首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of oceanic islands has been the subject of much speculation, starting with Darwin almost two centuries ago. Two classes of oceanic islands can be identified: ‘volcanic islands’, which form due to excess volcanism caused by melting anomalies in the suboceanic mantle, and ‘tectonic islands’, which form due to transpressive and/or transtensional tectonics of blocks of oceanic lithosphere along transform faults. Modern and sunken tectonic islands from the Atlantic Ocean and Indian Ocean and the Caribbean Sea and Red Sea expose mantle and lower‐crust lithologies and display an elongated narrow morphology; in contrast, volcanic islands expose basalts and have near‐circular morphology. Both are often capped by carbonate platforms. The life cycle of tectonic islands tends to be more complex than that of most volcanic islands; their elongated narrow morphology, together with their tectonic instability and high seismicity, affect the architecture of the carbonate platforms capping them, limiting coral reef development and favouring rhodalgal–foramol biota associations.  相似文献   

2.
王飞飞  张勇  韩宗珠  宋维宇  吴浩  宁泽 《中国地质》2020,47(5):1426-1437
福建北部沿岸岛屿岩石组合以晚中生代火成岩为主,研究认为是古太平洋俯冲消减的产物,对反演洋盆构造演化具有重要的指示意义。本次对其中的福建北部海域东台山岛上广泛发育的酸性火山岩进行了锆石U-Pb定年以及全岩主微量地球化学分析工作。2件年代学样品分别获得了92 Ma和86 Ma的锆石U-Pb年龄,确定东台山岛火山岩形成于晚白垩世。全岩地球化学特征指示火山岩样品以酸性钙碱性岩石为主,整体富集Rb、Ba等元素,亏损Nb、Ta、Sr、Eu等元素,显示弧型岩浆岩的地球化学组成。研究认为东台山岛火山岩起源于古老下地壳变沉积岩熔融,并在浅层岩浆房内经历了不同程度的结晶分异过程。结合区域上晚中生代岩浆作用由陆向海的时空迁移特征,福建北部沿岸岛屿火山岩形成的深部动力学机制应该与古太平洋俯冲过程中的板片回转过程相关。  相似文献   

3.
The paper reports new isotope-geochemical data on Late Paleocene-Early Eocene basalts from the central part of the Kolyuchin-Mechigmen graben, eastern Chukotka Peninsula. The distribution of the major and trace elements and trace-element ratios indicates that the basalts were formed in a marginal-continental rift setting. The peculiar feature of the basalts is a combination of depleted within-plate and suprasubduction geochemical signatures, which make the volcanic rocks from Mt. Otdel’naya different from rocks of suprasubduction volcanic belts and from tholeiites and alkaline lavas of continental rifts and oceanic islands. Extremely high 87Sr/86Sr ratios in the studied basalts as compared to those of similar volcanic rocks from extension zones are probably related to the involvement of carbonate material in the magma generation zone.  相似文献   

4.
Statistical methods of multi-dimensional analysis (discriminant functions and factor analysis) were applied to compare the chemical analyses obtained by Venera-13, -14, and Vega-2 landers (contents of major oxides except for sodium) with petrochemical data compiled into the data base on terrestrial ocean. It is shown that the distribution of major petrogenic elements in the terrestrial rocks ascribed to different geodynamic settings (spreading zones, hot spots, and subduction zones) is determined by crystallization differentiation. This process is best manifested in hot spot volcanics (volcanic islands). In spite of the difficulties related to the poor precision of chemical determinations of Venusian rocks, obtained data indicate that the rocks from the Venera-13 and Vega-2 landing sites have no petrochemical analogues among terrestrial oceanic volcanic rocks. Rocks analyzed in the Venera-14 landing site may resemble the mid-ocean ridge volcanic rocks, although geological setting in the Venera-14 landing site ellipse strongly differs from terrestrial spreading zones.  相似文献   

5.
The Kiselyovka–Manoma accretionary complex formed at the end of the Early Cretaceous during subduction of the Pacific oceanic plate underneath the Khingan–Okhotsk active continental margin along the east of Eurasia. It is composed of Jurassic–Early Cretaceous oceanic chert, siliceous mudstone, and limestone that include a significant amount of basic volcanic rocks. The known and newly obtained data on the petrogeochemistry of the Jurassic and Early Cretaceous basalt from various parts of the accretionary complex are systemized in the paper. Based on the comprehensive analysis of these data, the possible geodynamic settings of the basalt are considered. The petrogeochemical characteristics provide evidence for the formation of basalt in different parts of the oceanic floor within the spreading ridge, as well as on oceanic islands far from the ridge. The basalts of oceanic islands are mostly preserved in the accretionary complex. The compositional variations of the basalts may be controlled by the different thickness of the oceanic lithosphere on which they formed. This is explained by the varying distances of the lithosphere from the spreading zone.  相似文献   

6.
The Cadamosto Seamount is an unusual volcanic centre from Cape Verde, characterised by dominantly evolved volcanics, in contrast to the typically mafic volcanic centres at Cape Verde that exhibit only minor volumes of evolved volcanics. The magmatic evolution of Cadamosto Seamount is investigated to quantify the role of magma-crust interaction and thus provide a perspective on evolved end-member volcanism of Cape Verde. The preservation of mantle source signatures by Nd–Pb isotopes despite extensive magmatic differentiation provides new insights into the spatial distribution of mantle heterogeneity in the Cape Verde archipelago. Magmatic differentiation from nephelinite to phonolite involves fractional crystallisation of clinopyroxene, titanite, apatite, biotite and feldspathoids, with extensive feldspathoid accumulation being recorded in some evolved samples. Clinopyroxene crystallisation pressures of 0.38–0.17 GPa for the nephelinites constrain this extensive fractional crystallisation to the oceanic lithosphere, where no crustal assimilants or rafts of subcontinental lithospheric mantle are available. In turn, magma-crust interaction has influenced the Sr, O and S isotopes of the groundmass and late crystallising feldspathoids, which formed at shallow crustal depths reflecting the availability of oceanic sediments and anhydrite precipitated in the ocean crust. The Nd–Pb isotopes have not been affected by these processes of magma-crust interaction and hence preserve the mantle source signature. The Cadamosto Seamount samples have high 206Pb/204Pb (>19.5), high εNd (+6 to +7) and negative Δ8/4Pb, showing affinity with the northern Cape Verde islands as opposed to the adjacent southern islands. Hence, the Cadamosto Seamount in the west is located spatially beyond the EM1-like component found further east. This heterogeneity is not encountered in the oceanic lithosphere beneath the Cadamosto Seamount despite greater extents of fractional crystallisation at oceanic lithospheric depths than the islands of Fogo and Santiago. Our data provide new evidence for the complex geometry of the chemically zoned Cape Verde mantle source.  相似文献   

7.
Oceanic islands – such as the Azores in the mid‐North Atlantic – are periodically exposed to large storms that often remobilize and transport marine sediments along coastlines, and into deeper environments. Such disruptive events create deposits – denominated tempestites – whose characteristics reflect the highly dynamic environment in which they were formed. Tempestites from oceanic islands, however, are seldom described in the literature and little is known about storm‐related sediment dynamics affecting oceanic island shelves. Therefore, the geological record of tempestite deposits at oceanic islands can provide invaluable information on the processes of sediment remobilization, transport and deposition taking place on insular shelves during and after major storms. In Santa Maria Island (Azores), a sequence of Neogene tempestite deposits was incorporated in the island edifice by the ongoing volcanic activity (thus preserved) and later exposed through uplift and erosion. Because it was overlain by a contemporary coastal lava delta, the water depth at the time of deposition could be inferred, constituting an excellent case‐study to gain insight on the still enigmatic processes of insular shelf deposition. Sedimentological, palaeontological, petrographic and palaeo‐water depth information allowed the reconstruction of the depositional environment of these sediments. The sequence typifies the characteristics of a tempestite (or successive tempestites) formed at ca 50 m depth, in a steep, energetic open insular shelf, and with evidence for massive sediment remobilization from the nearshore to the middle or outer shelf. The authors claim that cross‐shelf transport induced by storm events is the main process of sediment deposition acting on steep and narrow shelves subjected to high‐energetic environments, such as the insular shelves of open‐sea volcanic islands.  相似文献   

8.
洋岛地层序列在造山带地区往往十分发育,它们在时间上、空间上具两大特点,时间上往往失序,空间上移位。东昆仑万保沟岩群也有洋岛地层序列通常具有洋岛型火山岩基底和碳酸盐岩盖层的双层式结构,具有低分异度、高丰度和地方性色彩的生物群面貌,因而温泉沟岩组和青办食宿站岩组在时间上具先后、空间上具紧密的关系。  相似文献   

9.
The volcanic rocks of Iceland are anomalous in their oxygen isotope content. Recent tholeiitic and transitional alkali basalts from Iceland range in (δO18 from 1·8 to 5δ7%. Most of the tholeiitic basalts and their phenocrysts are at least 1% lower in δO18 than unaltered basalts from other oceanic islands or oceanic ridges. The Icelandic basalts that resemble ridge basalts in δO18 also resemble them in major element chemistry. δO18 values of alkali olivine basalts are closest to those of other oceanic islands. Secondary alteration processes have lowered as well as raised the δO18 values of some Icelandic rocks, but such surface mechanisms cannot account for the distribution of oxygen isotopes in the Recent basalts of Iceland. Three mechanisms that could give rise to the low-O18 magmas are (1) exchange of oxygen between magma and low-O18 hydrothermally altered rock, (2) exchange with low-O18 meteoric water, or (3) an exceptional mantle under Iceland. None of the above models can satisfactorily account for all the observations.  相似文献   

10.
The results of study of the volcanic rocks of the Khabarovsk accretionary complex, a fragment of the Jurassic accretionary prism of the Sikhote Alin orogenic belt (the southern part of the Russian Far East), are presented. The volcanic rocks are associated with the Lower Permian limestones in the mélange blocks and Triassic layered cherts. The petrography, petrochemistry, and geochemistry of the rocks are characterized and their geodynamic formation conditions are deduced. The volcanic rocks include oceanic plume basalts of two types: (i) OIB-like intraplate basalts formed on the oceanic islands and guyots in the Permian and Triassic and (ii) T(transitional)-MORBs (the least enriched basalts of the E-MORB type) formed on the midoceanic ridge in the Permian. In addition to basalts, the mélange hosts suprasubduction dacitic tuff lavas.  相似文献   

11.
The structural and compositional volcanosedimentary complexes and igneous rocks of the Sakhalin marginal paleobasin as well as the geodynamic setting were described. The Sakhalin marginal paleobasin was formed in Sakhalin Island and the adjacent water areas at the end of the Early Cretaceous-start of the Late Cretaceous. The paleobasin was a part of the Kula Plate separated from the ocean along with spreading zones and oceanic volcanic islands by the Sea of Okhotsk microcontinent and the Jurassic-Early Cretaceous Sheltinga volcanic island arc. The petrochemical features and geodynamic setting of the igneous rock formation testify to the fact that magma-generating tectonomagmatic structures of the epioceanic Sakhalin marginal paleobasin continued functioning after its isolation under intensive terrigenous sedimentation. The Sakhalin marginal paleobasin had a heterogeneous basement composed of oceanic and continental crust blocks of the Earth. The paleobasin completed its development in the Paleogene.  相似文献   

12.
藏东南碧土带瓦浦组火山岩形成的大地构造环境   总被引:6,自引:3,他引:3  
首次对藏东南原称的瓦浦组进行系统的岩石化学研究 ,发现它包括了两套不同时代和大地构造环境下形成的火山岩。瓦浦组火山熔岩由下部的玄武岩夹玄武安山岩和上部的流纹岩组成 ,是古特提斯洋盆中的洋岛火山岩 ,其时代初定为早二叠世—晚二叠世早期。在觉马—巴格和扎西所见的岩层是以钙质浊积岩为主的火山 -沉积岩系 ,火山岩为岛弧拉斑玄武岩 ,属晚三叠世早期活动大陆边缘产物。上述发现为碧土带是复杂的造山带拼贴体、古特提斯主洋盆是开阔的多岛洋和晚三叠世活动大陆边缘可能属马里亚纳型提供了重要证据  相似文献   

13.
Xenoliths of meta-igneous origin occur as one of the two main types of ultramafic and mafic xenoliths entrained by alkaline lavas of the Kerguelen islands. These are designated type II xenoliths and are subdivided into three mineralogical groups. Subtype IIa and IIc xenoliths are interpreted as crystallisation products of basaltic melts that were emplaced near the crust-mantle boundary during the early tholeiitic–transitional magmatic activity of the Kerguelen islands. Younger magmatism became more alkaline and subtype IIb xenoliths were formed as high-pressure alkaline cumulates related to the last alkaline volcanic stage. Subsequently, the plagioclase-bearing type II rocks have been re-equilibrated under granulite facies conditions. This addition of mafic material around the crust-mantle boundary is consistent with seismic evidence for crustal thickening to 14–20 km. Calculated compressional seismic velocities (Vp) for the basic granulites are consistent with the range of observed Vp in the low-velocity region underlying the oceanic crust. Such growth in the thickness of the oceanic crust may be caused by intrusion of basalts at different levels in the lithosphere and may provide the heat responsible for granulitic metamorphism in the oceanic setting. This study suggests that basic granulites can account for the observed seismic characteristics of oceanic plateaux and can be important components of Kerguelen oceanic lithosphere where there has been large-scale magma production. Moreover we speculate that the Kerguelen islands and perhaps the surrounding plateau represent a continental nucleation process. Received: 30 September 1997 / Accepted: 17 June 1998  相似文献   

14.
The Pb and Sr isotope ratios of Plio-Pleistocene volcanic rocks from the Aleutian volcanic arc are used as tracers of the lithospheric subduction process at the converging Pacific and Bering plates. Aleutian arc lavas do not have the same Pb isotopic compositions as volcanic rocks of the subducted Pacific ocean crust or the nearby Pribilof Islands, but appear to contain an ‘old continental crustal component’ with high 207Pb/204Pb ratio, as has been found in some other volcanic arcs.87Sr/86Sr ratios in the Aleutian volcanic arc rocks average 0.70322, slightly higher than fresh volcanic rocks from normal ridge segments, but within the range of values from ‘Icelandic’ ridge segments, oceanic islands and the Pribolof Islands. The Pb and Sr isotopic compositions of Aleutian lavas show a positive correlation and the range of values does not change for volcanoes distributed along strike in the arc, even though the crustal type in the hanging wall of the Benioff zone changes from oceanic in the west to continental in the east. Since the basement of the continental arc segment is older than the basement of the oceanic segment, and probably has a different isotopic character, the constancy of isotopic ratios along the arc argues against contamination by wall rocks of the type exposed in the arc.A sufficient explanation for the isotopic data is the mixture of several per cent of continent-derived sediment with melt derived from the underthrust oceanic crust and overlying mantle. This small amount of contaminant is difficult to document by geophysical observations. Such a model implies extensive recycling of Ba, Pb, K and Rb through volcanism at convergent plate margins like the Aleutians.  相似文献   

15.
The opening of the North Atlantic Ocean began in the Late Paleocene and was accompanied by the eruption of submarine and subaerial basalts, which built up submarine plateau and ridges, islands, and volcanoes. The volcanic rocks are dominated by low-K tholeiitic basalts, which associate with almost coeval alkaline rocks (subalkali and alkali basalts and their derivatives, basanites, nephelinites, and others). The oldest alkaline volcanics (58–56 Ma) were formed during the opening of the oceanic rift at its shoulders, in northeastern Greenland and the western Norwegian shelf. It was recently found that 55–53 Ma-old alkali-ultramafic rocks are much more widespread at the eastern coast of Greenland than it was previously thought. The younger occurrences of alkali volcanism with pulses at 30, 10, 5 Ma, and up to the present day were formed on the young oceanic plate and newly formed islands and seamounts. To compare the oceanic and continental volcanism of this region, oceanic volcanics dredged during Cruise 10 of the R/V Akademik Kurchatov were reanalyzed using modern analytical methods (XRF and ICP-MS). This study showed that the oceanic and continental alkaline rocks are significantly different in petrochemical and geochemical characteristics, which is caused by differences in magma generation depths and compositions of the mantle source material. The primary continental alkaline magmas were initially more enriched in incompatible trace elements than oceanic ones. During the shallow-level differentiation of oceanic magmas, trace elements and alkalis could be accumulated in residual melts, but these processes occurred on a minor scale and depended on tectonic conditions.  相似文献   

16.
Ocean Plate Stratigraphy in East and Southeast Asia   总被引:10,自引:1,他引:10  
Ancient accretionary wedges have been recognised by the presence of glaucophane schist, radiolarian chert and mélange. Recent techniques for the reconstruction of disrupted fragments of such wedges by means of radiolarian biostratigraphy, provide a more comprehensive history of ocean plate subduction and successive accretion of ocean floor materials from the oceanic plate through offscraping and underplating.Reconstructed ocean floor sequences found in ancient accretionary complexes in Japan comprise, from oldest to youngest, pillow basalt, limestone, radiolarian chert, siliceous shale, and shale and sandstone. Similar lithologies also occur in the mélange complexes of the Philippines, Indonesia, Thailand and other regions. This succession is called ‘Ocean Plate Stratigraphy’ (OPS), and it represents the following sequence of processes: birth of the oceanic plate at the oceanic ridge; formation of volcanic islands near the ridge, covered by calcareous reefs; sedimentation of calcilutite on the flanks of the volcanic islands where radiolarian chert is also deposited; deposition of radiolarian skeletons on the oceanic plate in a pelagic setting, and sedimentary mixing of radiolarian remains and detrital grains to form siliceous shale in a hemipelagic setting; and sedimentation of coarse-grained sandstone and shale at or near the trench of the convergent margin.Radiolarian biostratigraphy of detrital sedimentary rocks provides information on the time and duration of ocean plate subduction. The ages of detrital sediments becomes younger oceanward as younger packages of OPS are scraped off the downgoing plate.OPS reconstructed from ancient accretionary complexes give us the age of subduction and accretion, direction of subduction, and ancient tectonic environments and is an important key to understanding the paleoenvironment and history of the paleo-oceans now represented only in suture zones and orogenic belts.  相似文献   

17.
Sedimentary rocks are rarely preserved on reefless volcanic oceanic islands because their sediments are mostly exported from coastal areas towards the deep sea and such islands typically undergo subsidence. In contrast, the exceptional geological record of the uplifted Santa Maria Island (Azores) provides a unique opportunity to gain insight on such coastal systems. This study focuses on a locality at Ponta do Cedro (eastern Santa Maria Island), which features a series of marine fossiliferous sediments wedged between steep lava deltas. As demonstrated by local structure, these sediments correspond to clinoforms deposited on the steep submarine slope of an active volcanic island, implying transport from shallow waters to greater depths and subsequent colonization by benthic communities. Rapid volcanic progradation eventually sealed the deposits, allowing for their preservation and providing a rare snapshot of the ecology during those intervals, in addition to insights on sedimentary dynamics along submarine island slopes. This study reveals spatial relationships between wedges of sedimentary bodies encapsulated by lavas in the Ponta do Cedro section, and interprets depositional processes preserved in those strata based on sedimentological and palaeontological data. The dynamics of the environment are mostly related to relative sea-level changes, intense volcanic activity and regional uplift during the Neogene.  相似文献   

18.
新疆西天山伊犁地块晚古生代火山岩地质特征及构造意义   总被引:8,自引:0,他引:8  
对新疆西天山伊犁盆地晚古生代火山岩时空分布和地质特征、岩石化学等进行系统总结,认为该盆地晚古生代火山岩主要由晚泥盆世至早二叠世的火山岩组成,其形成与南北天山洋盆演化有关.晚泥盆—早石炭世大哈拉军山组火山岩为天山南北洋盆大洋板块俯冲而成的钙碱性火山岩,晚石炭世伊什基里克组火山岩为挤压环境向拉张环境过渡的钙碱性火山岩和碱性火山岩,早二叠世乌郎组火山岩为后造山具裂谷特征的双峰式火山岩组合.  相似文献   

19.
伊宁地块石炭纪火山岩及其对构造演化的约束   总被引:6,自引:3,他引:3  
西天山伊宁地块的构造格局及其演化之认识久存争议,倍受关注。分歧焦点有三:(1)石炭纪有无洋盆存在?(2)若有洋盆,何时闭合?(3)"沟-弧-盆"消亡时究竟是单向俯冲还是双向俯冲?若是单向俯冲,俯冲方向是由北向南或是相反(即俯冲极性)?因此,这些重大地质问题均聚焦于本区的火山岩。石炭纪火山岩是伊宁地块中的最主要建造和指示构造演化的关键层位,争论长久而激烈。本文认为,伊宁地块早石炭世发育弧前-岛弧-弧后盆地钙碱性火山-沉积建造,是塔里木板块北缘的主要组成部分;而晚石炭世碱性系列双峰式火山岩及其沉积组合则是大陆裂谷火山-沉积建造,形成于区域性伸展构造环境,是准噶尔板块与塔里木板块缝合后的陆内建造,因而古洋盆的关闭时限是早石炭世晚期(鄯善运动)。依据区内早石炭世建造的空间分布和变化规律,作者们认为古天山洋盆与当今地学界作为典型的日本沟-弧-盆体系有着极好的相似性和空间分布可对比性。石炭纪火山岩为本区的构造演化研究提供了重要的约束信息。  相似文献   

20.
A GIS layout of the map of recent volcanism in North Eurasia is used to estimate the geodynamic setting of this volcanism. The fields of recent volcanic activity surround the Russian and Siberian platforms—the largest ancient tectonic blocks of Eurasia—from the arctic part of North Eurasia to the Russian Northeast and Far East and then via Central Asia to the Caucasus and West Europe. Asymmetry in the spatial distribution of recent volcanics of North Eurasia is emphasized by compositional variations and corresponding geodynamic settings. Recent volcanic rocks in the arctic part of North Eurasia comprise the within-plate alkaline and subalkaline basic rocks on the islands of the Arctic Ocean and tholeiitic basalts of the mid-ocean Gakkel Ridge. The southern, eastern, and western volcanic fields are characterized by a combination of within-plate alkaline and subalkaline basic rocks, including carbonatites in Afghanistan, and island-arc or collision basalt-andesite-rhyolite associations. The spatial distribution of recent volcanism is controlled by the thermal state of the mantle beneath North Eurasia. The enormous mass of the oceanic lithosphere was subducted during the formation of the Pangea supercontinent primarily beneath Eurasia (cold superplume) and cooled its mantle, having retained the North Pangea supercontinent almost unchanged for 200 Ma. Volcanic activity was related to the development of various shallow-seated geodynamic settings and deep-seated within-plate processes. Within-plate volcanism in eastern and southern North Eurasia is controlled, as a rule, by upper mantle plumes, which appeared in zones of convergence of lithospheric plates in connection with ascending hot flows compensating submergence of cold lithospheric slabs. After the breakdown of Pangea, which affected the northern hemisphere of the Earth insignificantly, marine basins with oceanic crust started to form in the Cretaceous and Cenozoic in response to the subsequent breakdown of the supercontinent in the northern hemisphere. In our opinion, the young Arctic Ocean that arose before the growth of the Gakkel Ridge and, probably, the oceanic portion of the Amerasia Basin should be regarded as a typical intracontinental basin within the supercontinent [48]. Most likely, this basin was formed under the effect of mantle plumes in the course of their propagation (expansion, after Yu.M. Pushcharovsky) to the north of the Central Atlantic, including an inferred plume of the North Pole (HALIP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号