首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement of Ba isotope ratios of widely available reference materials is required for interlaboratory comparison of data. Here, we present new Ba isotope data for thirty‐four geological reference materials, including silicates, carbonates, river/marine sediments and soils. These reference materials (RMs) cover a wide range of compositions, with Ba mass fractions ranging from 6.4 to 1900 µg g?1, SiO2 from 0.62% to 90.36% m/m and MgO from 0.08% to 41.03% m/m. Accuracy and precision of our data were assessed by the analyses of duplicate samples and USGS rock RMs. Barium isotopic compositions for all RMs were in agreement with each other within uncertainty. The variation of δ138/134Ba in these RMs was up to 0.7‰. The shale reference sample, affected by a high degree of chemical weathering, had the highest δ138/134Ba (0.37 ± 0.03‰), while the stream sediment obtained from a tributary draining carbonate rocks was characterised by the lowest δ138/134Ba (?0.30 ± 0.05‰). Geochemical RMs play a fundamental role in the high‐precision and accurate determination of Ba isotopic compositions for natural samples with similar matrices. Analyses of these RMs could provide universal comparability for Ba isotope data and enable assessment of accuracy for interlaboratory data.  相似文献   

2.
A double‐spike method in combination with MC‐ICP‐MS was applied to obtain molybdenum (Mo) mass fractions and stable isotope compositions in a suite of sedimentary silicate (marine, lake, stream, estuarine, organic‐rich sediment, shales, slate, chert) and carbonate reference materials (coral, dolomite, limestones, carbonatites), and a manganese nodule reference material, poorly characterised for stable Mo isotope compositions. The Mo contents vary between 0.076 and 364 μg g?1, with low‐Mo mass fractions (< 0.29 μg g?1) found almost exclusively in carbonates. Intermediate Mo contents (0.73–2.70 μg g?1) are reported for silicate sediments, with the exception of chert JCh‐1 (0.24 μg g?1), organic‐rich shale SGR‐1b (36.6 μg g?1) and manganese nodule NOD‐A‐1 (364 μg g?1). The Mo isotope compositions (reported as δ98Mo relative to NIST SRM 3134) range from ?1.77 to 1.03‰, with the intermediate precision varying between ± 0.01 and ± 0.12‰ (2s) for most materials. Low‐temperature carbonates show δ98Mo values ranging from 0.21 to 1.03‰ whereas δ98Mo values of ?1.77 and ?0.17‰ were obtained for carbonatites CMP‐1 and COQ‐1, respectively. Silicate materials have δ98Mo values varying from ?1.56 to 0.73‰. The range of δ98Mo values in reference materials may thus reflect the increasingly important relevance of Mo isotope investigations in the fields of palaeoceanography, weathering, sedimentation and provenance, as well as the magmatic realm.  相似文献   

3.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

4.
Sulfur isotope measurements in three sulfide (two pyrite and one pyrrhotite) samples on two epoxy mounts showed that the mount‐to‐mount variation of raw δ34S values was negligible when secondary ion mass spectrometry (SIMS) analytical settings remained stable. In consequence, an off‐mount calibration procedure for SIMS sulfur isotope analysis was applied in this study. YP136 is a pyrrhotite sample collected from northern Finland. Examination of thin sections with a polarising microscope, backscattered electron image analyses and wavelength dispersive spectrometry mapping showed that the sample grains display no internal growth or other zoning. A total of 318 sulfur isotope (spot) measurements conducted on more than 100 randomly selected grains yielded highly consistent sulfur isotope ratios. The repeatability of all the analytical results of 34S/32S was 0.3‰ (2s,= 318), which is the same as that of the well‐characterised pyrite reference materials PPP‐1 and UWPy‐1. Its δ34S value determined by gas mass spectrometry was 1.5 ± 0.1‰ (2s,= 11), which agrees with the SIMS data (1.5 ± 0.3‰, 2s) calibrated by pyrrhotite reference material Po‐10. Therefore, YP136 pyrrhotite is considered a candidate reference material for in situ sulfur isotope determination.  相似文献   

5.
This study presents a high‐precision method to measure barium (Ba) isotope compositions of international carbonate reference materials and natural carbonates. Barium was purified using chromatographic columns filled with cation exchange resin (AG50W‐X12, 200–400 mesh). Barium isotopes were measured by MC‐ICP‐MS, using a 135Ba–136Ba double‐spike to correct mass‐dependent fractionation during purification and instrumental measurement. The precision and accuracy were monitored by measuring Ba isotope compositions of the reference material JCp‐1 (coral) and a synthetic solution obtained by mixing NIST SRM 3104a with other matrix elements. The mean δ137/134Ba values of JCp‐1 and the synthetic solution relative to NIST SRM 3104a were 0.21 ± 0.03‰ (2s,= 16) and 0.02 ± 0.03‰ (2s,= 6), respectively. Replicate measurements of NIST SRM 915b, COQ‐1, natural coral and stalagmite samples gave average δ137/134Ba values of 0.10 ± 0.04‰ (2s,= 18), 0.08 ± 0.04‰ (2s,= 20), 0.27 ± 0.04‰ (2s,= 16) and 0.04 ± 0.03‰ (2s,= 20), respectively. Barium mass fractions and Ba isotopes of subsamples drilled from one stalagmite profile were also measured. Although Ba mass fractions varied significantly along the profile, Ba isotope signatures were homogeneous, indicating that Ba isotope compositions of stalagmites could be a potential tool (in addition to Ba mass fractions) to constrain the source of Ba in carbonate rocks and minerals.  相似文献   

6.
This study presents a high‐precision Cd isotope measurement method for soil and rock reference materials using MC‐ICP‐MS with double spike correction. The effects of molecular interferences (e.g., 109Ag1H+, 94Zr16O+, 94Mo16O+ and 70Zn40Ar+) and isobaric interferences (e.g., Pd, In and Sn) to Cd isotope measurements were quantitatively evaluated. When the measured solution has Ag/Cd ≤ 5, Zn/Cd ≤ 0.02, Mo/Cd ≤ 0.4, Zr/Cd ≤ 0.001, Pd/Cd ≤ 5 × 10?5 and In/Cd ≤ 10?3, the measured Cd isotope data were not significantly affected. The intermediate measurement precision of pure Cd solutions (BAM I012 Cd, Münster Cd and AAS Cd) was better than ± 0.05‰ (2s) for δ114/110Cd. The δ114/110Cd values of soil reference materials (NIST SRM 2709, 2709a, 2710, 2710a, 2711, 2711a and GSS‐1) relative to NIST SRM 3108 were in the range of ?0.251 to 0.632‰, the δ114/110Cd values of rock reference materials (BCR‐2, BIR‐1, BHVO‐2, W‐2, AGV‐2, GSP‐2 and COQ‐1) varied from ?0.196‰ to 0.098‰, and that of the manganese nodule (NOD‐P‐1) was 0.163 ± 0.040‰ (2s, n = 8). The large variation in Cd isotopes in soils and igneous rocks indicates that they can be more widely used to study magmatic and supergene processes.  相似文献   

7.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

8.
The commonly used, but no longer available, reference materials NIST SRM 976 (Cu) and ‘JMC Lyon’ (Zn) were calibrated against the new reference materials ERM®‐AE633, ERM®‐AE647 (Cu) and IRMM‐3702 (Zn), certified for isotope amount ratios. This cross‐calibration of new with old reference materials provides a continuous and reliable comparability of already published with future Cu and Zn isotope data. The Cu isotope amount ratio of NIST SRM 976 yielded δ65/63Cu values of ?0.01 ± 0.05‰ and ?0.21 ± 0.05‰ relative to ERM®‐AE633 and ERM®‐AE647, respectively, and a δ66/64ZnIRMM‐3702 value of ?0.29 ± 0.05‰ was determined for ‘JMC Lyon’. Furthermore, we separated Cu and Zn from five geological reference materials (BCR‐2, BHVO‐2, BIR‐1, AGV‐1 and G‐2) using a two‐step ion‐exchange chromatographic procedure. Possible isotope fractionation of Cu during chromatographic purification and introduction of resin‐ and/or matrix‐induced interferences were assessed by enriched 65Cu isotope addition. Instrumental mass bias correction for the isotope ratio determinations by MC‐ICP‐MS was performed using calibrator‐sample bracketing with internal Ni doping for Cu and a double spike approach for Zn. Our results for the five geological reference materials were in very good agreement with literature data, confirming the accuracy and applicability of our analytical protocol.  相似文献   

9.
The in situ measurement of Sr isotopes in carbonates by MC‐ICP‐MS is limited by the availability of suitable microanalytical reference materials (RMs), which match the samples of interest. Whereas several well‐characterised carbonate reference materials for Sr mass fractions > 1000 µg g?1 are available, there is a lack of well‐characterised carbonate microanalytical RMs with lower Sr mass fractions. Here, we present a new synthetic carbonate nanopowder RM with a Sr mass fraction of ca. 500 µg g?1 suitable for microanalytical Sr isotope research (‘NanoSr’). NanoSr was analysed by both solution‐based and in situ techniques. Element mass fractions were determined using EPMA (Ca mass fraction), as well as laser ablation and solution ICP‐MS in different laboratories. The 87Sr/86Sr ratio was determined by well‐established bulk methods for Sr isotope measurements and is 0.70756 ± 0.00003 (2s). The Sr isotope microhomogeneity of the material was determined by LA‐MC‐ICP‐MS, which resulted in 87Sr/86Sr ratios of 0.70753 ± 0.00007 (2s) and 0.70757 ± 0.00006 (2s), respectively, in agreement with the solution data within uncertainties. Thus, this new reference material is well suited to monitor and correct microanalytical Sr isotope measurements of low‐Sr, low‐REE carbonate samples. NanoSr is available from the corresponding author.  相似文献   

10.
We report mass‐independent and mass‐dependent Ca isotopic compositions for thirteen geological reference materials, including carbonates (NIST SRM 915a and 915b), Atlantic seawater as well as ten rock reference materials ranging from peridotite to sandstone, using traditional ε and δ values relative to NIST SRM 915a, respectively. Isotope ratio determinations were conducted by independent unspiked and 43Ca‐48Ca double‐spiked measurements using a customised Triton Plus TIMS. The mean of twelve measurement results gave ε40/44Ca values within ± 1.1, except for GSP‐2 that had ε40/44Ca = 4.04 ± 0.15 (2SE). Significant radiogenic 40Ca enrichment was evident in some high K/Ca samples. At an uncertainty level of ± 0.6, all reference materials had the same ε43/44Ca and ε48/44Ca values. We suggest the use of δ44/42Ca to report mass‐dependent Ca isotopic compositions. The precision under intermediate measurement conditions for δ44/42Ca over eight months in our laboratory was ± 0.03‰ (with n ≥ 8 repeat measurements). Measured igneous reference materials gave δ44/42Ca values ranging from 0.27‰ to 0.54‰. Significant Ca isotope fractionation may occur during magmatic and metasomatism processes. Studied reference materials with higher (Dyn/Ybn) tend to have lower δ44/42Ca, implying a potential role of garnet in producing magmas with low δ44/42Ca. Sandstone GBW07106 had a δ44/42Ca value of 0.22‰, lower than all igneous rocks studied so far.  相似文献   

11.
Boron isotopes in marine carbonates are increasingly used to reconstruct seawater pH and atmospheric pCO2 through Earth’s history. While isotope ratio measurements from individual laboratories are often of high quality, it is important that records generated in different laboratories can equally be compared. Within this Boron Isotope Intercomparison Project (BIIP), we characterised the boron isotopic composition (commonly expressed in δ11B) of two marine carbonates: Geological Survey of Japan carbonate reference materials JCp‐1 (coral Porites) and JCt‐1 (giant clam Tridacna gigas). Our study has three foci: (a) to assess the extent to which oxidative pre‐treatment, aimed at removing organic material from carbonate, can influence the resulting δ11B; (b) to determine to what degree the chosen analytical approach may affect the resultant δ11B; and (c) to provide well‐constrained consensus δ11B values for JCp‐1 and JCt‐1. The resultant robust mean and associated robust standard deviation (s*) for un‐oxidised JCp‐1 is 24.36 ± 0.45‰ (2s*), compared with 24.25 ± 0.22‰ (2s*) for the same oxidised material. For un‐oxidised JCt‐1, respective compositions are 16.39 ± 0.60‰ (2s*; un‐oxidised) and 16.24 ± 0.38‰ (2s*; oxidised). The consistency between laboratories is generally better if carbonate powders were oxidatively cleaned prior to purification and measurement.  相似文献   

12.
A new natural zircon reference material SA01 is introduced for U‐Pb geochronology as well as O and Hf isotope geochemistry by microbeam techniques. The zircon megacryst is homogeneous with respect to U‐Pb, O and Hf isotopes based on a large number of measurements by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS). Chemical abrasion isotope dilution thermal ionisation mass spectrometry (CA‐ID‐TIMS) U‐Pb isotopic analyses produced a mean 206Pb/238U age of 535.08 ± 0.32 Ma (2s, n = 10). Results of SIMS and LA‐ICP‐MS analyses on individual shards are consistent with the TIMS ages within uncertainty. The δ18O value determined by laser fluorination is 6.16 ± 0.26‰ (2s, n = 14), and the mean 176Hf/177Hf ratio determined by solution MC‐ICP‐MS is 0.282293 ± 0.000007 (2s, n = 30), which are in good agreement with the statistical mean of microbeam analyses. The megacryst is characterised by significant localised variations in Th/U ratio (0.328–4.269) and Li isotopic ratio (?5.5 to +7.9‰); the latter makes it unsuitable as a lithium isotope reference material.  相似文献   

13.
Here we describe high‐precision molybdenum isotopic composition measurements of geological reference materials, performed using multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS). Purification of Mo for isotopic measurements was achieved by ion exchange chromatography using Bio‐Rad AG® 1‐X8 anion exchange resin. Instrumental mass bias was corrected using 100Mo‐97Mo double spiking techniques. The precision under intermediate measurement conditions (eighteen measurement sessions over 20 months) in terms of δ98/95Mo was 0.10‰ (2s). The measurement output was approximately four times more efficient than previous techniques, with no compromise in precision. The Mo isotopic compositions of seven geochemical reference materials, seawater (IAPSO), manganese nodules (NOD‐P‐1 and NOD‐A‐1), copper‐molybdenum ore (HV‐2), basalt (BCR‐2) and shale (SGR‐1b and SCo‐1), were measured. δ98/95Mo values were obtained for IAPSO (2.25 ± 0.09‰), NOD‐P‐1 (?0.66 ± 0.05‰), NOD‐A‐1 (?0.48 ± 0.05‰), HV‐2 (?0.23 ± 0.10‰), BCR‐2 (0.21 ± 0.07‰), SCo‐1 (?0.24 ± 0.06‰) and SGR‐1b (0.63 ± 0.02‰) by calculating δ98/95Mo relative to NIST SRM 3134 (0.25‰, 2s). The molybdenum isotopic compositions of IAPSO, NOD‐A‐1 and NOD‐P‐1 obtained in this study are within error of the compositions reported previously. Molybdenum isotopic compositions for BCR‐2, SCo‐1 and SGR‐1b are reported for the first time.  相似文献   

14.
In this study, two new laboratory reference solutions for testing Cu isotopic composition were established and investigated. Two commercially available pure copper products, copper plate and copper wire, were dissolved in 1000‐ml Teflon® bottles, to produce 200 μg ml?1 stock solutions (hereafter referred to as NWU‐Cu‐A and NWU‐Cu‐B), and cryogenically stored. The Cu isotopic compositions of the two samples were determined in three different laboratories using multi‐collector inductively coupled plasma‐mass spectrometry, and the Cu isotopic compositions obtained from the standard‐sample bracketing method were consistent within the two standard deviation (2s) range. The Cu isotopic compositions of the NWU‐Cu‐A and NWU‐Cu‐B standard solutions were δ65Cu = +0.91 ± 0.03‰ (2s,= 42) and δ65Cu = ?0.05 ±0.03‰ (2s,= 49), respectively, relative to the reference material NIST SRM 976.  相似文献   

15.
This study explores the effects of cation composition on mass bias (i.e., the matrix effect), which is a major component of instrumental mass fractionation (IMF) in the microanalyses of δ13C and δ18O by SIMS in carbonates of the magnesite–siderite solid‐solution series (MgCO3–FeCO3). A suite of twelve calibration reference materials (RMs) was developed and documented (calibrated range: Fe# = 0.002–0.997, where Fe# = molar Fe/[Mg + Fe]), along with empirical expressions for regressing calibration data (affording residuals < 0.5‰ relative to certified reference material NIST‐19). The calibration curves of both isotope systems are non‐linear and have, over a 2‐year period, fallen into one of two distinct but largely self‐consistent shape categories (data from ten measurement sessions), despite adherence to well‐established analytical protocols for carbonate δ13C and δ18O analyses at WiscSIMS (CAMECA IMS 1280). Mass bias was consistently most sensitive to changes in composition near the magnesite end‐member (Fe# 0–0.2), deviating by up to 4.5‰ (δ13C) and 14‰ (δ18O) with increasing Fe content. The cause of variability in calibration curve shapes is not well understood at present and demonstrates the importance of having available a sufficient number of well‐characterised RMs so that potential complexities of curvature can be adequately delineated and accounted for on a session‐by‐session basis.  相似文献   

16.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

17.
Accurate ion microprobe analysis of oxygen isotope ratios in garnet requires appropriate reference materials to correct for instrumental mass fractionation that partly depends on the garnet chemistry (matrix effect). The matrix effect correlated with grossular, spessartine and andradite components was characterised for the Cameca IMS 1280HR at the SwissSIMS laboratory based on sixteen reference garnet samples. The correlations fit a second‐degree polynomial with maximum bias of ca. 4‰, 2‰ and 8‰, respectively. While the grossular composition range 0–25% is adequately covered by available reference materials, there is a paucity of them for intermediate compositions. We characterise three new garnet reference materials GRS2, GRS‐JH2 and CAP02 with a grossular content of 88.3 ± 1.2% (2s), 83.3 ± 0.8% and 32.5 ± 3.0%, respectively. Their micro scale homogeneity in oxygen isotope composition was evaluated by multiple SIMS sessions. The reference δ18O value was determined by CO2 laser fluorination (δ18OLF). GRS2 has δ18OLF = 8.01 ± 0.10‰ (2s) and repeatability within each SIMS session of 0.30–0.60‰ (2s), GRS‐JH2 has δ18OLF = 18.70 ± 0.08‰ and repeatability of 0.24–0.42‰ and CAP02 has δ18OLF = 4.64 ± 0.16‰ and repeatability of 0.40–0.46‰.  相似文献   

18.
A HF‐free sample preparation method was used to purify silicon in twelve geological RMs. Silicon isotope compositions were determined using a Neptune instrument multi‐collector‐ICP‐MS in high‐resolution mode, which allowed separation of the silicon isotope plateaus from their interferences. A 1 μg g‐1 Mg spike was added to each sample and standard solution for online mass bias drift correction. δ30Si and δ29Si values are expressed in per mil (‰), relative to the NIST SRM 8546 (NBS‐28) international isotopic RM. The total variation of δ30Si in the geological reference samples analysed in this study ranged from ‐0.13‰ to ‐0.29‰. Comparison with δ29Si values shows that these isotopic fractionations were mass dependent. IRMM‐17 yielded a δ30Si value of ‐1.41 ± 0.07‰ (2s, n = 12) in agreement with previous data. The long‐term reproducibility for natural samples obtained on BHVO‐2 yielded δ30Si = ‐0.27 ± 0.08‰ (2s, n = 42) on a 12 month time scale. An in‐house Si reference sample was produced to check for the long‐term reproducibility of a mono‐elemental sample solution; this yielded a comparable uncertainty of ± 0.07‰ (2s, n = 24) over 5 months.  相似文献   

19.
Chromium (Cr) isotopes have been widely used in various fields of Earth and planetary sciences. However, high‐precision measurements of Cr stable isotope ratios are still challenged by difficulties in purifying Cr and organic matter interference from resin using double‐spike thermal ionisation mass spectrometry. In this study, an improved and easily operated two‐column chemical separation procedure using AG50W‐X12 (200–400 mesh) resin is introduced. This resin has a higher cross‐linking density than AG50W‐X8, and this higher density generates better separation efficiency and higher saturation. Organic matter from the resin is a common cause of inhibition of the emission of Cr during analysis by TIMS. Here, perchloric and nitric acids were utilised to eliminate organic matter interference. The Cr isotope ratios of samples with lower Cr contents could be measured precisely by TIMS. The long‐term intermediate measurement precision of δ53/52CrNIST SRM 979 for BHVO‐2 is better than ± 0.031‰ (2s) over one year. Replicated digestions and measurements of geological reference materials (OKUM, MUH‐1, JP‐1, BHVO‐1, BHVO‐2, AGV‐2 and GSP‐2) yield δ53/52CrNIST SRM 979 results ranging from ?0.129‰ to ?0.032‰. The Cr isotope ratios of geological reference materials are consistent with the δ53/52CrNIST SRM 979 values reported by previous studies, and the measurement uncertainty (± 0.031‰, 2s) is significantly improved.  相似文献   

20.
Iron, Cu and Zn stable isotope systems are applied in constraining a variety of geochemical and environmental processes. Secondary reference materials have been developed by the Institute of Geology, Chinese Academy of Geological Sciences (CAGS), in collaboration with other participating laboratories, comprising three solutions (CAGS‐Fe, CAGS‐Cu and CAGS‐Zn) and one basalt (CAGS‐Basalt). These materials exhibit sufficient homogeneity and stability for application in Fe, Cu and Zn isotopic ratio determinations. Reference values were determined by inter‐laboratory analytical comparisons involving up to eight participating laboratories employing MC‐ICP‐MS techniques, based on the unweighted means of submitted results. Isotopic compositions are reported in per mil notation, based on reference materials IRMM‐014 for Fe, NIST SRM 976 for Cu and IRMM‐3702 for Zn. Respective reference values of CAGS‐Fe, CAGS‐Cu and CAGS‐Zn solutions are as follows: δ56Fe = 0.83 ± 0.07 and δ57Fe = 1.20 ± 0.13, δ65Cu = 0.57 ± 0.06, and δ66Zn = ?0.79 ± 0.12 and δ68Zn = ?1.65 ± 0.24, respectively. Those of CAGS‐Basalt are δ56Fe = 0.15 ± 0.07, δ57Fe = 0.22 ± 0.10, δ65Cu = 0.12 ± 0.08, δ66Zn = 0.17 ± 0.13, and δ68Zn = 0.34 ± 0.26 (2s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号