首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
台湾西南部乌山顶泥火山的成因机制初探   总被引:2,自引:0,他引:2  
乌山顶泥火山位于台湾西南部旗山断层沿线.由于台湾西南部具有独特的地质构造背景,沿着古亭坑背斜和旗山断层沿线分布了许多泥火山.本文以乌山顶泥火山为例,研究泥火山的成因.在了解泥火山地质背景、活动现状的基础上,分析了喷出物的矿物组成、古生物组合、流体地球化学特征.喷出的主要矿物有石英、伊利石、高岭石-蒙脱石混层矿物、伊利石-蒙脱石混层矿物,古生物有Reticulofenestra minuta、 Sphenolithus abies等,流体中的离子主要是Cl-、Na+等.由此探讨了泥浆来源和成因机制,认为泥火山的活动与深部古亭坑组地层存在异常高压有关,构造活动是泥火山活动的主要诱发因素.  相似文献   

2.
Mud volcanoes are important pathways for CH4 emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH4 were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH4 (>90%), “air” (i.e. N2 + O2 + Ar, 1–5%) and CO2 (1–5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH4 concentration (CH4 > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO2 up to 85%, and much lower CH4 content (<37%). High CH4 content (>90%) with low CO2 (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C1 (methane)/C2 (ethane) + C3 (propane) and δ13CCH4 results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH4 concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH4 emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH4 could contribute up to 10% of total natural CH4 emissions in Taiwan.  相似文献   

3.
Ten of eleven analyzed water samples from mud volcanoes of the Taman Peninsula are characterized by 87Sr/86Sr ratio within 0.70734–0.70957, which overlaps the values typical of the Mesozoic and Cenozoic sedimentary carbonates, but sharply differs from the value in the clayey sediments of the Maikop Group (0.7157 ± 0.0022). These data indicate that the strontium isotopic composition is mainly defined by carbonate reservoirs, with relatively little effect of elision solutions, input of which is noticeable only in the water of Gladkovsky Volcano (87Sr/86Sr = 0.71076). The high δ18O in mud volcanic waters (up to 14.2‰) can also be attributed to ionic exchange with sedimentary carbonates at temperatures around 150°C.  相似文献   

4.
5.
Mud volcanoes can provide important information about the underlying strata, hydrocarbon accumulation, and recent neotectonic movements in an area. The fluids erupting from mud volcanoes provide important information about their formation and evolution. The ion concentration and the hydrogen and oxygen isotopes of the fluids that were erupted from the three mud volcano groups, Baiyanggou, Aiqigou, and Dushanzi, and nearby rivers in the southern margin of the Junggar basin, northwestern China, are studied. The concentrations of Na and Cl in mud volcano fluids are clearly elevated, displayed as the Na-Cl type. The δD and δ18O values of the fluids are similar between the Baiyanggou and Dushanzi mud volcanoes, which are mainly from ancient sedimentary pore water. However, the Aiqigou mud volcano is depleted in dissolved Cl and shows lower δ18O values with mixed sources, including deep pore and local meteoric water. Two types of mud volcanoes are proposed in this study. One type is low-energy mud volcanoes with a low volume of fluid of deep origin on the hillcrest, which display as mud pool/pie/hole. The other type is high-energy mud volcanoes having mixed fluid origin in the valley and formed in the shape of a mud cone (dome).  相似文献   

6.
Composition and exhalation flux of gases from mud volcanoes in Taiwan   总被引:3,自引:0,他引:3  
Many mud volcanoes are distributed along the tectonic sutures in southern Taiwan and can be divided into five zones based on their relative positions in different tectonic domains. Most active mud volcanoes are exhaling methane-dominated gases. Nevertheless, some gases show unusual carbon dioxide-dominated and/or nitrogen-excess compositions. This implies that there are multiple sources for the gas compositions of mud volcanoes in Taiwan.For better understanding the total amount of exhalation gases and its flux, the gas flow and compositions were continuously measured in the interval of two minutes at Chung-lun (CL) bubbling mud pool for a few months. The major compositions of gases exhaling from this site were 75~90% of CO2 and 5~12% of CH4. The amount of gases exhaling from the mud pool can be estimated to be about 1.4 ton/year for CH4 and 28 ton/year for CO2, respectively. The preliminary results of exhaling gas flux from the major vents of representative active mud volcanoes, yielded an estimated total CH4 output of the mud volcanoes in Taiwan of ca. 29 ton/year during quiescent period.  相似文献   

7.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

8.
Mud volcanism in the Gulf of Cadiz occurs over a large area extending from the shelf to more than 3500 m water depth and is triggered by compressional stress along the European-African plate boundary, affecting a deeply faulted sedimentary sequence of locally more than 5 km thickness. The investigation of six active sites shows that mud volcano (MV) fluids, on average, are highly enriched in CH4, Li, B, and Sr and depleted in Mg, K, and Br. The purity of the fluids is largely controlled by the intensity of upward directed flow. Flow rates could be constrained by numerical modelling and vary between <0.05 and 15 cm yr−1. Application of δD-δ18O systematics identifies clay mineral dehydration, most likely within Mesozoic and Tertiary shales and marls, as the major source of fluids. Hence, Cl and Na in the pore fluids are mostly depleted below seawater values, following a general trend of dilution. However, deviations from this trend occur and are likely caused by the dissolution of halite in evaporitic deposits. Other secondary processes overprinting the original fluid composition may occur along the flow path, such as dissolution of anhydrite or gypsum and/or the formation of calcite and dolomite. Different sources of fluids are also indicated by variations in 87Sr/86Sr, which range from 0.7086 to 0.7099 at the different sites. Dehydration may be induced primarily by overburden and tectonic compression; however, very high concentrations of Li and B, specifically at Captain Arutyunov MV (CAMV) indicate additional leaching at temperatures above 150 °C, which could be explained by the injection of hot fluids along deep penetrating, major E-W strike-slip fault systems. This hypothesis is supported by the occurrence of generally thermogenic, but significantly CH4-enriched, light volatile hydrocarbon gases at CAMV which cannot be explained by shallow microbial methanogenesis. Li and Li/B ratios from different types of hot and cold vents are used to infer that high temperature signals seem to be preserved at various cold vent locations and indicate a closer coupling of both systems in continental margin environments than outlined in previous studies.  相似文献   

9.
Ultramafic portions of ophiolitic fragments in the Arabian–Nubian Shield (ANS) show pervasive carbonate alteration forming various degrees of carbonated serpentinites and listvenitic rocks. Notwithstanding the extent of the alteration, little is known about the processes that caused it, the source of the CO2 or the conditions of alteration. This study investigates the mineralogy, stable (O, C) and radiogenic (Sr) isotope composition, and geochemistry of suites of variably carbonate altered ultramafics from the Meatiq area of the Central Eastern Desert (CED) of Egypt. The samples investigated include least-altered lizardite (Lz) serpentinites, antigorite (Atg) serpentinites and listvenitic rocks with associated carbonate and quartz veins. The C, O and Sr isotopes of the vein samples cluster between ?8.1‰ and ?6.8‰ for δ13C, +6.4‰ and +10.5‰ for δ18O, and 87Sr/86Sr of 0.7028–0.70344, and plot within the depleted mantle compositional field. The serpentinites isotopic compositions plot on a mixing trend between the depleted-mantle and sedimentary carbonate fields. The carbonate veins contain abundant carbonic (CO2±CH4±N2) and aqueous-carbonic (H2O-NaCl-CO2±CH4±N2) low salinity fluid, with trapping conditions of 270–300°C and 0.7–1.1 kbar. The serpentinites are enriched in Au, As, S and other fluid-mobile elements relative to primitive and depleted mantle. The extensively carbonated Atg-serpentinites contain significantly lower concentrations of these elements than the Lz-serpentinites suggesting that they were depleted during carbonate alteration. Fluid inclusion and stable isotope compositions of Au deposits in the CED are similar to those from the carbonate veins investigated in the study and we suggest that carbonation of ANS ophiolitic rocks due to influx of mantle-derived CO2-bearing fluids caused break down of Au-bearing minerals such as pentlandite, releasing Au and S to the hydrothermal fluids that later formed the Au-deposits. This is the first time that gold has been observed to be remobilized from rocks during the lizardite–antigorite transition.  相似文献   

10.
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.  相似文献   

11.
Variations in the carbon isotope composition in gases and waters of mud volcanoes in the Taman Peninsula are studied. The δ13C values in CH4 and CO2 vary from ?59.5 to ?44.0‰ (δ13Cav = ?52.4 ± 5.4‰) and from ?17.8 to +22.8‰ (δ13Cav = +6.9 ± 9.3‰), respectively. In waters from most mud volcanoes of the peninsula, this parameter ranges from +3.3 to +33.1‰, although locally lower values are also recorded (up to ?12‰. Fractionation of carbon isotopes in the CO2-HCO3 system corresponds to the isotope equilibrium under Earth’s surface temperatures. The growth of carbon dioxide concentration in the gaseous phase and increase in the HCO3 ion concentration in their water phase is accompanied by the enrichment of the latter with the heavy 13C isotope. The δ13CTDIC value in the water-soluble carbon depends on the occurrence time of water on the Earth’s surface (exchange with atmospheric CO2, methane oxidation, precipitation of carbonates, and other processes), in addition to its primary composition. In this connection, fluctuations in δ13CTDIC values in mud volcanoes with stagnant waters may amount to 10–20‰. In the clayey pulp, concentrations of carbonate matter recalculated to CaCO3 varies from 1–4 to 36–50 wt %. The δ13C value in the latter ranges from ?3.6 to +8.4‰. Carbonate matter of the clayey pulp represents a mixture of sedimentogenic and authigenic carbonates. Therefore, it is usually unbalanced in terms of the carbon isotope composition with the water-soluble CO2 forms.  相似文献   

12.
Methane and CO2 emissions from the two most active mud volcanoes in central Japan, Murono and Kamou (Tokamachi City, Niigata Basin), were measured in from both craters or vents (macro-seepage) and invisible exhalation from the soil (mini- and microseepage). Molecular and isotopic compositions of the released gases were also determined. Gas is thermogenic (δ13CCH4 from −32.9‰ to −36.2‰), likely associated with oil, and enrichments of 13C in CO2 (δ13CCO2 up to +28.3‰) and propane (δ13CC3H8 up to −8.6‰) suggest subsurface petroleum biodegradation. Gas source and post-genetic alteration processes did not change from 2004 to 2010. Methane flux ranged within the orders of magnitude of 101-104 g m−2 d−1 in macro-seeps, and up to 446 g m−2 d−1 from diffuse seepage. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. Total CH4 emission from Murono and Kamou were estimated to be at least 20 and 3.7 ton a−1, respectively, of which more than half was from invisible seepage surrounding the mud volcano vents. At the macro-seeps, CO2 fluxes were directly proportional to CH4 fluxes, and the volumetric ratios between CH4 flux and CO2 flux were similar to the compositional CH4/CO2 volume ratio. Macro-seep flux data, in addition to those of other 13 mud volcanoes, supported the hypothesis that molecular fractionation (increase of the “Bernard ratio” C1/(C2 + C3)) is inversely proportional to gas migration fluxes. The CH4 “emission factor” (total measured output divided by investigated seepage area) was similar to that derived in other mud volcanoes of the same size and activity. The updated global “emission-factor” data-set, now including 27 mud volcanoes from different countries, suggests that previous estimates of global CH4 emission from mud volcanoes may be significantly underestimated.  相似文献   

13.
Mud volcanoes have provided much meaningful information about the deep Earth and the recent crustal and neotectonic movements in an area for over 200 years. However, the triggering mechanisms have puzzled geologists for a long time. This study investigated the factors controlling mud volcano activity and the triggering mechanisms of mud volcano eruptions on the southern margin of the Junggar Basin, NW China. The Baiyanggou, Aiqigou and Dushanzi mud volcanoes are all located along the Dushanzi Anticline, which belongs to the third anticline belt on the southern margin of the basin. The extensive, thick mudstone at depth provides a wealth of material for the formation of mud volcanoes. Simultaneously, the overpressure serves as the driving force for the eruption of the mud volcanoes. The torsional–compressional stress field created by the collision between the Indian and Eurasian plates not only enhanced the abnormal formational pressure in the region but also lead to the development of extensional faults in the core of the Dushanzi Anticline, which served as the conduits for the mud volcanoes. The continuous collision between the Indian and Eurasian plates and the regional torsional–compressional stress field may largely control the cyclical activity of the mud volcanoes and serve as their primary trigger mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In order to establish the origin of fluids expelled from mud volcanoes in Trinidad, we analyzed their major-element, trace-element, and isotopic (H, O, Sr) compositions. The mineralogical, chemical, and Sr isotope compositions of associated expelled muds were also determined.On the basis of their chemical and Sr isotope compositions, the fluids were divided into two groups—those southwest and northeast of a major right lateral wrench fault (the Los Bajos fault) that both controls the chemical quality of the fluids and acts as a drain. Strontium isotopes were derived via mixing between a radiogenic source (0.71135) and a nonradiogenic source (≤0.70671) for both southwest and northeast groups. However, the nonradiogenic source possibly feeding the northeast group showed a lower Sr concentration than that of the southwest group. H and O isotope data show that the fluids became enriched in δ18O through interaction with wall rocks. The fluids were originally oceanic, but their properties were subsequently modified by diagenesis as evidenced by chemical data, and mixing between fluids issued from two deep-seated reservoirs and surface aquifer end-members.The gas phase expelled with the mud and the fluid through the mud volcanoes is composed mainly of methane with minor carbon dioxide. The amount of expelled gas seems the same in samples from both sides of the Los Bajos fault. The almost unique methane content of the gas phase and the large positive δ18O shifts of the reservoir end-member, as well as B, Li, and Ba contents, reveal that the fluids from the deep-seated reservoirs inherited their chemical compositions at high-temperature fluid–rock interactions. Estimates of equilibrium temperatures of the two deep-seated reservoirs suggest that, to acquire the estimated higher temperature (150°C), the mud volcanoes must have been fed partly by a reservoir located at a depth of more than 3 km. This depth corresponds to previous geologic information, which located the deep-seated reservoir in Miocene sediments at such a comparable depth. The mixing of the original fluids with a less deep-seated reservoir and meteoric waters on the ascending path suggests the presence of a recharge mechanism and contributes to the dynamics of the expulsion itself.  相似文献   

15.
Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal   总被引:1,自引:0,他引:1  
This paper presents data on authigenic siderite first found in surface sediments from mud volcanoes in the Central (K-2) and Southern (Malen’kii) basins of Lake Baikal. Ca is the predominant cation, which substitutes Fe in the crystalline lattice of siderite. The enrichment of the carbonates in the 13C isotope (from +3.3 to +6.8‰ for the Malen’kii volcano and from +17.7 to +21.9‰ for K-2) results from the crystallization of the carbonates during methane generation via the bacterial destruction of organic matter (acetate). The overall depletion of the carbonates in 18O is mainly inherited from the isotopic composition of Baikal water.  相似文献   

16.
Gold mineralization of the Seolhwa mine occurs in a single stage of massive quartz veins which filled the north‐east‐trending fault shear zones in the Jurassic granitoid of 161 Ma within the Gyeonggi Massif. The vein quartz contains three main types of fluid inclusions at 25°C: (i) aqueous type I inclusions (0–15 wt.% NaCl) containing small amounts of CO2; (ii) gas‐rich (more than 70 vol. %), vapor‐homogenizing, aqueous type II inclusions; and (iii) low‐salinity (less than 5 wt.% NaCl), liquid CO2‐bearing, type III inclusions. The H2O‐CO2‐CH4‐N2‐NaCl inclusions represent immiscible fluids trapped earlier along the solvus curve in the temperature range 250–430°C at pressures of ~1 kb. Detailed fluid inclusion chronologies suggest a progressive decrease in pressure during the mineralization. Aqueous inclusion fluids represent either later fluids evolved through extensive fluid unmixing from a homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters. Initial fluids were homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluids as follows: 250° to 430°C, 16–62 mol% CO2, 5–14 mol% CH4, 0.06–0.31 mol% N2 and salinities of 0.4–4.9 wt.% NaCl. The T‐X data for the Seolhwa mine suggest that the hydrothermal system has been probably located nearer to the granitic melt, which facilitated the CH4 formation and resulted in a reduced fluid state indicated by the predominance of pyrrhotite. Measured and calculated isotopic compositions of the hydrothermal fluids [δ18O = 5.3–6.5‰; δD =?69 to ?84‰] provide evidence of the CH4‐H2O equilibria and further indicate that the auriferous fluids were magmatically derived. Both the dominance of δ34S values of sulfides close to the meteoric reference (?0.6–1.4‰; δ34SΣS values of 0.3–1.1‰) and the available δ13C data (?4‰) are consistent with their deep igneous source. The Seolhwa mine was probably formed by extensive fracturing and veining due to the thermal expansion of water derived from the Jurassic granitoid melt.  相似文献   

17.
The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids (δ7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/86Sr ratios (∼0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/86Sr ratios (∼0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments.  相似文献   

18.
The Yangla copper deposit, with Cu reserves of 1.2 Mt, is located between a series of thrust faults in the Jinshajiang–Lancangjiang–Nujiang region, Yunnan, China, and has been mined since 2007. Fluid inclusion trapping conditions ranged from 1.32 to 2.10 kbar at 373–409 °C. Laser Raman spectroscopy confirms that the vapour phase in these inclusions consists of CO2, CH4, N2 and H2O. The gas phases in the inclusions are H2O and CO2, with minor amounts of N2, O2, CO, CH4, C2H2, C2H4, and C2H6. Within the liquid phase, the main cations are Ca2+ and Na+ while the main anions are SO4 2? and Cl?. The oxygen and hydrogen isotope compositions of the ore-forming fluids (?3.05‰?≤?δ18OH2O?≤?2.5‰; ?100‰?≤?δD?≤??120‰) indicate that they were derived from magma and evolved by mixing with local meteoric water. The δ34S values of sulfides range from ?4.20‰ to 1.85‰(average on ?0.85‰), supporting a magmatic origin. Five molybdenite samples taken from the copper deposit yield a well-constrained 187Re–187Os isochron age of 232.8?±?2.4 Ma. Given that the Yangla granodiorite formed between 235.6?±?1.2 Ma and 234.1?±?1.2 Ma, the Cu metallogenesis is slightly younger than the crystallization age of the parent magma. A tectonic model that combines hydrothermal fluid flow and isotope compositions is proposed to explain the formation of the Yangla copper deposit. At first, westward subduction of the Jinshajiang Oceanic Plate in the Early Permian resulted in the development of a series of thrust faults. This was accompanied by fractional melting beneath the overriding plate, triggering magma ascent and extensive volcanism. The thrust faults, which were then placed under tension during a change in tectonic mode from compression to extension in the Late Triassic, formed favorable pathways for the magmatic ore-forming fluids. These fluids precipitated copper-sulfides to form the Yangla deposit.  相似文献   

19.
A comprehensive study was performed to characterize, for the first time, the mud, water, and gases released from onshore mud volcanoes located in the southern margin of the Junggar Basin, northwestern China. Chemical compositions of mud, along with the geology of the basin, suggest that a source of the mud is Mesozoic or Cenozoic shale. Oxygen and H isotope compositions of the released water suggest a local meteoric origin. Combined with the positive Eu anomalies of the water, a large 18O shift of the water suggests extensive interaction with rocks. Gases discharged from the mud volcanoes are predominantly thermogenic hydrocarbons, and the high δ13C values (>+20‰ VPDB) for CO2 gases and dissolved carbonate in muddy water suggest secondary methanogenesis with CO2 reduction after oil biodegradation.The enrichments of Eu and 18O in water and the low thermal gradient of the area suggest that the water-rock interactions possibly occur deeper than 3670 ± 200 m. On the other hand, considering the relationship to the petroleum reservoir around the mud volcanoes, the depth of the gases can be derived from about 3600 m, a depth that is greater than that generally estimated for reservoirs whose gas is characterized by 13C-enriched CO2. Oil biodegradation with CO2 reduction likely occurs at a shallower depth along the seepage system of the mud volcano. The results contribute to the worldwide data set of gas genesis in mud volcanoes. Moreover, they further support the concept that most terrestrial mud volcanoes release thermogenic gas produced in very deep sediments and may be early indicators of oil biodegradation, an important problem in the petroleum industry.  相似文献   

20.
The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids (δ7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/86Sr ratios (0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/86Sr ratios (0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号