首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
A new approach to the investigation of the Sm/Nd evolution of the upper mantle directly from the data on lherzolite xenoliths is described in this paper.It is demonstrated that the model age TCHUR of an unmetasomatic iherzolite zenolith ca represent the mean depletion age of its mantle source, thus presenting a correlation trend between f^Sm/Nd and the mean depletion age of the upper mantle from the data on xenoliths.This correlation trend can also be derived from the data on river suspended loads as well as from granitoids.Based on the correlation trend mentioned above and mean depletion ages of the upper mantle at various geological times, an evolution curve for the mean f^Sm/Nd value of the upper mantle through geological time has been established.It is suggested that the upwilling of lower mantle material into the upper mantle and the recycling of continental crust material during the Archean were more active ,thus maintaining fairly constantf^Sm/Nd and εNd values during this time period. Similarly ,an evolution curve for the mean f^Sm/Nd value of the continental crust through geological time has also been established from the data of continental crust material.In the light of both evolution curves for the upper mantle and continental crust ,a growth curve for the continental crust has been worked out ,suggesting that :(1)about 30%(in volume )of the present crust was present as the continental crust at 3.8 Ga ago ;(2)the growth rate was much lower during the Archean ;and (3)the Proterozoic is another major period of time during which the continental crust wsa built up .  相似文献   

2.
The granitoids of the continental crust transformation series in South China may be divided into threetypes: (1) synorogenic migmatic and magmatic type. (2) anorogenic continental crust anatexis type, and (3)syncollision type. Based on the results of Sr and Nd isotopic determinations, the source material compositionof the three types of granitoids is calculated with crust-mantle binary mixing simulation. The calculations indi-cate that the granitoids of the first type consist of 78.6-89.7% upper crust endmember materials and15.0-10.3% depleted mantle endmember materials, the granitoids of the second type are composed of 63.7%upper crust endmember materials and 36.3% depleted mantle endmember materials, and those of the third type100% upper crust endmember materials. Hence. the source material composition of the granitoids of all thethree types is dominated by upper crust endmembers.  相似文献   

3.
4.
The pertochemistry and Sm-Nd isotopic compositions and the geochemical characteristics of REE,U,Th,etc..in the Late Proterozoix and Early Palaeozoic strata in northwestern Jiangxi and western Zhejiang provinces are described in this paper.It seems to be sure that the middle Proterozoic strata of southeastern China are low in the degree of matrration .The strata contain much mantle-derived material.At the end of Late Proterozoic there was an abrupt turn with respect to the crustal geochemical evolution of the eastern part of South China .Since then ,the geochemical environment has undergone a change from a simple reducing environment to a complex oxidizing-reducing environ-ment, which would be geochemically beneficial to the formation of Late Sinian to Early Cambrian U-bearing formations.  相似文献   

5.
There is a coupling of thermal, mechanical, chemical and fluidal processes in a continental shear zone. Both Xincheng-Xishui and Hetai shear zones are typical continental crust shear zones of greenschist facies environment. The representative mylonite zones of the shear zones are studied with whole rock major and trace element analyses. The chemical compositional variation tendencies in both shear zones are very similar and the gain-loss ratios of various components in the mylonitic rocks are reflected in the mass balance equations. The enrichment of those immobile high-field-strengh elements is considered to he related to the volume loss of the myionitic rocks in a shear zone. Based on the volume loss expression C_s/C_o=1/(1-V),the fractional volume losses (V)are 37.5% and 36.5%-42.3% respectively for mylonites and ultramylonites in the Xincheng-Xishui shear zone and 11% and 28% respectively for mylonites and phyllonites in the Hetai shear zone. The high volume loss and large removal of SiO_2 from  相似文献   

6.
Compared with the oceanic crust, knowledge about the formation of the continental crust (CC) is relatively poor. Although melting of subducted slabs in the early history of the Earth has been considered as the major way that shaped the chemical characteristics of the CC by most geologists, as the CC shares many characteristics with modern adakites, some geologists argued that Archean TTG was formed in the same way as modern arcs rather than slab melting, whereas others proposed that melting at the bottom of the thickened oceanic crust was more important. Recently,the debate is mainly focused on the unique subchondritic Nb/Ta value of the CC, and particularly, how Nb and Ta fractionated from each other and consequently how, in detail, the CC was built.  相似文献   

7.
The problem of the development of the ancient continental crust in the Primorye Region is discussed. It is substantiated by geological and isotope-geochemical criteria: a granite–metamorphic mineral composition of different-aged terrigenous deposits and pelagic cherts, occurrence of arkoses, as well as Proterozoic model age datings of sedimentary complexes and the occurrence of early Proterozoic zircons and monazites. The manifestation of potassium, high-Ba, LREE- and Nb-rich basite–ultrabasite magmatism, typical of Sino-Korean and Okhotsk Ba-bearing nuclears, of lengthy age intervals (Jurassic–Paleogene) in Primorye and the Amur Region is an important criterion.  相似文献   

8.
9.
The following equation is proposed in this paper to estimate the crustal growth rate of the North China Platform on the basis of mass equilibrium between the crust and the mantle:
  相似文献   

10.
The transitional pressure of quartz-coesite under the differential stress and highly-strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega-pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi-brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle-plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10-12 s-l) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10-14 s-1). The average rheological stress (1 600 MPa) at the strain rate of 10-12 s-1 stands for the ultimate differential stress of UHPM rocks in the semi-brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of l0-14 -10-13 s-l stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.  相似文献   

11.
This work considers continentality from the point of view of an annual course of precipitation. It assesses continentality according to percentage of precipitation in summer and winter half year, ratio of precipitation in summer to winter half year and the period of half year precipitation in the area of WMO Region VI (Europe). Region VI can be divided into five main regions according to their annual course of precipitation. These regions are: Northwestern Europe with precipitation in all seasons, a predominance of winter precipitation and maximum precipitation in December and January; Central Europe with precipitation in all seasons, a predominance of summer precipitation and maximum precipitation in July; Eastern Europe with less precipitation over the year than in Northwestern Europe, a predominance of summer precipitation and maximum precipitation in July; the Mediterranean region with a predominance of winter precipitation, a dry season in summer and maximum precipitation in November and December; and Western Asia with a variable climate, a predominance of winter precipitation and maximum precipitation in December and January. Continentality from the point of view of precipitation rises towards the east. In comparison with thermal continentality, according to Gorczynski, it unexpectedly reaches its maximum in the centre of Europe (especially in northeast of the Czech Republic and south of Poland).  相似文献   

12.
There are two factors, source composition and magmatic differentiation, potentially controlling W-Sn mineralization. Which one is more important is widely debated and may need to be determined for each individual deposit. The Xitian granite batholith located in South China is a natural laboratory for investigating the above problem. It consists essentially of two separate components, formed in the Triassic at ca. 226 Ma and Jurassic at ca. 152 Ma, respectively. The Triassic and Jurassic rocks are both composed of porphyritic and fine-grained phases. The latter resulted from highly-differentiated porphyritic ones but they have similar textural characteristics and mineral assemblages, indicating that they reached a similar degree of crystal fractionation. Although both fine-grained phases are highly differentiated with elevated rare metal contents, economic W–Sn mineralization is rare in the Triassic granitoids and this can be attributed to less fertile source materials than their Jurassic counterparts, with a slightly more enriched isotopic signature and whole-rock εNd(226 Ma) of ?10.4 to ?9.2 (2σ = 0.2) compared with εNd(152 Ma) of ?9.2 to ?8.2 (2σ = 0.2) for the Jurassic rocks. The initial W-Sn enrichment was derived from the metasedimentary rocks and strongly enhanced by reworking of the continental crust, culminating in the Jurassic.  相似文献   

13.
ChinaContinentalConductiveLayersandItsRelationshipwithBasinEvolution*XuChangfangGeologicalInstitute,StateSeismologicalBureauo...  相似文献   

14.
Marine hydrogenous ferromanganese crust, an important metal resource in the future, has significant potential in various applications as a type of natural nano-structured material. By employing scanning electronic microscopy, nitrogen adsorption-desorption isotherm measurement, Xray fluorescence spectrometer and X-ray diffraction methods, the micro-structure, surface properties and chemical composition of several plate-like ferromanganese crusts sampled from the northwestern Pacific were investigated comprehensively. Although obvious differences were observed from different layers, the crust is a typical porous material with high specific surface area, unique pore structure and abundant transition elements. Furthermore, the performance of natural crust in desulfurization process was preliminarily tested in laboratory experiments. The suffur capacities of the crust are 13.1% and 18.1% at room temperature and 350 ℃, respectively. The crust can be used not only as a metal resource, but also as an environmental material.  相似文献   

15.
INTRODUCTIONSincethediscoveryofeclogiteswithcoesiteanddia mondinclusionsrelatedtothecontinent continentcollision orogenyenvironment,theultrahigh pressuremetamorphism(UHPM )intheDabie Suluhasarousedgreatinterestinmanygeologists (Liouetal .,1994 ;Xuetal.,1992 ) .Experimentalstudieshaveprovedthatsuchmineralsasdia mond ,coesiteandomphaciteoccurredat 2 - 5GPa (andatthecorrespondingtemperatures) (Stevenetal.,1982 ;MirwaldandMasonne ,1980 ) .However,itdoesnotmeanthatthemetamorphicrockscanbe…  相似文献   

16.
Metamorphic core complexes are a basic structural pattern related toextensional tectonics.Several characteristics of different scales of metamorphiccore complexes in the Fangshan and Yunmengshan(Beijing),Zhongtiaoshan(Shanxi),and Dengfong(Henan)are examined.A three-layer model formetamorphic core complexes is suggested.The conclusion is that metamorphiccore complexes are the result of multiphase intracontinental crustal extensionsand are an important tectonic pattern.which exposes the basementmetamorphic rocks to the ground surface in the intracontinental cover.  相似文献   

17.
The living circumstances of human beings are closely related to the geological environment. As exemplified by the Zhangjiakou-West Beijing region, this paper describes the intensive mantle-crust uplift, which led to anomalous element background values for regional rocks(ores) and soils. As a result, some agricultural crops, and forests and fruits are of “superquality and high yield“ or of “poor quality and low yield“. The anomalous elements can find their way into grains, fruits, vegetables and drinking water and then will be taken by human beings, constituting a food chain, which would directly impact human health and lead to the spread of some endemic diseases. Studies have shown that the geomorphological features in the Zhangjiakou-West Beijing region are the outcome of geotectonic evolution since the Mesozoic.Mantle-crust movement is the key factor leading to the evolution and change of the regionally geological environment.  相似文献   

18.
Doklady Earth Sciences - To study the formation of S-type ultra-potassic granitic melts under the conditions of the continental crust, we conducted experiments on partial melting of...  相似文献   

19.
Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water deposits have been recognized in the continuous core rocks from the SKII, including mudstone of still water, marlite, dolostone, oil shale, volcanic ashes, turbidite, slump sediment, tempestite, seismite, ostracoda limestone and sparry carbonate, which are divided into two types: microfacies generated due to gradually changing environments (I) and microfacies generated due to geological events (II). Type I is composed of some special fine grain sediments such as marlite, dolomite stone and oil shale as well as mudstone and Type II is composed of some sediments related to geological events, such as volcanic ashes, turbiditie, slump sediment, tempestite, seismite, ostracoda limestone. The formation of sparry carbonate may be controlled by factors related to both environments and events. Generally, mudstone sediments of still water can be regarded as background sediments, and the rest sediments are all event sediments, which have unique forming models, which may reflect controlling effects of climatics and tectonics.  相似文献   

20.
《Gondwana Research》2002,5(1):197-203
Limited evidence from Sm-Nd TDM model ages, U-Pb ages of xenocrystic zircon, and Pb isotopic data indicates the presence of Paleoproterozoic and Mesoproterozoic crust (2.0-1.3 Ga) in the southern and central Appalachian orogen. This apparently unexposed older crust must underlie much of the Blue Ridge, and it was recycled to produce most of the rocks of the Blue Ridge with ages ≤1.3 Ga. In the eastern Blue Ridge and in blocks to the southeast, there also is a significant juvenile Neoproterozoic source component. Going toward the southeast, the central and eastern Piedmont (Carolina terrane) appears to be underlain by progressively less source component older than 1.0 Ga. Late Proterozoic rocks of the Carolina terrane are derived largely from a juvenile source with a Nd isotopic composition that approaches that of depleted mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号