首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the flow heterogeneity around porphyroclasts associated with greenschist facies deformation of a calcite marble shear zone. Microstructural data from electron backscatter diffraction analyses (EBSD) are used to constrain the flow mechanics of this dominantly non-coaxial type of deformation. The microstructure of the undisturbed ultramylonite (grain-size range 5–100 μm, mean 40 μm) is interpreted to represent steady-state (time-independent) flow conditions with flow planes parallel to the shear zone boundary. Single calcite porphyroclasts (grain-size 1–3 mm) caused flow perturbation in the fine-grained marble ultramylonite. It is the shape, in particular, of these rigid porphyroclasts that controls their rotational behaviour during deformation and, therefore, the development of specific flow fabrics. The flow planes around elongated-rhomboidal, stable porphyroclasts change the orientation to become roughly parallel to the porphyroclast margin, whereas the geometry of flow planes around nearly equant, rotating porphyroclasts describes a δ-type flow pattern. We infer that to some extent decoupling at the clast–matrix interface has occurred to guarantee a stable orientation of elongated porphyroclasts, but was not sufficient to reduce the rotation rate of equant clasts to zero. According to the flow deflection, the general crystallographic preferred orientation (CPO) with its single c-axis maximum perpendicular to the flow plane is rotated about an axis which is (sub)parallel to the kinematic rotation axis of the shear zone. Ultramylonite microstructures, CPOs and misorientation data are best explained by the dual operation of grain-size-insensitive (dislocation creep with recovery and recrystallization) and grain-size-sensitive (diffusion creep) mechanisms. The limited grain-size reduction around porphyroclasts suggests that the grain-size-insensitive mechanisms controlled rheology.  相似文献   

2.
Mylonitization of medium-grade marbles in the Bancroft shear zone, Ontario, Canada, is characterized by decreasing grain-size of both calcite and graphite, and a variety of textures. Calcite grain-sizes vary from several millimeters in the protolith, to 50–200 μm in mylonite, to <30 μm in ultramylonite. Corresponding calcite grain shapes are equant in the protolith, elongate in protomylonite (first-developed dimensional preferred orientation), equant in coarse mylonite, elongate in fine mylonite (second-developed dimensional preferred orientation) and generally equant in ultramylonite, which suggests that external energy (applied stress) that tends to elongate grains competed with internal energy sources (e.g. distortional strain) that favor equant shapes. Graphite grain-size changes from several millimeters to centimeters in the protolith to submicroscopic in ultramylonite. In the mylonitic stages, graphite is present as dark bands, while in the ultramylonitic stage it is preserved as a fine coating on calcite grains.Based on textural evidence, twinning (exponential creep; regime I), dynamic recrystallization (power law creep; regime II) and possibly grain boundary sliding superplasticity (regime III) are considered the dominant deformation mechanisms with increasing intensity of mylonitization; their activity is largely controlled by calcite grain-size. Calcite grain-size reduction occurred predominantly by the process of rotation recrystallization during the early stages of mylonitization, as indicated by the occurrence of core and mantle or mortar structures, and by the grain-size of subgrains and recrystallized grains. Grain elongation in S-C structures indicates the activity of migration recrystallization; these structures are not the result of flattening of originally equant grains. Differential stress estimates in coarse mylonites and ultramylonites, based on recrystallized grain-size, are 2–5 and 14–38 MPa, respectively. Initial grain-size reduction of graphite occurred by progressive separation along basal planes, analogous to mica fish formation in quartzo-feldspathic mylonites.Calcite-graphite thermometry on mylonitic and ultramylonitic samples shows that the metamorphic conditions during mylonitization were 475 ± 50°C, which, combined with a differential stress value of 26 MPa, gives a strain rate of 1.2 x 10−10s−1 based on constitutive equations; corresponding displacement rates are <38 mmyr−1.  相似文献   

3.
Microfabrics were analysed in calcite mylonites from the rim of the Pelvoux massif (Western Alps, France). WNW-directed emplacement of the internal Penninic units onto the Dauphinois domain produced intense deformation of an Eocene-age nummulitic limestone under lower anchizone metamorphic conditions (slightly below 300 °C). Two types of microfabrics developed primarily by dislocation creep accompanied by dynamic recrystallisation in the absence of twinning. Coaxial kinematics are inferred for samples exhibiting grain shape fabrics and textures with orthorhombic symmetry. Their texture (crystallographic preferred orientation, CPO) is characterised by two c-axis maxima, symmetrically oriented at 15° from the normal to the macroscopic foliation. Non-coaxial deformation is evident in samples with monoclinic shape fabrics and textures characterised by a single oblique c-axis maximum tilted with the sense of shear by about 15°. From the analysis of suitably oriented slip systems for the main texture components under given kinematics it is inferred that the orthorhombic textures, which developed in coaxial kinematics, favour activity of <10–11> and <02–21> slip along the f and r planes, respectively, with minor contributions of basal-<a> slip. In contrast, the monoclinic textures, which developed during simple shear, are most suited for duplex <a> slip along the basal plane. The transition between the dominating slip systems for the orthorhombic and monoclinic microfabrics is interpreted to be due to the effects of dynamic recrystallisation upon texture development. Since oblique c-axis maxima documented in the literature are most often rotated not with but against the shear sense, calcite textures alone should not be used as unequivocal shear sense indicators, but need to be complemented by microstructural criteria such as shape preferred orientations, grain size estimates and amount of twinning.  相似文献   

4.
Quartz microfabrics and associated microstructures have been studied on a crustal shear zone—the Main Central Thrust (MCT) of the Himalaya. Sampling has been done along six traverses across the MCT zone in the Kumaun and Garhwal sectors of the Indian Himalaya. The MCT is a moderately north-dipping shear zone formed as a result of the southward emplacement of a part of the deeply rooted crust (that now constitutes the Central Crystalline Zone of the Higher Himalaya) over the less metamorphosed sedimentary belt of the Lesser Himalaya. On the basis of quartz c- and a-axis fabric patterns, supported by the relevant microstructures within the MCT zone, two major kinematic domains have been distinguished. A noncoaxial deformation domain is indicated by the intensely deformed rocks in the vicinity of the MCT plane. This domain includes ductilely deformed and fine-grained mylonitic rocks which contain a strong stretching lineation and are composed of low-grade mineral assemblages (muscovite, chlorite and quartz). These rocks are characterized by highly asymmetric structures/microstructures and quartz c- and a-axis fabrics that indicate a top-to-the-south sense that is compatible with south-directed thrusting for the MCT zone. An apparently coaxial deformation domain, on the other hand, is indicated by the rocks occurring in a rather narrow belt fringing, and structurally above, the noncoaxial deformation domain. The rocks are highly feldspathic and coarse-grained gneisses and do not possess any common lineation trend and the effects of simple shear deformation are weak. The quartz c-axis fabrics are symmetrical with respect to foliation and lineation. Moreover, these rocks contain conjugate and mutually interfering shear bands, feldspar/quartz porphyroclasts with long axes parallel to the macrosopic foliation and the related structures/microstructures, suggesting deformation under an approximate coaxial strain path.On moving towards the MCT, the quartz c- and a-axis fabrics become progressively stronger. The c-axis fabric gradually changes from random to orthorhombic and then to monoclinic. In addition, the coaxial strain path gradually changes to the noncoaxial strain path. All this progressive evolution of quartz fabrics suggests more activation of the basal, rhomb and a slip systems at all structural levels across the MCT.  相似文献   

5.
Abstract Discontinuous ultramylonite zones cut Proterozoic granulite facies gneisses in MacRobertson Land, east Antarctica, and preserve evidence of ductile non-coaxial flow and reverse sense of shear. Cross-cutting relationships indicate that ultramylonite deformation involved overthrusting to the east, but progressively rotated to involve overthrusting to the north; rotation of the principal compressive stress axes is inferred. Extensive pseudotachylite developed during ultramylonitization, the history of individual ultramylonite zones having involved a single episode of pseudotachylite generation. Neoblastic sillimanite indicates ultramylonitization occurred at >520° C. On the basis of inferred recrystallized granulite facies mineral assemblages ultramylonitization occurred at >700° C, and ≤7.3 ± 0.5 kbar, at aH2O± 0.3 and low aCO2. Comparison of these values with those suggested by metamorphic assemblages in rocks unaffected by mylonitization indicates that the Rayner Complex experienced a late increase in pressure of 1–2 kbar during ultramylonitization. The P-T-aH2O conditions of the ultramylonite zones are inferred to have been close to the solidus for minimum melting, pseudotachylite generation having involved a limited pressure drop during brittle fracturing at high strain rates. Most of the pseudotachylite veins are undeformed; the mechanism(s) of fracturing and melting must have caused strain hardening in rocks surrounding the ultramylonite, further strain having been mostly accommodated by a new or subsidiary shear zone. Renewed stress at reduced strain rates, or renewed stress in zones in which the proportion of pseudotachylite was significantly higher, could have led to the rare occurrences of deformed pseudotachylite. The preservation of fine-grained pseudotachylite is dependent on it remaining dry.  相似文献   

6.
丹东韧性剪切带的实例表明:韧性剪切带的持续变形包含了共轴与非共轴两种应变线路或状态,由于分布的不均匀性,导致变形分域现象,形成平面的变形岩石分区。持续变形过程中,又存在应变线路的转换和叠加。微构造是确定变形体制的主要依据。野外观测与应变分析证实,变形分域存在于不同尺度,在总体剪切(非共轴)变形条件下,初始糜棱岩往往表现以共轴变形占优势,而糜棱岩和超糜棱岩则以非共轴变形为主。持续变形导致从共轴向非共轴转变,最后形成后者的主体地位。  相似文献   

7.
Experimental shear zones and magnetic fabrics   总被引:1,自引:0,他引:1  
Magnetic fabric analysis has been used as a non-destructive means of detecting petrofabric development during experimentally produced multi-stage, transpressive deformations in ‘shear zones’. Artificial, magnetic-bearing silicate sands and calcite sands, bonded with Portland cement, were deformed at room temperature and at 100 and 150 MPa confining pressure. The slip-rate for the shear zone walls was 0.73 × 10−4 mm s−1 and the maximum shear strains were about 0.38, across zones that were initially about 5 mm thick. The magnetic fabric ellipsoid rapidly spins so that the maximum and intermediate susceptibilities tend to become parallel to the shear zone walls throughout the sheared zone. The ellipsoid becomes increasingly oblate with progressive deformation. However, in all cases, the anisotropy is strongly influenced by the pre-deformation magnetic fabric. During deformation the cement gel collapses so that cataclasis of the mineral grains is suppressed. In the quartz-feldspar aggregates the magnetite's alignment is accommodated by particulate flow (intergranular displacements) of the grains. In the calcite aggregates stronger magnetic fabrics develop due to plastic deformation of calcite grains as well as particulate flow. However, the calcite grain fabrics are somewhat linear (LS) whereas the magnetic fabrics are planar (S >L). The preferred dimensional orientations of magnetite are weak and it is possible that the magnetic fabrics are due to intragranular rearrangements of magnetic domains.The transpressive shear zones are much more efficient than axial-symmetric shortening in the increase of anisotropy of the magnetic fabrics, especially in the case of the calcite aggregates. This suggests that flow laws derived for axial-symmetric shortening experiments may not be appropriate for non-coaxial strain histories such as those of shear zones.  相似文献   

8.
Fluids can play an important role in the localization of deformation in the deep crust, yet the specific mechanisms active during the complex interactions between metasomatism, metamorphism and deformation remain elusive. Precambrian metagabbronorite dykes in southwest Montana contain fractures filled with Hbl±Grt and discrete cm‐scale shear zones with well‐preserved strain gradients. This system offers an ideal opportunity to constrain the chemical and mechanical processes that facilitated strain localization. An early M1 assemblage of Grt1+Cpx1+Pl1+Qz developed at conditions of 0.51–0.85 GPa and 500–700°C and is preserved largely as a static replacement of relict igneous phases (Opx, Pgt, Pl) in coronitic textures. An M2 assemblage characterized by Grt2+Pl2±Cpx2+Hbl+Scp+Qz developed at 0.86–1.00 GPa and 660–730°C coincided with fluid flow and deformation associated with shear zone development. Microstructural observations in marginal protomylonite/mylonite and laminated ultramylonite suggest a shear zone evolution that involved (1) nucleation from pre‐existing fractures that were sites for major fluid infiltration, (2) initial widening coincident with grain‐size reduction by microfracturing, dislocation creep, and synkinematic metamorphic reaction by solution transfer, and (3) a switch in the dominant deformation mechanisms active in the ultramylonite from grain‐size insensitive mechanisms to grain‐size sensitive granular flow accommodated by fluid‐assisted diffusion. Throughout this evolution, the effective bulk compositions of the rock volumes responding to metamorphism changed through a combination of mechanical and metasomatic processes.  相似文献   

9.
The Tres Arboles ductile fault zone in the Eastern Sierras Pampeanas, central Argentina, experienced multiple ductile deformation and faulting events that involved a variety of textural and reaction hardening and softening processes. Much of the fault zone is characterized by a (D2) ultramylonite, composed of fine‐grained biotite + plagioclase, that lacks a well‐defined preferred orientation. The D2 fabric consists of a strong network of intergrown and interlocking grains that show little textural evidence for dislocation or dissolution creep. These ultramylonites contain gneissic rock fragments and porphyroclasts of plagioclase, sillimanite and garnet inherited from the gneissic and migmatitic protolith (D1) of the hangingwall. The assemblage of garnet + sillimanite + biotite suggests that D1‐related fabrics developed under upper amphibolite facies conditions, and the persistence of biotite + garnet + sillimanite + plagioclase suggests that the ultramylonite of D2 developed under middle amphibolite facies conditions. Greenschist facies, mylonitic shear bands (D3) locally overprint D2 ultramylonites. Fine‐grained folia of muscovite + chlorite ± biotite truncate earlier biotite + plagioclase textures, and coarser‐grained muscovite partially replaces relic sillimanite grains. Anorthite content of shear band (D3) plagioclase is c. An30, distinct from D1 and D2 plagioclase (c. An35). The anorthite content of D3 plagioclase is consistent with a pervasive grain boundary fluid that facilitated partial replacement of plagioclase by muscovite. Biotite is partially replaced by muscovite and/or chlorite, particularly in areas of inferred high strain. Quartz precipitated in porphyroclast pressure shadows and ribbons that help define the mylonitic fabric. All D3 reactions require the introduction of H+ and/or H2O, indicating an open system, and typically result in a volume decrease. Syntectonic D3 muscovite + quartz + chlorite preferentially grew in an orientation favourable for strain localization, which produced a strong textural softening. Strain localization occurred only where reactions progressed with the infiltration of aqueous fluids, on a scale of hundreds of micrometre. Local fracturing and microseismicity may have induced reactivation of the fault zone and the initial introduction of fluids. However, the predominant greenschist facies deformation (D3) along discrete shear bands was primarily a consequence of the localization of replacement reactions in a partially open system.  相似文献   

10.
The Alpi Apuane region of the Northern Apennines appears to have been deformed within a large-scale, low-angle shear zone with an overthrust sense of movement. The presence of mineral stretching lineations, folds progressively rotated into the X strain direction, and schistosities which intersect the nappe boundaries at small angles suggest that a component of shear strain occurred during the deformation. The strain ratios and orientations on two-dimensional sections have been determined from deformed marble breccias, reduction spots, and oncalites. Data from three or more non-perpendicular, non-principal sections have been combined to determine the finite strain ellipsoids at 33 sites within the shear zone.The finite strains have been separated into components of simple shear (γ), longitudinal strain (λ), and volume change (Δ). Algebraic expressions have been derived and graphs constructed which enable components of γ, γ and Δ, and γ and λ to be determined directly from a knowledge of strain ratio (R) within the shear zone and the angle (θ) between the principal strain direction and the shear zone boundary. The Alpi Apuane data indicate that neither simple shear alone, nor simple shear with volume change can satisfactorily explain the observed strains. Consideration of simple shear plus longitudinal strain leads to a general relationship in which the value of shear increases, and the values of longitudinal strain change along a SW-NE profile across the zone. Integration of the resulting shear strain-distance curves gives a minimum displacement of 4 km within the shear zone. Combination of the finite strains with the total time of deformation known from K/Ar studies leads to average strain rates from 1.4 to 9.6 × 10−15 sec−1.A characteristic flat-ramp-flat geometry initially formed the boundaries of what was later to develop into the overthrust shear zone, and deformation of the underlying crystalline basement is believed to have occurred by ductile shearing. Estimates of 21% crustal shortening for the region suggest that the crustal thickness prior to deformation was approximately 20 km in this part of the Northern Apennines.  相似文献   

11.
The subvertical Kuckaus Mylonite Zone (KMZ) is a km-wide, crustal-scale, Proterozoic, dextral strike-slip shear zone in the Aus granulite terrain, SW Namibia. The KMZ was active under retrograde, amphibolite to greenschist facies conditions, and deformed felsic (and minor mafic) gneisses which had previously experienced granulite facies metamorphism during the Namaqua Orogeny. Lenses of pre- to syn-tectonic leucogranite bodies are also deformed in the shear zone. Pre-KMZ deformation (D1) is preserved as moderately dipping gneissic foliations and tightly folded migmatitic layering. Shear strain within the KMZ is heterogeneous, and the shear zone comprises anastomosing high strain ultramylonite zones wrapping around less deformed to nearly undeformed lozenges. Strain is localized along the edge of leucogranites and between gneissic lozenges preserving D1 migmatitic foliations. Strain localization appears controlled by pre-existing foliations, grain size, and compositional anisotropy between leucogranite and granulite. The local presence of retrograde minerals indicate that fluid infiltration occurred in places, but most ultramylonite in the KMZ is free of retrograde minerals. In particular, rock composition and D1 fabric heterogeneity are highlighted as major contributors to the strain distribution in time and space, with deformation localization along planes of rheological contrast and along pre-existing foliations. Therefore, the spatial distribution of strain in crustal-scale ductile shear zones may be highly dependent on lithology and the orientation of pre-existing fabric elements. In addition, foliation development and grain size reduction in high strain zones further localizes strain during progressive shear, maintaining the anastomosing shear zone network established by the pre-existing heterogeneity.  相似文献   

12.
Post-deformational annealing of calcite rocks   总被引:3,自引:3,他引:3  
The evolution of microstructure and crystallographic preferred orientation (CPO) during post-deformational annealing was studied on three calcite rock types differing in purity and grain size: Carrara marble (98% calcite, mean grain size of 115 μm), Solnhofen limestone (96%, 5 μm) and synthetic calcite aggregates (99%, 7 μm). Samples were first deformed in torsion at 727 °C at a shear strain rate of 3 × 10 4 s 1 to a shear strain of 5 and subsequently heat-treated at 727 °C for various durations between 0 and 24 h. Microstructures and CPOs were analysed by optical microscopy, image analysis and electron backscatter diffraction (EBSD).All rock types deformed in the dislocation creep field at the same applied conditions, but their microstructures and CPOs after deformation and after annealing differed depending on starting grain size and material composition. In Carrara marble and in the synthetic calcite aggregate, a strong CPO developed during deformation accompanied by dynamic recrystallisation with significant changes in grain size. During annealing, widespread grain growth and subtle changes of CPO occurred, and equilibrated foam microstructures were approached after long annealing times. The CPO is the only feature in annealed samples indicating an earlier deformation phase, although it is not always identical to the CPO formed during deformation. In the more impure Solnhofen limestone, secondary phases on grain boundaries suppressed grain boundary mobility and prevented both the formation of a recrystallisation CPO during deformation and grain size modification during deformation and annealing.  相似文献   

13.
Geometrical relations between quartz C-axis fabrics, textures, microstructures and macroscopic structural elements (foliation, lineation, folds…) in mylonitic shear zones suggest that the C-axis fabric mostly reflects the late-stage deformation history. Three examples of mylonitic thrust zones are presented: the Eastern Alps, where the direction of shearing inferred from the quartz fabric results from a late deformation oblique to the overall thrusting; the Caledonides nappes and the Himalayan Main Central Thrust zone, where, through a similar reasoning, the fabrics would also reflect late strain increments though the direction of shearing deduced from quartz fabric remains parallel to the overall thrusting direction. Hence, the sense of shear and the shear strain component deduced from the orientation of C-axis girdles relative to the finite strain ellipsoid axes are not simply related nor representative of the entire deformation history.  相似文献   

14.
Microstructures and quartz c-axis fabrics were analyzed in five quartzite samples collected across the eastern aureole of the Eureka Valley–Joshua Flat–Beer Creek composite pluton. Temperatures of deformation are estimated to be 740±50 °C based on a modified c-axis opening angle thermometer of Kruhl (J. Metamorph. Geol. 16 (1998) 142). In quartzite layers located closest (140 m) to the pluton-wall rock contact, flattened detrital grains are plastically deformed and partially recrystallized. The dominant recrystallization process is subgrain rotation (dislocation creep regime 2 of Hirth and Tullis (J. Struct. Geol. 14 (1992) 145)), although grain boundary migration (dislocation creep regime 3) is also evident. Complete recrystallization occurs in quartzite layers located at a distance of 240 m from the contact, and coincides with recrystallization taking place dominantly through grain boundary migration (regime 3). Within the quartzites, strain is calculated to be lowest in the layers closest to the pluton margin based on the aspect ratios of flattened detrital grains.The c-axis fabrics indicate that a slip operated within the quartzites closest to the pluton-wall rock contact and that with distance from the contact the operative slip systems gradually switch to prism [c] slip. The spatial inversion in microstructures and slip systems (apparent “high temperature” deformation and recrystallization further from the pluton-contact and apparent “low temperature” deformation and recrystallization closer to the pluton-contact) coincides with a change in minor phase mineral content of quartzite samples and also in composition of the surrounding rock units. Marble and calc-silicate assemblages dominate close to the pluton-wall rock contact, whereas mixed quartzite and pelite assemblages are dominant further from the contact.We suggest that a thick marble unit located between the pluton and the quartzite layers acted as a barrier to fluids emanating from the pluton. Decarbonation reactions in marble layers interbedded with the inner aureole quartzites and calc-silicate assemblages in the inner aureole quartzites may have produced high XCO2 (water absent) fluids during deformation. The presence of high XCO2 fluid is inferred from the prograde assemblage of quartz+calcite (and not wollastonite)+diopside±K-feldspar in the inner aureole quartzites. We suggest that it was these “dry” conditions that suppressed prism [c] slip and regime 3 recrystallization in the inner aureole and resulted in a slip and regime 2 recrystallization, which would normally be associated with lower deformation temperatures. In contrast, the prograde assemblage in the pelite-dominated outer part of the aureole is biotite+K-feldspar. These “wet” pelitic assemblages indicate fluids dominated by water in the outer part of the aureole and promoted prism [c] slip and regime 3 recrystallization. Because other variables could also have caused the spatial inversion of c-axis fabrics and recrystallization mechanisms, we briefly review those variables known to cause a transition in slip systems and dislocation creep regimes in quartz. Our conclusions are based on a small number of samples, and therefore, the unusual development of crystal fabrics and microstructures in the aureole to the EJB pluton suggests that further study is needed on the effect of fluid composition on crystal slip system activity and recrystallization mechanisms in naturally deformed rocks.  相似文献   

15.
Deformation of a megacryst-bearing granitoid pluton has produced a ∼100 m-thick shear zone (viz., Cheongsan shear zone of South Korea) from protomylonite to muscovite-rich ultramylonite, showing variations in microstructural and mineralogical characteristics along the pluton margin. Petrographic observations within the shear zone suggest evidence for various syntectonic K-feldspar and plagioclase (feldspars hereafter) breakdown and muscovite formation through chemical reactions during mylonitization. Megacrysts up to 15 cm long make it difficult to have representative samples for chemical analysis. Here, we have used a mass-balance analysis (i.e., ‘best-fit’ Al–Ti–Fe isocon) for inferring the changes in major element chemistry during the mylonitization of megacryst-bearing granite. The results show variations in alkalies and silica, reflecting concentration changes (loss or gain) by fluid-assisted mass transfer and the role of SiO2-rich fluids during progressive development from protolith to ultramylonite of the Cheongsan shear zone. Various bulk-rock volume-changes from 8% loss to 13% gain are calculated relative to the ‘best-fit’ Al–Ti–Fe isocon. Although comparison of the calculated protolith and observed mylonite compositions using ‘best-fit’ isocon analysis may result in uncertainties in interpretation, the present results are consistent with petrographic observations, indicating the element mobility, fluid-assisted mass transfer and the role of SiO2-rich fluids during progressive development of the Cheongsan shear zone.  相似文献   

16.
The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10~(–7.87)s~(–1) and 10~(–11.49)s~(–1) with differential stresses of 32.63–63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing'an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.  相似文献   

17.
Interlayered quartzite and marble in the southern Sivrihisar Massif, Turkey, record metamorphic conditions ranging from high-pressure/low-temperature through a Barrovian overprint from chlorite- to sillimanite-zone conditions. This sequence was exhumed under transtension, producing macroscopic constrictional fabrics (L-tectonites) during crustal thinning. Quartz microstructures consist of dynamically recrystallized aggregates in the dislocation creep regime dominated by grain boundary migration. Quartz microstructures are relatively constant across the high metamorphic gradient, and crystallographic fabric patterns transition from plane strain to constriction strain. Calcite fabrics are characterized by progressive overprinting of a columnar texture inherited from the high-pressure polymorph aragonite. In the low-temperature Barrovian domain (<400?°C), shearing of calcite rods produced a very strong c-axis point maximum. At moderate temperature, calcite rods were partially to totally recrystallized and the strong preferred orientation maintained. At temperature >500?°C and high constriction strain, marble has no crystallographic fabric, likely reflecting a transition from dislocation creep to diffusion creep. Phengite in high-pressure/low-temperature marble and quartzite yields relatively simple age spectra with Late Cretaceous (88–82 Ma) 40Ar/39Ar ages. Barrovian muscovite records significantly younger ages (63–55 Ma). The transtension system and associated metamorphism may have occurred above a subduction zone in Paleocene–Eocene time as a precursor to intrusion of Eocene (~53 Ma) arc plutons.  相似文献   

18.
Alpine deformation in the Grimsel granodiorite (Aar massif, Central Alps) at greenschist facies conditions (6.5 ± 1 kbar for 450°C ± 25°C) is characterized by the development of a network of centimetre to decametre localized shear zones that surround lenses of undeformed granodiorite. Localization of deformation is assumed to be the result of a first stage of extreme localization on brittle precursors (nucleation stage) followed by a transition to ductile deformation and lateral propagation into the weakly deformed granodiorite (widening stage). A paradox of this model is that the development of the ductile shear zone is accompanied by the crystallization of large amounts of phyllosilicates (white mica and chlorite) that maintains a weak rheology in the localized shear zone relative to the host rock so that deformation is localized and prevents shear zone widening. We suggest that chemical processes, and more particularly, the metamorphic reactions and metasomatism occurring during re‐equilibration of the metastable magmatic assemblage induced shear zone widening at these P–T–X conditions. These processes (reactions and mass transfer) were driven by the chemical potential gradients that developed between the thermodynamically metastable magmatic assemblage at the edge of the shear zone and the stable white mica and chlorite rich ultramylonite formed during the first stage of shear zone due to localized fluid infiltration metasomatism. PT and chemical potential projections and sections show that the process of equilibration of the wall rocks (μ–μ path) occurs via the reactions: kf + cz + ab + bio + MgO + H2O = mu + q + CaO + Na2O and cz + ab + bio + MgO + H2O = chl + mu + q + CaO + Na2O. Computed phase diagram and mass balance calculations predict that these reactions induce relative losses of CaO and Na2O of ~100% and ~40% respectively, coupled with hydration and a gain of ~140% for MgO. Intermediate rocks within the strain gradient (ultramylonite, mylonite and orthogneiss) reflect various degrees of re‐equilibration and metasomatism. The softening reaction involved may have reduced the strength at the edge of the shear zone and therefore promoted shear zone widening. Chemical potential phase diagram sections also indicate that the re‐equilibration process has a strong influence on equilibrium mineral compositions. For instance, the decrease in Si‐content of phengite from 3.29 to 3.14 p.f.u, when white mica is in equilibrium with the chlorite‐bearing assemblage, may be misinterpreted as the result of decompression during shear zone development while it is due only to syn‐deformation metasomatism at the peak metamorphic condition. The results of this study suggest that it is critical to consider chemical processes in the formation of shear zones particularly when deformation affects metastable assemblages and mass transfer are involved.  相似文献   

19.
Porphyroclasts of relatively strong minerals in mylonites commonly have an internal monoclinic shape symmetry defined by tails of dynamically recrystallized material. The geometry of a porphyroclast and its tails, called a ‘porhyroclast system’, can serve as a valuable indicator of the sense of vorticity. Porphyroclast systems have been divided into σ- and δ-types on the basis of the geometry of the tails. σ-Types have wedge-shaped recrystallized tails whose median lines lie on opposite sides of a reference plane parallel to the tails and containing the symmetry axis for the system. σ-Types are further subdivided into a σa-types, in which the porphyroclast is isolated in a relatively homogeneous matrix, and σb-types, in which the porphyroclast system is associated with a shear band foliation in the matrix. δ-Types typically have narrow recrystallized tails whose median lines cross the reference plane adjacent to the porphyroclast. Consequently, embayments of matrix material occur adjacent to the porphyroclasts and the tails display characteristic bends.A porphyroclast system in a mylonite develops when the relatively weak dynamically recrystallized grain aggregate in the porphyroclast mantle changes its shape due to non-coaxial flow in the adjacent matrix. This behaviour has been modelled in shear box experiments. Passive marker lines around rigid cylinders embedded in silicone putty were subjected to simple shear. The experiments were modified to simulate a change in recrystallization rate (R) with respect to rate of deformation (γ) by decreasing the diameter of the rigid cylinder during deformation at variable rates. The ratio R/γ appears to be one of the most important factors in determining which porphyroclast system will develop. At high R/γ values, flow of recrystallized material away from the porphyroclast is continuously appended by the production of new grains and wedge-shaped σa-type tails develop. At low R/γ values, relatively few new grains are added to the tails which become thinned and deflected by drag due to the spinning motion of the porphyroclast. In addition, most porphyroclast systems at low shear strains are of σa-type or lack monoclinic symmetry, whereas δ-types are only developed at high shear strain values. Complex porphyroclast systems, characterized by two generations of tails, are observed in many of the natural and model shear zones studied and may form due to fluctuating R/γ. Conditions that allow isolated σa- and δ-type porphyroclast systems to be used as sense of vorticity indicators are: the systems should have a monoclinic shape symmetry; matrix grain size should be small with respect to porphyroclast size; matrix fabric should be homogeneous; deformation history should be simple, and observations should be made on sections normal to the inferred bulk vorticity vector for the mylonite.  相似文献   

20.
Schistose mylonitic rocks in the central part of the Alpine Fault (AF) at Tatare Stream, New Zealand are cut by pervasive extensional (C′) shear bands in a well-understood and young, natural ductile shear zone. The C′ shears cross-cut the pre-existing (Mesozoic—aged) foliation, displacing it ductilely synthetic to late Cenozoic motion on the AF. Using a transect approach, we evaluated changes in geometrical properties of the mm–cm-spaced C′ shear bands across a conspicuous finite strain gradient that intensifies towards the AF. Precise C′ attitudes, C′-foliation dihedral angles, and C′–S intersections were calculated from multiple sectional observations at both outcrop and thin-section scales. Based on these data the direction of ductile shearing in the Alpine mylonite zone during shear band activity is inferred to have trended >20° clockwise (down-dip) of the coeval Pacific-Australia plate motion, indicating some partitioning of oblique-slip motion to yield an excess of “dip-slip” relative to plate motion azimuth, or some up-dip ductile extrusion of the shear zone as a result of transpression, or both. Constant attitude of the mylonitic foliation across the finite strain gradient indicates this planar fabric element was parallel to the shear zone boundary (SZB). Across all examined parts of the shear zone, the mean dihedral angle between the C′ shears and the mylonitic foliation (S) remains a constant 30 ± 1° (1σ). The aggregated slip accommodated on the C′ shear bands contributed only a small bulk shear strain across the shear zone (γ = 0.6–0.8). Uniformity of per-shear slip on C′ shears with progression into the mylonite zone across the strain gradient leads us to infer that these shears exhibited a strain-hardening rheology, such that they locked up at a finite shear strain (inside C′ bands) of 12–15. Shear band boudins and foliation boudins both record extension parallel to the SZB, as do the occurrence of extensional shear band sets that have conjugate senses of slip. We infer that shear bands nucleated on planes of maximum instantaneous shear strain rate in a shear zone with Wk < 0.8, and perhaps even as low as <0.5. The C′ shear bands near the AF formed in a thinning/stretching shear zone, which had monoclinic symmetry, where the direction of shear-zone stretching was parallel to the shearing direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号