首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brown and red, and to a lesser extent green, macroalgae are a hallmark of intertidal rocky coasts and adjacent shallow marine environments swept by stormy seas in middle and high latitudes. Such environments produce carbonate sediment but the sediment factory is neither well‐documented nor well‐understood. This study documents the general marine biology and sedimentology of rocky coastal substrates around Kaikoura Peninsula, a setting that typifies many similar cold‐temperate environments with turbid waters and somewhat elevated trophic resources along the eastern coast of South Island, New Zealand. The macroalgal community extends down to 20 m and generally comprises a phaeophyte canopy beneath which is a prolific rhodophyte community and numerous sessile calcareous invertebrates on rocky substrates. The modern biota is strongly depth zoned and controlled by bottom morphology, variable light penetration, hydrodynamic energy and substrate. Most calcareous organisms live on the lithic substrates beneath macroalgae or on algal holdfasts with only a few growing on macroalgal fronds. A live biota of coralline red algae [geniculate, encrusting and nodular (rhodoliths)], bryozoans, barnacles and molluscs (gastropods and epifaunal bivalves), together with spirorbid and serpulid worms, small benthonic foraminifera and echinoids produce sediments that are mixed with terrigenous clastic particles in this overall siliciclastic depositional system. The resultant sediments within macroalgal rocky substrates at Kaikoura contain bioclasts typified by molluscs, corallines and rhodoliths, barnacles and other calcareous invertebrates. In the geological record, however, the occurrence of macroalgal produced sediments is restricted to unconformity‐related early transgressive systems tract stratigraphic intervals and temporally constrained to a Cenozoic age owing to the timing of the evolution of large brown macroalgae.  相似文献   

2.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

3.
Oligo–Miocene carbonates associated with the Padthaway Ridge form the southern margin of the Murray Basin, South Australia. The carbonates are a thin, somewhat condensed succession of echinoid and bryozoan‐rich limestones that record accumulation in the complex of islands and seaways and progressive burial of the Ridge through time. The rocks are grainy to muddy bioclastic packstones, grainstones and floatstones, composed of infaunal echinoderms, bryozoans, coralline algae and benthic foraminifera, with lesser contributions from molluscs and serpulid worms. Locally as much as half of these skeletal components are Fe‐stained, relict grains that imbue the lithologies with a conspicuous yellow to orange hue. This variably lithified succession is partitioned into metre‐scale, firmground‐bounded and hardground‐bounded beds textured by extensive Thalassinoides burrows. Dominant lithologies are interpreted as temperate seagrass facies. Limestones contain attributes indicative of both seagrass‐dominated palaeoenvironments and carbonate production and accumulation on unconsolidated, barren sandflat palaeoenvironments. Together these two depositional systems are thought to have generated a single multigenerational, amalgamated facies recording sedimentation within a complex temperate seagrass environment. Limestones overlying the Padthaway Ridge reflect a gradually warming climate, increasing water temperature and decreasing nutrient content, within the framework of a ridge gradually being buried in sediment. This succession from cool–temperate to warm–temperate to subtropical through time permits recognition of the relative influence of changing oceanography on a seagrass‐dominated shallow inter‐island sea floor. Criteria are proposed herein to enable future recognition of similar temperate seagrass facies in Cenozoic limestones elsewhere.  相似文献   

4.
Un‐fragmented stratigraphic records of late Quaternary multiple incised valley systems are rarely preserved in the subsurface of alluvial‐delta plains due to older valley reoccupation. The identification of a well‐preserved incised valley fill succession beneath the southern interfluve of the Last Glacial Maximum Arno palaeovalley (northern Italy) represents an exceptional opportunity to examine in detail evolutionary trends of a Mediterranean system over multiple glacial–interglacial cycles. Through sedimentological and quantitative meiofauna (benthic foraminifera and ostracods) analyses of two reference cores (80 m and 100 m long) and stratigraphic correlations, a mid‐Pleistocene palaeovalley, 5 km wide and 50 m deep, was reconstructed. Whereas valley filling is chronologically constrained to the penultimate interglacial (Marine Isotope Stage 7) by four electron spin resonance ages on bivalve shells (Cerastoderma glaucum), its incision is tentatively correlated with the Marine Isotope Stage 8 sea‐level fall. Above basal fluvial‐channel gravels, the incised valley fill is formed by a mud‐prone succession, up to 44 m thick, formed by a lower floodplain unit and an upper unit with brackish meiofauna that reflects the development of a wave‐dominated estuary. Subtle meiofauna changes towards less confined conditions record two marine flooding episodes, chronologically linked to the internal Marine Isotope Stage 7 climate‐eustatic variability. After the maximum transgressive phase, recorded by coastal sands, the interfluves were flooded around 200 ka (latest Marine Isotope Stage 7). The subsequent shift in river incision patterns, possibly driven by neotectonic activity, prevented valley reoccupation guiding the northward formation of the Last Glacial Maximum palaeovalley. The applied multivariate approach allowed the sedimentological characterization of the Marine Isotope Stage 7 and Marine Isotope Stage 1 palaeovalley fills, including shape, size and facies architecture, which revealed a consistent river‐coastal system response over two non‐consecutive glacial–interglacial cycles (Marine Isotope Stages 8 to 7 and Marine Isotope Stages 2 to 1). The recurring stacking pattern of facies documents a predominant control exerted on stratigraphy by Milankovitch and sub‐Milankovitch glacio‐eustatic oscillations across the late Quaternary period.  相似文献   

5.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

6.
Calcareous aeolianites are an integral part of many carbonate platforms and ramps. Such limestones are particularly common in heterozoan, Late Cenozoic carbonate systems, and it has been postulated that they could contain a particularly sensitive record of their offshore source. This hypothesis is tested herein by documenting and interpreting part of the most extensive and temporally longest such system in the modern world. The deposits are a combination of extraclasts and biofragments. Extraclasts are detrital quartz, relict allochems, older Pleistocene particles and Oligocene–Miocene limestone clasts. Biofragments are penecontemporaneous coralline algae, echinoderms, small benthic foraminifera, molluscs and bryozoans. The aeolianites differ in composition from distant, open shelf sediments because they contain more mollusc fragments and many fewer bryozoans. This difference is interpreted to be due to (i) most sediment was derived from near‐shore seagrass meadows and macroalgal reefs; (ii) all sediments were modified by hydrodynamics in near‐shore and beach environments; and (iii) fragments of infaunal, beach‐dwelling bivalves were added to the sediment at the strandline. Extraclasts should be expected in older Pleistocene and Cenozoic heterozoan deposits, because the limestones are poorly lithified, largely due to the lack of meteoric cementation, and so easily eroded. Thus, cool‐water aeolianites ought to contain more extraclasts than their warm‐water, tropical cousins. Seagrasses in temperate environments are more productive than in the tropics and thus potentially might contribute many more particles to the beach and dunes than do tropical systems. Although particle breakage in the surf zone cannot be proven, herein the abundance of whole benthic foraminifera and delicate bryozoans implies that suspension and flotsam shoreward transport was an essential process. The similarity of Pleistocene aeolianites over such a long time period herein suggests that the combination of postulated sedimentological, biogenic and hydrodynamic processes could be universally important.  相似文献   

7.
Modern and ancient tidal straits are the least well understood of all tide‐dominated depositional systems. To provide an increased understanding of these systems, a facies‐based depositional model is assessed by comparing multibeam surveys of three present‐day tidally dominated seaways with a number of superbly exposed Neogene‐to‐Quaternary strait‐fill successions of Calabria (south Italy). The model points out the existence of four depositional zones, laterally adjacent from the narrowest strait centre to its terminations, distributed along symmetrical or asymmetrical seaways. These zones, whose signature is recorded in four facies associations in the Calabrian tidal straits, are as follows: (i) the strait‐centre zone, associated with the tidal current maxima and where sediments are scarce or absent; (ii) the dune‐bedded zone, where sediments form dune complexes due to tidal flow expansion; (iii) the strait‐end zone, where currents decelerate accumulating thinly bedded, fine‐grained deposits; and (iv) the strait‐margin zone, where sediment massflows descend tectonically active, steep margins towards the strait axis. In ancient, tectonically confined, narrow seaways, these facies generate a distinctive deepening‐upward vertical succession, where tidal currents are the dominant process in the sediment distribution.  相似文献   

8.
Spencer Gulf is a large (ca 22 000 km2), shallow (<60 m water depth) embayment with active heterozoan carbonate sedimentation. Gulf waters are metahaline (salinities 39 to 47‰) and warm‐temperate (ca 12 to ?28°C) with inverse estuarine circulation. The integrated approach of facies analysis paired with high‐resolution, monthly oceanographic data sets is used to pinpoint controls on sedimentation patterns with more confidence than heretofore possible for temperate systems. Biofragments – mainly bivalves, benthic foraminifera, bryozoans, coralline algae and echinoids – accumulate in five benthic environments: luxuriant seagrass meadows, patchy seagrass sand flats, rhodolith pavements, open gravel/sand plains and muddy seafloors. The biotic diversity of Spencer Gulf is remarkably high, considering the elevated seawater salinities. Echinoids and coralline algae (traditionally considered stenohaline organisms) are ubiquitous. Euphotic zone depth is interpreted as the primary control on environmental distribution, whereas seawater salinity, temperature, hydrodynamics and nutrient availability are viewed as secondary controls. Luxuriant seagrass meadows with carbonate muddy sands dominate brightly lit seafloors where waters have relatively low nutrient concentrations (ca 0 to 1 mg Chl‐a m?3). Low‐diversity bivalve‐dominated deposits occur in meadows with highest seawater salinities and temperatures (43 to 47‰, up to 28°C). Patchy seagrass sand flats cover less‐illuminated seafloors. Open gravel/sand plains contain coarse bivalve–bryozoan sediments, interpreted as subphotic deposits, in waters with near normal marine salinities and moderate trophic resources (0·5 to 1·6 mg Chl‐a m?3) to support diverse suspension feeders. Rhodolith pavements (coralline algal gravels) form where seagrass growth is arrested, either because of decreased water clarity due to elevated nutrients and associated phytoplankton growth (0·6 to 2 mg Chl‐a m?3), or bottom waters that are too energetic for seagrasses (currents up to 2 m sec?1). Muddy seafloors occur in low‐energy areas below the euphotic zone. The relationships between oceanographic influences and depositional patterns outlined in Spencer Gulf are valuable for environmental interpretations of other recent and ancient (particularly Neogene) high‐salinity and temperate carbonate systems worldwide.  相似文献   

9.
This study from the southern margin of the Gulf of Corinth documents a Late Pleistocene incised valley‐fill succession that differs from the existing facies models, because it comprises gravelly shoal‐water and Gilbert‐type deltaic deposits, shows strong wave influence and lacks evidence of tidal activity. The valley‐fill is at least 140 m thick, formed in 50 to 100 ka between the interglacials Marine Isotope Stage 9a and Marine Isotope Stage 7c. The relative sea‐level rise left its record both inside and outside the incised valley, and the age of the valley‐fill is estimated from a U/Th date of coral‐bearing deposits directly outside the palaeovalley outlet. Tectonic up‐warping due to formation of a valley‐parallel structural relay ramp contributed to the valley segmentation and limited the landward extent of marine invasions. The valley segment upstream of the ramp crest was filled with a gravelly alluvium, whereas the downstream segment accumulated fluvio‐deltaic deposits. The consecutive deltaic systems nucleated in the ramp‐crest zone, forming a bathymetric gradient that promoted the ultimate growth of thick Gilbert‐type delta. The case study contributes to the spectrum of conceptual models for incised valley‐fill architecture. Four key models are discussed with reference to the rates of sediment supply and accommodation development, and it is pointed out that not only similarity, but also all departures of particular field cases from these end‐member models may provide valuable information on the system formative conditions. The Akrata incised valley‐fill represents conditions of high sediment supply and a rapid, but stepwise development of accommodation that resulted from the spatiotemporal evolution of normal faulting at the rift margin and overprinted glacioeustatic signals. This study adds to an understanding of valley‐fill architecture and provides new insights into the Pleistocene tectonics and palaeogeography of the Corinth Rift margin.  相似文献   

10.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

11.
Pliocene, non-tropical, widespread and locally thick (up to 100 m) limestones occur in Hawke's Bay, eastern North Island, where they are intimately associated with very thick ( > 5 km), terrigenous-dominated, Neogene sequences that formed in a tectonically active convergent margin setting. The non-tropical character of the limestones is shown unequivocally by (1) the complete dominance of skeletal calcarenites and calcirudites, (2) the occurrence of oyster banks as the only in situ organic structures, (3) the dominance of barnacles, epifaunal molluscs, bryozoans, echinoderms, foraminifers, brachiopods and calcareous red algae as skeletal components, and (4) the preponderance of calcite over aragonite in the mineralogy of the skeletal grains and cements. The abundance of barnacle fragments in the limestones, and the related exclusive occurrence of only one major organic association, a barnacle-(epifaunal) bivalve-bryozoan assemblage, is striking and unusual given the extent of the limestones. Pecten and oyster valves acted as substrates for barnacle attachment, and their growth was promoted by strong tidal paleocurrents that swept the depositional setting: a long (450 km), narrow (30–50 km) forearc basin seaway, which formed between an actively deforming subduction complex to the east and an uplifting structural ridge to the west. Synsedimentary deformation promoted limestone formation on the margins of the seaway by creating current-swept, clastic-free submarine ridges that acted as the sites of carbonate production. Tidal flows dispersed the carbonate constituents and organised them into a wide spectrum of tide-influenced, cross-bedded and horizontal structures. Most spectacular are occurrences of giant tabular cross-beds, with sets 10–40 m thick and foreset dips of 7–36°, some interpreted as the deposits of major sand bars on carbonate deltas marginal to the mouths of saddles traversing the rising antiforms, and others analogous to modern linear sand ridges. The small- to large-scale planar and trough cross-beds, and the horizontal and lenticular beds that are invariably associated with the giant cross-beds and dominate most sections, represent mainly the deposits of sand waves and sand sheets at inner- to mid-shelf depths in the seaway.  相似文献   

12.
The integration of core sedimentology, seismic stratigraphy and seismic geomorphology has enabled interpretation of delta‐scale (i.e. tens of metres high) subaqueous clinoforms in the upper Jurassic Sognefjord Formation of the Troll Field. Mud‐prone subaqueous deltas characterized by a compound clinoform morphology and sandy delta‐scale subaqueous clinoforms are common in recent tide‐influenced, wave‐influenced and current‐influenced settings, but ancient examples are virtually unknown. The data presented help to fully comprehend the criteria for the recognition of other ancient delta‐scale subaqueous clinoforms, as well as refining the depositional model of the reservoir in the super‐giant Troll hydrocarbon field. Two 10 to 60 m thick, overall coarsening‐upward packages are distinguished in the lower Sognefjord Formation. Progressively higher energy, wave‐dominated or current‐dominated facies occur from the base to the top of each package. Each package corresponds to a set of seismically resolved, westerly dipping clinoforms, the bounding surfaces of which form the seismic ‘envelope’ of a clinoform set and the major marine flooding surfaces recognized in cores. The packages thicken westwards, until they reach a maximum where the clinoform ‘envelope’ rolls over to define a topset–foreset–toeset geometry. All clinoforms are consistently oriented sub‐parallel to the edge of the Horda Platform (N005–N030). In the eastern half of the field, individual foresets are relatively gently dipping (1° to 6°) and bound thin (10 to 30 m) clinothems. Core data indicate that these proximal clinothems are dominated by fine‐grained, hummocky cross‐stratified sandstones. Towards the west, clinoforms gradually become steeper (5° to 14°) and bound thicker (15 to 60 m) clinothems that comprise medium‐grained, cross‐bedded sandstones. Topsets are consistently well‐developed, except in the westernmost area. No seismic or sedimentological evidence of subaerial exposure is observed. Deposition created fully subaqueous, near‐linear clinoforms that prograded westwards across the Horda Platform. Subaqueous clinoforms were probably fed by a river outlet in the north‐east and sculpted by the action of currents sub‐parallel to the clinoform strike.  相似文献   

13.
The early Stephanian Bonar Cyclothem of the Sydney Basin, Nova Scotia, contains an erosional surface cut through coastal plain strata with economic coals and distributary channel bodies. The erosion surface is interpreted as a palaeovalley 20 m deep and at least 7 km wide that marks a sequence boundary formed during relative fall in sea level. The palaeovalley is filled with stacked alluvial channel bodies which become more isolated as the valley fill passes upward into red, alluvial plain deposits, probably laid down in an anastomosed river system. In an adjacent, interfluve area, calcretes and red, vertic palaeosols cap coastal strata. Assemblage analysis of agglutinated foraminifera and thecamoebians indicates that the palaeovalley was filled with freshwater sediments before an initial marine transgression flooded the alluvial surface and adjacent interfluve. Valley incision probably reflects glacioeustatic sea level fall. However, the alluvial nature of the valley deposits suggests that valley filling reflects an abundant sediment supply during lowstand and/or transgressive stages and was not a direct consequence of sea level rise. During the subsequent transgression phase, aggradation was rapid as sediment supply apparently kept pace with rising sea level. Features of both channel and extra-channel facies suggest that seasonality intensified during the transition from coastal plain to palaeovalley and alluvial plain deposition.  相似文献   

14.
The Upper Ordovician rocks of Hadeland, Norway, form a sequence of thin bedded nodular limestones (wackestones) and shales, hosting five distinctive sedimentary breccia complexes. These breccias contain blocks of varying sizes and shapes in a wackestone and grainstone matrix. Blocks differ in lithology, and in their included biotas and cement sequences. The thin bedded limestones are interpreted as turbidites, deposited against a background of hemipelagic calcareous shales. The breccias occupy channels cut into this sequence. The lithologies and biotas of blocks in the breccias record deposition in differing sedimentary environments, whereas their cements are the results of contrasting diagenetic histories. Blocks were eroded from a diverse and mature carbonate platform, close to sea level, which probably lay 5–10 km east of Hadeland. The breccias are interpreted as debris flow deposits, transported as channellized flows. Following channel cutting events, perhaps triggered by sea level change, channels were characterized by deposition rather than erosion. Wackestones and grainstones associated with the breccias also reflect resedimentation, their less diverse biota suggesting local derivation on the slope. The reworking of calcarenaceous muds locally produced clean washed calcarenites (now grainstones). A fall in sea level resulted in emergence of the upper slope and erosion of the debris flow complex to form caverns and fissures. As sea level rose again crinoidal calcarenites, now grainstones, were deposited within these cavities. Cement sequences in blocks record early marine and burial conditions on the shelf, and also precipitation of new marine cements following downslope transport. Those cements in lithologies formed in situ document later shallowing, culminating in emergence. The localized dissolution of cements in both blocks and associated grainstones reflects the infiltration of ‘aggressive’meteoric waters through permeable channel deposits. A subsequent rise in sea level is recorded in the generation of an additional marine cement with final burial reflected in the deposition of blocky calcite. The debris flow deposits therefore maintained their distinctive character from deposition through diagenesis.  相似文献   

15.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

16.
A 400-meter-thick volcanic and fine-grained clastic sedimentary succession in Quebrada Doña Ines Chica (26°07′S latitude; 69°20'W longitude) provides a record of Late Triassic deposition in the Atacama region of northern Chile. The strata are conformably overlain by fossiliferous marine limestones and sandstones of Late Triassic to Early Jurassic (Sinemurian) age which contain the oldest ichthyosaur remains known from Central and South America. The clastic succession is interpreted as coastal fluvial deposits, with the overlying limestones representing shelf deposits.  相似文献   

17.
The Gulf of Tonkin coastline migrated at an average rate of ca 60 m year?1 landward during Holocene sea‐level rise (20 to 8 ka). Due to a combination of rapid coastline migration and undersupply of sand, neither coastal barriers nor tidal sand bars developed at the mouth of the Red River incised valley. Only a 30 to 80 cm thick sandy interval formed at the base of full‐marine deposits. Thus, the river mouth represented a mud‐dominated open funnel‐shaped estuary during transgression. At the base of the valley fill, a thin fluvial lag deposit marks a period of lowered sea‐level when the river did not reach geomorphic equilibrium and was thus prone to erosion. The onset of base‐level rise is documented by non‐bioturbated to sparsely bioturbated mud that occasionally contains pyrite indicating short‐term seawater incursions. Siderite in overlying deposits points to low‐salinity estuarine conditions. The open funnel‐shaped river mouth favoured upstream incursion of seawater that varied inversely to the seasonal strongly fluctuating discharge: several centimetres to a few tens of centimetres thick intervals showing marine or freshwater dominance alternate, as indicated by bioturbational and physical sedimentary structures, and by the presence of Fe sulphides or siderite, respectively. Recurrent short‐term seawater incursions stressed the burrowing fauna. The degree of bioturbation increases upward corresponding to increasing marine influence. The uppermost estuarine sediments are completely bioturbated. The estuarine deposits aggraded on average rapidly, up to several metres kyr?1. Siphonichnidal burrows produced by bivalves, however, document recurrent episodes of enhanced deposition (>0·5 m) and pronounced erosion (<1 m) that are otherwise not recorded. The slope of the incised valley affected the sedimentary facies. In steep valley segments, the marine transgressive surface (equivalent to the onset of full‐marine conditions) is accentuated by the Glossifungites ichnofacies, whereas in gently sloped valley segments the marine transgressive surface is gradational and bioturbated. Marine deposits are completely bioturbated.  相似文献   

18.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

19.
Inclined heterolithic stratification in the Lower Cretaceous McMurray Formation, exposed along the Steepbank River in north‐eastern Alberta, Canada, accumulated on point bars of a 30 to 40 m deep continental‐scale river in the fluvial–marine transition. This inclined heterolithic stratification consists of two alternating lithologies, sand and fine‐grained beds. Sand beds were deposited rapidly by unidirectional currents and contain little or no bioturbation. Fine‐grained beds contain rare tidal structures, and are intensely bioturbated by low‐diversity ichnofossil assemblages. The alternations between the sand and fine‐grained beds are probably caused by strong variations in fluvial discharge; that are believed to be seasonal (probably annual) in duration. The sand beds accumulated during river floods, under fluvially dominated conditions when the water was fresh, whereas the fine‐grained beds accumulated during the late stages of the river flood and deposition continued under tidally influenced brackish‐water conditions during times of low‐river flow (i.e. the interflood periods). These changes reflect the annual migration in the positions of the tidal and salinity limits within the fluvial–marine transition that result from changes in river discharge. Sand and fine‐grained beds are cyclically organized in the studied outcrops forming metre‐scale cycles. A single metre‐scale cycle is defined by a sharp base, an upward decrease in sand‐bed thickness and upward increases in the preservation of fine‐grained beds and the intensity of bioturbation. Metre‐scale cycles are interpreted to be the product of a longer term (decadal) cyclicity in fluvial discharge, probably caused by fluctuations in ocean or solar dynamics. The volumetric dominance of river‐flood deposits within the succession suggests that accumulation occurred in a relatively landward position within the fluvial–marine transition. This study shows that careful observation can reveal much about the interplay of processes within the fluvial–marine transition, which in turn provides a powerful tool for determining the palaeo‐environmental location of a deposit within the fluvial–marine transition.  相似文献   

20.
Many modern deltas show complex morphologies and architectures related to the interplay of river, wave and tidal currents. However, methods for extracting the signature of the individual processes from the stratigraphic architecture are poorly developed. Through an analysis of facies, palaeocurrents and stratigraphic stacking patterns in the Jurassic Lajas Formation, this paper: (i) separates the signals of wave, tide and river currents; (ii) illustrates the result of strong tidal reworking in the distal reaches of deltaic systems; and (iii) discusses the implications of this reworking for the evolution of mixed‐energy systems and their reservoir heterogeneities. The Lajas Formation, a sand‐rich, shallow‐marine, mixed‐energy deltaic system in the Neuquén Basin of Argentina, previously defined as a tide‐dominated system, presents an exceptional example of process variability at different scales. Tidal signals are predominantly located in the delta front, the subaqueous platform and the distributary channel deposits. Tidal currents vigorously reworked the delta front during transgressions, producing intensely cross‐stratified, sheet‐like, sandstone units. In the subaqueous platform, described for the first time in an ancient outcrop example, the tidal reworking was confined within subtidal channels. The intensive tidal reworking in the distal reaches of the regressive delta front could not have been predicted from knowledge of the coeval proximal reaches of the regressive delta front. The wave signals occur mainly in the shelf or shoreface deposits. The fluvial signals increase in abundance proximally but are always mixed with the other processes. The Lajas system is an unusual clean‐water (i.e. very little mud is present in the system), sand‐rich deltaic system, very different from the majority of mud‐rich, modern tide‐influenced examples. The sand‐rich character is a combination of source proximity, syndepositional tectonic activity and strong tidal‐current reworking, which produced amalgamated sandstone bodies in the delta‐front area, and a final stratigraphic record very different from the simple coarsening‐upward trends of river‐dominated and wave‐dominated delta fronts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号