首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
<正>新生代青藏高原的隆升导致了东亚地理格局的改变,形成了从大陆中央隆升区向周围辐射的亚洲主要水系,也导致亚洲季风系统在早中新世形成,又在约8Ma与约3Ma时强化(汪品先,2005),使得大陆流域内风化模式、风化程度、剥蚀速率等发生不同程度的改变,影响着全球大洋化学通量变化。化学风化作为地球表层生物地球化学循环的关键过程,起着联系地球表层各圈层的纽带作用,在对地球不同圈层中的元素进行再分配的同时(Lupker,et al.,2012),直接或间接地影响全球气候。因此,化学风化与各圈层相互  相似文献   

2.
任纪舜  徐芹芹  赵磊  朱俊宾 《地质论评》2017,63(5):1133-1140
从19世纪中叶开始,大地构造理论经历了从地槽—地台说到板块构造说的发展过程。目前,板块构造说虽然仍在盛行,但一个新的大地构造理论——地球系统多圈层构造观(简称多圈层构造观)已在形成中。地槽—地台说,19世纪中叶提出,盛行于20世纪上半叶,是地质学家从理论上研究地壳构造及其演化的开始。地槽—地台说使用的方法是传统的地质学方法;研究领域是大陆地壳,褶皱带(造山带)和克拉通是其研究的核心内容。地槽—地台说大大推动了地质科学的发展,并为地球科学的进一步发展,奠定了良好的基础。板块构造说,起始于20世纪60年代。板块构造使用的方法,除地质学外,加上了地球物理学和地球化学等现代科学和技术手段;研究领域是全球大陆和海洋的岩石圈。板块构造说使大地构造学的研究范围从地球表层扩展到地球内部,从大陆扩展到海洋,极大地推动了地球科学向更高的层次发展。目前,板块构造说虽然仍在盛行,但是不足和缺陷已日益显露出来。地球系统多圈层构造观,孕育于20世纪80年代晚期,目前正在发展中。地球系统多圈层构造观使用的方法更现代化,包括地质学、地球物理学、地球化学以及一切探测地球深部和外层空间的方法、手段;研究领域,已不仅仅是地球表层的地壳或岩石圈,而是地球整体,地球各圈层的相互作用。我们相信,21世纪必将是地球系统多圈层构造观不断发展、不断完善的时代。中国及邻区中、新生代构造演化是全球研究多圈层构造的最理想的切入点之一。我们期待中国地学工作者在新一轮大地构造理论创新中发挥应有的作用。  相似文献   

3.
地球系统多圈层构造观的基本理论框架是:①把大地构造学从研究地球表层的地壳构造、岩石圈构造推进到研究地球整体多圈层构造的新阶段.②地球系统和宇宙天体系统共同作用下形成的全球动力学,太阳能、地球系统多圈层相互作用以及宇宙天体运行的联合作用是各种地质作用的动力来源.③洋陆转化论:陆与洋是对立统一、相互转化的.陆与洋都不会永存...  相似文献   

4.
地球系统科学不应当理解为各门地球科学的叠加,而是探索其圈层相互作用,整合其各种学科,将地球作为一个完整系统来研究的学问。地球系统科学从全球变化开始,然后向早期的地质年代推进。而当前面临的新任务是将地球表层与地球内部过程连接起来研究。  相似文献   

5.
全球表层系统研究的思考   总被引:2,自引:1,他引:2  
1900年前后,以徐士、阿尔冈、魏格纳、李四光等为代表的先驱们从不同视角开始了对地球表层的整体性研究。20世纪人造卫星的应用和板块理论的建立,推动了全球整体观思想的发展。进入21世纪后,伴随社会全球化进程,地球整体观在科学前沿领域显示出极为重要的导向作用。在这个思想引导下的广义地球系统科学是关于地球多圈层的整体研究,但由于涉及人类生存的资源、环境、灾害问题的紧迫性,在未来10至20年内地球系统科学的优先领域之一应是整体观指导下的地球表层系统的研究,它涉及大气层、海洋、地壳、生物和人类。目前可列举出4个重大问题:(1)全球变暖引起的大范围灾害与环境变化;(2)以SARS和禽流感为代表的全球性生物病毒传播灾患;(3)影响人类生存的全球性水资源短缺;(4)导致严重损失和全球性影响的大地震的频繁发生。厄尔尼诺现象与地震的相关性,全球大地震十几年尺度的幕式活动与区域间交替变换,十几年尺度的大范围旱、涝交替变换,表明上述全球性异常变化都是地球表层系统整体性动力过程的表现。应从全球尺度研究包含气体、液体、固体的地球表层系统的微动态变化,分析它们与地、水、大气和生物各圈层之间的相互作用及物质与能量交换的关系,加深对地球表层相互联系的系统过程的理解。  相似文献   

6.
流域化学风化过程的碳汇能力   总被引:3,自引:1,他引:2  
陶贞  高全洲  刘昆 《第四纪研究》2011,31(3):408-416
通过对已有工作较为全面的分析,综述了流域化学风化过程对大气CO<,2>的吸收能力.陆地岩石的化学风化过程是联接地球各大碳库的关键环节.在地质时间尺度上陆地岩石的化学风化,尤其是硅酸盐岩的化学风化构成全球生物地球化学循环的重要碳汇,是调节地球气候性质使之相对稳定的关键表生地质过程.河流在陆地向海洋的物质输送中担任着重要角...  相似文献   

7.
序言          下载免费PDF全文
正随着全球工业化和城镇化进程的加速,人类社会正面临着前所未有的资源耗竭、环境污染和生态安全问题.而破解这些问题,在很大程度上取决于人类对近地表圈层的理解和认知水平.地球关键带(Earths Critical Zone),即树冠顶端到含水层底端的地球圈层,是地球系统与经济社会相互作用最直接、最显著的地球表层圈层部分.地球关键带过程不仅控制着土壤的发育、水流和溶质迁移、生物地球化学循环,影响着能源和矿产资源的形成与演化,而且影响并控  相似文献   

8.
关于地球表层的讨论   总被引:4,自引:0,他引:4  
根据天地生综合研究现状、任务和建立地球表层学的需要,综合考虑岩石圈、大气圈的整体性和水圈、生物圈或有机圈的扩散渗透性等,就“地球表层”的概念和范围作了综合讨论,认为现在广为沿用的地球表层概念存有局限性,应重新修定,拓展并充实其内涵,提出地球表层应该是包括整个岩石圈、水圈、大气圈和生物圈(或有机圈)及其相互关系和地表能量场在内的地球部分,它是地表各圈层相互渗透、交织、相互作用和调节的有机整体,是人类赖以生存与发展的地球环境。  相似文献   

9.
<正>地球中最不均匀和最复杂的区域——地球表层系统中各个圈层交互作用地带正在成为当代国际地球科学、生命科学和环境科学中近地表环境研究领域的关键带。作为地球科学中的重要基础学科——矿物学应担当起研究这一关键  相似文献   

10.
古—中生代之交的全球变化与生物效应   总被引:9,自引:0,他引:9  
古—中生代之交是显生宙以来最大的一次生物绝灭期 ,其形成机制一直是地学界长期探讨的热点课题之一。地史重大转折期是地球内、外各圈层长期作用下 ,各种量变达到阀值 ,加之可能的外因激化 ,在短时间内以连锁反应形式相继质变 ,形成了全球变化 (包括生物绝灭 )的地球突变期。文中从可能的外因 (外星体撞击事件 )及内因 (岩石圈的变化 ,地球表层的变化和生物圈的变化 )两个方面探讨了古—中生代之交的全球变化与生物效应  相似文献   

11.
新生代期间,亚洲及周边地区地球深部过程与地表环境发生了一系列重大变革。印度板块—欧亚板块碰撞和太平洋板块俯冲驱动下的构造—地貌过程,导致青藏高原隆升、亚洲东部岩石圈伸展减薄、西太平洋边缘海扩张,并最终塑造了现今的宏观地形地貌和水系格局。这一系列构造地貌过程与新生代全球气候变冷、西风环流与亚洲季风环流重组、生物地理演变之间存在紧密的关联,成为地球科学领域重大前沿与热点课题,是开展地球深部与浅表过程、地球表层各圈层之间相互作用研究的重要切入点。  相似文献   

12.
生物风化作用研究进展   总被引:9,自引:0,他引:9  
生物无时无刻不参与地球表层矿物和岩石的风化,但以往的研究大多注重物理风化与化学风化作用,对生物风化作用关注很少。近年的研究表明,动物、植物和微生物均参与了风化过程。研究生物风化作用机理及在生物作用下矿物的演化序列,对于揭示土壤形成、化学元素循环规律、全球环境变化有着极其重要的意义。  相似文献   

13.
全球构造运动与地球自转相关性的新证据   总被引:1,自引:1,他引:0  
近20年来,国际地学界不同领域的学者应用多种先进的手段与方法,对现今地球各圈层的水平运动分别进行了长期观测与研究,揭示出地球不同圈层水平运动的基本规律,为全球构造运动与地球自转的相关性提供了新的重要证据。
对地球不同圈层水平速度矢量场的对比分析发现,现今地球各个圈层均存在速率量级不同的总体西向运动的特征,不同圈层的水平运动速度矢量场具有高度的相似性,且与地球自转密切相关;在中低纬度地区,各圈层西向速度矢量居主导地位;在中高纬度地区形成一些东向回流;速率大小与纬度存在统计相关关系,纬度愈小,速率愈大;岩石圈稳态水平运动速率在纬度φ=0°与φ=35°呈极大值。   相似文献   

14.
<正>大陆岩石化学风化作为大洋可容元素的主要来源,在大洋生物-地球化学循环中起着至关重要的作用,硅酸盐岩化学风化通过调节大气CO2浓度而稳定着全球气候变化[1]。大陆硅酸盐岩化学风化受到岩性、构背景以及气候因素的多重控制,但硅酸盐岩化学风化是全球碳循环过程中的一种负反馈作用,还是气候变化的驱动者?两者之间的相互作用机制仍然存在很大争议,研究大陆硅酸盐岩化学风化对过去气候变化的响应过程是解决这些争议的关键[2-3]。然而,受到风化产物物源、搬运过程,沉积环境变化的多重影响,  相似文献   

15.
陆地硅的生物地球化学循环研究进展   总被引:2,自引:0,他引:2  
地球表层硅(Si)的生物地球化学循环与大气CO2浓度变化、大洋生物泵作用以及海岸带富营养化等过程密切相关,因此成为全球环境变化研究的核心问题之一。在地质时间尺度上,硅酸盐矿物的化学风化是地球表层所有次生Si的来源。陆地生态系统各次生Si库具有不同的形成机制和驱动因子,这导致各Si库的贮存量和循环周期存在明显差异。土壤Si库中的黏土矿物Si、溶解硅(DSi)和淀积在其他矿物表面的无定形Si都源自硅酸盐矿物的化学风化过程;植物生长过程中吸收土壤中的DSi形成生物Si,然后经微生物分解过程返还给土壤;地表径流将流域陆源Si以悬移质Si和DSi的形式输入河流、海洋。迄今,陆地不同形态Si库的大小及其对全球Si循环的贡献仍不确定。因此,在研究陆地Si的生物地球化学循环过程中,综合考虑各种地表过程及其耦合作用是非常必要的。  相似文献   

16.
环境·灾害与地学   总被引:12,自引:1,他引:12  
环境与灾害已成为中国社会经济发展的重大制约因素 ,保护环境、减轻灾害需要全社会的努力和科学支撑。环境与灾害的形成主要受两大因素控制 :一是自然变异 ,二是人类社会活动。地球在不停地运动着、变化着 ,致使人类、地球、环境发生日新月异的变化 ,并导致自然灾害的发生。从表面看 ,地圈的运动和变化导致地质环境的变迁和地震及地质灾害的产生 ;水圈的运动和变化导致水环境的变化和水灾害的发生 ;气圈的运动和变化导致气候环境的变化和气象灾害的发生 ;地球表层系统和生物圈的运动和变化导致生态环境的变化和生物灾害的发生。然而 ,从深层次看 ,由于地球是一个开放的自组织系统 ,各个圈层自身运动变化的同时 ,彼此也在发生着物质和能量的交流 ,各个圈层的运动与变化受控于全球运动与全球变化 ,并受太阳及其它天体运动和变化的影响。由此看来 ,地球各个圈层的环境与灾害的产生都不是孤立的现象 ,而是彼此相关 ,形成环境灾害系统 ,并作为地球系统的一个分支 ,属于全球变化的一个组成部分。基于这一认识 ,环境与灾害应当是地学研究的新命题。  相似文献   

17.
不同构造带硅酸盐化学风化率的制约:气候还是构造?   总被引:7,自引:0,他引:7  
金章东  李英  王苏民 《地质论评》2005,51(6):672-680
虽然构造—风化-气候之间的制约关系仍然存在各种争论,但无疑的是,硅酸盐矿物的化学风化是调节地质时间尺度全球大气二氧化碳分压,进而保持地球表层气候稳定的关键性因素。目前最大的挑战在于如何理解地表制约硅酸盐矿物化学风化的因素,特别是当仅仅从气候要素变化难以解释长时间尺度硅酸盐化学风化率的时候。综合不同构造区内岩石物理剥蚀率和硅酸盐化学风化率的数据表明,不同时间、空间尺度硅酸盐风化率与构造和气候之间既存在相互耦合也存在矛盾的关系,仅仅归因于单一要素是不能得到圆满解释的。构造隆升区的强剥蚀可能是造成硅酸盐风化率增加的重要因素之一,但是将晚新生代地表系统的各种变化与各构造带(如青藏高原)的阶段性隆升联系起来可能是草率的。在不同类型构造带内,气候和构造对硅酸盐风化的制约并非是相互排斥的,特别是长时间尺度,因此“构造隆升-化学风化-气候变化”假说也正面临着全新的挑战。  相似文献   

18.
硅酸盐岩通过与二氧化碳的化学反应,去除大气二氧化碳并将其封存在风化产物或海洋碳酸盐岩中,是影响全球碳循环以及气候变化的要素之一。定量计算全球硅酸盐岩通过风化作用消耗的二氧化碳总量是了解地球现今与过去气候变化的关键。作者系统调研了5个硅酸盐岩化学风化—二氧化碳消耗定量模型的数据来源、研究方法、计算公式以及各模型的主要影响因素,并且以最新的Celine模型所计算得出的二氧化碳消耗量为参考标准,对比了各模型的优缺点与适用范围。现有模型估计全球硅酸盐岩化学风化的二氧化碳消耗量为69~169 Tg/yr,其中各模型的主要参数包括气候(温度、径流)与岩性,次要参数包括构造隆升、火山与植物作用等。在未来探索硅酸盐岩化学风化所消耗二氧化碳的定量计算中,应考虑更多控制作用的影响以及各因素之间的相互联系。此外,利用大数据分析方法将这些定量模型推广应用于深时地球古气候重建可能是未来的研究趋势。  相似文献   

19.
<正>地球表层与人类生活密切相关,人类生活所需的矿产资源以及面临的环境问题,大都与地球表层相关。因此,研究地球表层元素的空间分布及含量特征,对矿产资源评价以及解决生态环境问题具有重大意义。"地球化学走廊带元素时空分布探测试验"是"地壳全元素探测技术与实验示范"(Sino Probe-04)的重要组成部分,项目选择穿越不同大地构造单元和重要成矿区带的3条地球化学走廊带,精确探测走廊带内疏松沉积物和岩石中76种元素的含量,编制3条地球化学走廊带元素地球化学图,系统研究地球化学走廊带上76  相似文献   

20.
风化壳研究的现状与展望   总被引:26,自引:1,他引:25  
风化壳是岩石圈、大气圈以及水圈、生物圈之间相互作用的界面,能够直接记录地球多圈层演化的信息。利用风化壳的地带性规律重建古环境是地貌学研究的传统内容之一。近年来,单晶矿物激光^40Ar/^39Ar测年技术、“双面”模式以及古地磁法等在风化壳研究中的成功应用,在理论和技术上为恢复大陆剥蚀区高分辨率的环境演变历史创造了条件。利用风化年代学、风化地层学、古地磁学和地球化学等方法对风化壳进行综合研究,不仅可以建立剥蚀区的环境演变序列,为风化期次(事件)与其他全球性构造-气候事件的对比提供了广阔的前景;而且可以用于化学风化(强度和速度)的准确量化,有利于深入理解构造-剥蚀-风化-气候之间相互作用的反馈机制和正确评估人类活动对未来气候的影响能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号