a real application, such as the Habanero dataset, it is difficult to determine definitively which algorithm performs better due to the many uncertainties but the number of association points, the number of final fractures and the error are three important factors that quantify the effectiveness of our algorithm.  相似文献   

11.
天娇  庞忠和  张睿 《地学前缘》2020,27(1):112-122
增强地热系统(EGS)是开采低渗透率热岩体中热能的技术,属于广义的地热储工程。其中,作为换热介质被注入岩体并在换热后返回地表的返排液,不仅是岩体地球化学特征的信息载体,而且其物理化学行为直接影响着EGS系统的运行效果。FixAl化学热力学模拟和水同位素十三线图解在天然水热系统评价中得到了广泛应用,对返排液研究的实用性则是文章的核心问题。文中收集了全球主要EGS项目的返排液资料,基于FixAl方法分析矿物与返排液的化学平衡状态,并计算了流体在深部的热交换温度,用同位素模型验证了EGS系统中原生卤水的驱替过程。研究结果表明,上述方法在EGS返排液研究中是适用的。此外,返排液的化学特征对EGS的指示意义还包括厘定原生卤水在返排液中所占比例,识别岩浆挥发分溶解及储层改造时的添加剂残留,预测结垢趋势和流体腐蚀性等。未来需要通过更多的实验和模拟方法深入研究返排液的化学特征,建立EGS的热-水-力-化学(THMC)耦合模型,为科学开发深层地热能提供依据。  相似文献   

12.
13.
地下热储温度的确定,可为评价地热资源潜力提供重要参数.青海省恰卜恰地区地热资源丰富,但深部热储温度难以确定.利用青海省恰卜恰地区两个热水井,结合其水化学特征,采用多种方法估算深部热储温度.结果显示:二氧化硅温标指示性最强;PHREEQC软件对冷水混入和脱气作用进行了校正,使得计算结果相对准确可靠.经多种方法相互验证,最终确定恰卜恰地区新近系的热储温度在86~107℃,地温梯度大约为6℃/100 m.  相似文献   

14.
地球化学勘探技术作为地热资源综合勘查技术之一,在地热勘探开发中发挥了重要作用。沉积盆地型与隆起山地型地热系统由于自身地质特征的不同,必然造成它们的地球化学判识指标和异常模式存在差异。目前国内外尚缺乏对这两种类型地热系统判识指标和地球化学异常模式差异性进行地质地球化学分析,导致针对不同的勘探对象在方法选择和异常解释上依据不足。以典型沉积盆地型地热系统——河北雄县地热系统,隆起山地型地热系统——安徽巢湖半汤地热系统为例,开展地球化学方法试验,建立了两种类型地热系统的地表地球化学异常模式,并从地热系统的地质因素(热源、热水、热储、通道、盖层)出发,对其地表地球化学异常模式差异性进行分析,表明隆起山地型地热系统地表地球化学异常模式为受导水断层、破碎带控制的正异常;沉积盆地型地热系统气体地球化学异常模式为受热储构造控制的正异常,微量元素地球化学异常为受氧化还原环境控制的负异常;二者在有效地球化学指标组合和异常形态上均存在差异。研究结果为不同类型地热系统勘探提供方法和理论依据。  相似文献   

15.
哥伦比亚Ombu区Kc组裂缝描述和地质建模   总被引:1,自引:1,他引:0  
王伟 《现代地质》2012,26(1):139-144
裂缝对改善低渗透碎屑岩储层物性有非常重要的作用,裂缝发育规律和控制因素的研究直接影响着开发方案部署和油藏开发效果。在盆地分析和储层研究基础上,利用层序地层和地质统计学方法,分析了Kc组裂缝与区域构造应力、沉积相和岩性的关系。受区域压扭作用影响,区域上发育北东和北西方向两组影响裂缝的地应力,形成了以北东方向为主的高角度裂缝。不同沉积相带和不同岩性储层裂缝发育也有差异,扇中和扇缘亚相裂缝较扇根亚相发育、砂岩较砾岩裂缝发育。在这种地质认识基础上,建立了裂缝三维地质模型。  相似文献   

16.
柴达木盆地西部古近系储层裂缝有效性的影响因素   总被引:2,自引:0,他引:2  
古近系盐湖相裂缝性泥灰岩储层是柴达木盆地西部地区的重要储层类型,储层中发育剪切裂缝、纵张裂缝、顺层滑动裂缝和成岩裂缝4种类型。裂缝普遍被方解石、石膏或钙芒硝等充填,裂缝的有效性对储层评价十分重要。有效裂缝不仅提供了储层的重要储集空间和主要渗流通道,还决定了油气的富集规律和储层的潜在生产能力。裂缝的有效性主要受裂缝形成时间、溶蚀作用、第四纪以来的构造抬升剥蚀作用、异常流体高压作用、膏盐层分布和断层的活动性等因素控制。晚期形成的裂缝有效性更好;溶蚀作用可明显地增加裂缝的有效性;第四纪以来的构造抬升剥蚀作用和异常流体高压作用可使裂缝重新裂开,使裂缝的有效性变好;离膏盐层越远,裂缝的有效性越好。裂缝的有效性与现今地应力方向关系不密切,主要受断层活动的影响,与主断层平行的裂缝有效性最好。  相似文献   

17.
王伟  付豪  邢林啸  柴波  刘波  施星宇 《地球科学》2021,46(10):3509-3519
水力压裂作为一种主要的地热能开采手段,其压裂效果除与岩体基本物理力学性质有关外,还与裂隙分布、地应力状态、压裂工程参数等密切相关.为了探究以上因素对水力压裂过程中裂缝扩展行为的影响,以冀中坳陷碳酸盐岩储层岩体为研究对象,基于扩展有限元法,建立裂缝扩展流固耦合模型,分析了水平应力差、射孔方位角、注入液排量和压裂液黏度等参数对裂缝扩展行为的影响.结果表明:单裂缝扩展时,射孔方位角越小、注入量越大、越有利于裂缝扩展;双裂缝扩展时,水平应力差增大,裂缝偏转程度变小;水力裂缝与天然裂缝相交时,较小水平应力差有利于天然裂缝开启.   相似文献   

18.
在兰州海石湾地区进行地热勘查,在分析地热形成条件的基础上,结合可控源音频大地电磁测深、大地电磁测深、伽马能谱测量等物探方法,查清了区内盖层厚度、热储层埋深及断裂构造位置,避免了单一方法的片面性和盲目性,为钻探提供了依据。经钻探验证,井孔地层、含水层与物探推断基本吻合,井口水温60℃,涌水量90 m3/h,主要为断裂型带状热储。研究结果为今后在类似地区进行地热勘探提供了有参考价值的经验和实例。  相似文献   

19.
Fracture seepage and heat transfer in the geothermal reservoir of carbonate rocks after the reinjection of low temperature geothermal return water is a complex coupling process,which is also the frontier of geothermal production and reinjection research. Based on the research of cascade comprehensive development of geothermal resources in Beijing-Tianjin-Hebei (Xian County),the carbonate geothermal reservoir of Wumishan formation in the geothermal field in Xian County is investigated. With the development of the discrete fracture network model and the coupling model of seepage and heat transfer,the numerical solution of seepage field and temperature field with known fracture network is reached using the finite element software COMSOL,and the coupling process of seepage flow and heat in carbonate rocks is revealed. The results show that the distribution of temperature field of fractured rocks in geothermal reservoir of carbonate rocks has strong non-uniformity and anisotropy. The fracture network is interpenetrated,which constitutes the dominant channel of water conduction,and along which the fissure water moves rapidly. Under the influence of convective heat transfer and conductive heat transfer,one of the main factors to be considered in the study of thermal breakthrough is to make the cold front move forward rapidly. When the reinjection and production process continues for a long time and the temperature of the geothermal reservoir on the pumping side drops to a low level,the temperature of bedrocks is still relatively high and continues to supply heat to the fissure water,so that the temperature of the thermal reservoir on the pumping side will not decrease rapidly to the water temperature at the inlet of reinjection,but will gradually decrease after a long period of time,showing an obvious long tail effect. The distribution of fractures will affect the process of seepage and heat transfer in carbonate reservoirs,which should be considered in the study of fluid thermal coupling in carbonate reservoirs.  相似文献   

20.
ABSTRACT

Geothermal exploration in the Central Andean Volcanic Zone (CAVZ) focuses on heat capacities of known geothermal systems, yet the role of faults, veins, fractures and folds on the evolution and migration of fluids is far from complete. Here, we present a compilation of He and Sr isotope data and newly generated structural maps to examine if particular tectonic configurations are associated with fluids migrating from different crustal levels. Accordingly, we defined three tectono-geothermal environments (T1–T3) depicting specific structural arrangements and spatial relation with geothermal and volcanic manifestations. T1 is dominated by left-lateral strike-slip NW-striking faults, and geothermal and volcanic manifestations occur along the traces of these structures. T2 is dominated by N-striking thrust faults and parallel fault-propagated folds, cut and displaced by NW-striking faults. Here, geothermal manifestations occur at fault intersections and at fold hinges. T3 is defined by left-lateral/normal NW-striking faults, with geothermal and volcanic manifestations lying along fault traces. Each tectono-geothermal environment yields distinctive isotope ratios and geothermal reservoir temperatures. T1 shows high helium and low strontium ratios, and temperatures between 220° and 310°C. T3 shows low helium and high strontium ratios and temperatures between 260° and 320°C. T2 isotope ratios fall between T1 and T3, with lowest (130°-250°C) reservoir temperatures. We argue that these particular isotope signatures are due to a structural control on reservoir location and orientation. The orientation of the fracture mesh genetically associated with each tectono-geothermal environment is a first-order control on the migration pathway of fluids. Our model shows that T1 allows fluxing of deeper fluids, T2 promotes storage and favors longer residence times and T3 enhances subvertical fluid migration. Results here help to explain the evolution of geothermal systems in a wider context, including fault systems and Sr and He isotope variations, thus providing a framework for geothermal exploration in the CAVZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号