首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
海底浊流在坡道转换处的流动及沉积的数值模拟   总被引:2,自引:1,他引:1  
郭彦英  黄河清 《沉积学报》2013,31(6):994-1000
根据一经多项试验数据验证的基于三维不可压缩流体Navier-Stokes方程和湍流 k-ε 模型的重力流数值计算的数学模型,模拟并分析了单粒径沉积物的海底浊流沿不同斜坡流至近似平坦坡的流动及沉积特征。模拟结果显示了有关海底浊流的一些重要特征:连续入流的浊流在斜坡上的流速随着斜坡的增大而增大,同时浊流厚度由于对环境水体的夹带而渐渐增厚,坡度越大,增厚越快;流至近水平坡时,流速均有明显的降低,但大斜坡入流依然保持相对较高的流速。在沉积方面,初步的模拟结果显示对给定的沉积物来说存在一相对应的临界坡度:当坡度小时,坡上沉积多,坡下少,这样整体的坡度有逐渐增大之势;当坡度大时,坡上沉积少或为侵蚀,而坡下沉积相对较多,坡度有整体减小之势。了解了不同坡度转换的浊流沉积的上述特点,对于我们根据实测的浊流沉积的剖面特征推测其形成的环境,进而推测相关油气储层的分布状况会有一定的参考作用。  相似文献   

2.
应用雷诺平均纳维尔—斯托克斯模型模拟探讨了等量突然释放型浊流在流经不同坡折渠道的流动及沉积特性,取得如下主要结论:随着底坡增加,浊流流速增长率因卷吸作用的增强而减缓;浊流深度平均速度和浓度形态相似,头部大且向尾部呈线性下降;在小坡折处产生沉积,沉积最厚处离坡折处不远且上下游平均粒径相差不大,往下游厚度呈线性减小;而在大坡折处产生侵蚀,随着坡度的增大侵蚀增加,沉积最厚处离坡折处较远且上下游平均粒径相差大,形态上呈上拱状。这些认识对于根据浊流沉积特征推测其形成环境具有一定的参考作用。  相似文献   

3.
印度河扇更新世发育的沉积物波结构复杂、形态多样,其形成过程的认识程度低。本次研究通过高分辨率地震数据和地震解释技术,研究了印度河扇沉积物波的波长、形态、波峰变化等形态特征;阐述了沉积物波与沉积物变形特征的差异、识别了两者的区分标志;总结了水道堤岸斜坡和区域斜坡上沉积物波的分布规律;在此基础上,讨论了沉积物波的形成机理和控制因素,分析了沉积物波的形成过程,并建立了印度河扇沉积物波的形成模式。研究表明: (1)研究区沉积物波波长平均为486.84 m,最大1473 m;波高在10~60 m之间,平均30 m。(2)沉积物波的形态有对称型和非对称型,其迁移方式有上坡迁移型、加积型和下坡迁移型;沉积物波主要发育在水道堤岸的斜坡上,在区域斜坡上也发育少量的沉积物波,这2种沉积物波波脊的走向差异很大,水道堤岸斜坡上的沉积物波主要分布于水道凹岸堤岸的外侧,距离水道越远其规模(波长、波高)越小,波脊走向近于NE-SW方向,与水道的走向平行或斜交;区域斜坡上的沉积物波波脊的走向多为NW-SE向,平行于区域斜坡的走向,离源区越远规模越大。(3)水道堤岸斜坡上的沉积物波是由水道型浊流在离心力的作用下,溢出水道的凹岸,在堤岸外侧的斜坡上沉积形成的,堤岸斜坡的角度对沉积物波的发育规模影响不大,浊流的强度和输沙量对其规模影响大;区域斜坡上发育的沉积物波是由顺坡而下的非水道化的浊流沉积形成;滑塌变形造成的起伏地貌以及早期沉积物波的存在,也都影响了后期沉积物波的发育。  相似文献   

4.
印度河扇更新世发育的沉积物波结构复杂、形态多样,其形成过程的认识程度低。本次研究通过高分辨率地震数据和地震解释技术,研究了印度河扇沉积物波的波长、形态、波峰变化等形态特征;阐述了沉积物波与沉积物变形特征的差异、识别了两者的区分标志;总结了水道堤岸斜坡和区域斜坡上沉积物波的分布规律;在此基础上,讨论了沉积物波的形成机理和控制因素,分析了沉积物波的形成过程,并建立了印度河扇沉积物波的形成模式。研究表明: (1)研究区沉积物波波长平均为486.84 m,最大1473 m;波高在10~60 m之间,平均30 m。(2)沉积物波的形态有对称型和非对称型,其迁移方式有上坡迁移型、加积型和下坡迁移型;沉积物波主要发育在水道堤岸的斜坡上,在区域斜坡上也发育少量的沉积物波,这2种沉积物波波脊的走向差异很大,水道堤岸斜坡上的沉积物波主要分布于水道凹岸堤岸的外侧,距离水道越远其规模(波长、波高)越小,波脊走向近于NE-SW方向,与水道的走向平行或斜交;区域斜坡上的沉积物波波脊的走向多为NW-SE向,平行于区域斜坡的走向,离源区越远规模越大。(3)水道堤岸斜坡上的沉积物波是由水道型浊流在离心力的作用下,溢出水道的凹岸,在堤岸外侧的斜坡上沉积形成的,堤岸斜坡的角度对沉积物波的发育规模影响不大,浊流的强度和输沙量对其规模影响大;区域斜坡上发育的沉积物波是由顺坡而下的非水道化的浊流沉积形成;滑塌变形造成的起伏地貌以及早期沉积物波的存在,也都影响了后期沉积物波的发育。  相似文献   

5.
海底浊流的运动及其沉积,是目前浊流研究的热点之一。根据经过验证的基于雷诺平均纳维尔-斯托克斯方程及浮力项修正 k-ε 湍流模型的三维数值计算模型模拟了海底弯曲圆弧形峡谷内的浊流的流动和沉积,结果表明:(1)浊流在运动过程中由于对环境水体的夹带厚度不断增加,浊流厚度一般会超过峡谷深度,溢出峡谷,使浊流产生密度和动量损失;(2)浊流到达弯道部分后,由于离心力的作用会产生剥离,溢出更多的浊流至漫滩区域。浊流剥离的最大处为弯道顶点外岸下游处,其过量密度可达入流的37.5%;(3)对于模拟的横剖面为圆弧型的峡谷内的浊流来说,弯道顶点处的二次流在底部形成一个顺时针的循环圈,靠近峡谷底部从外岸指向内岸;(4)在峡谷中间及弯道顶点内岸下游处形成沉积,在弯道顶点外岸下游处形成侵蚀。这些特征对根据浊流的沉积观察推测其形成环境及油气储层的调查等方面有一定的参考意义。  相似文献   

6.
钟广法 《沉积学报》2023,41(1):52-72
超临界流在现代沉积环境中几乎无处不在,但相关沉积物却极少从地层记录中被辨识出来,这是当前沉积学研究所面临的一个困境,文中称之为“超临界流沉积问题”。按弗劳德数增大顺序,超临界流可依次形成稳定逆行沙丘、不稳定逆行沙丘、急滩—深潭及周期阶坎等底形,相应的地貌动力学也从同相位体制(逆行沙丘)逐渐过渡为水跃体制(急滩—深潭和周期阶坎)。相对于明渠流,浊流因折算密度低而更易成为超临界流。超临界浊流底形的长波长、低幅度、逆流(坡)迁移特性,决定了其沉积物发育特征的后积层理、近平行—低角度交错层理、与水跃有关的快速堆积及冲刷—充填和建造—充填构造。超临界浊流沉积可以通过沉积体的几何形态(包括波长/波高比、平面和剖面形态等)和内部沉积特征(包括波脊逆坡迁移、沉积构造、粒度变化趋势及沉积相组合等)的综合分析加以鉴别。露头、岩心分析与高分辨率地震、浅剖、多波束测深等地球物理资料的综合,是准确鉴别超临界浊流沉积单元的重要途径。本文对超临界浊流地貌动力学研究进展进行综述,并对地层记录中超临界浊流沉积的鉴别标志及相关问题进行探讨。  相似文献   

7.
台湾东部海域沉积物波特征及其成因探讨   总被引:1,自引:0,他引:1  
利用地震剖面对沉积物波的分布、形态和内部结构进行了分析,结合区域地质背景对沉积物来源和成因进行了探讨。识别出的沉积物波域主要位于台东峡谷与陆坡其他峡谷的交汇区,单个波形的波长为0.8~7.2 km,波高为18~75 m左右,呈NE—SW向展布。台东峡谷弯曲段内侧向上坡迁移的沉积物波,其底界发育块体流沉积,内部可细分为下部过渡单元和上部波形单元。弯曲段外侧的沉积物波呈垂向加积的特征,底部无块体流沉积。基于沉积物波的几何形态,估算整个波域的流体厚度在196~356 m之间,流体速度在15~21 cm/s之间。沉积物波的形态特征、内部结构、分布规律以及数值计算表明这些沉积物波为浊流成因。台湾东部海域沉积物波域的发育与台湾西南部的沉积物波域一样,是台湾造山运动的沉积响应。距今3.5 Ma以来花东海脊的形成以及广燠火山岛—绿岛—兰屿火山岛间闸口的抬升和封闭使得沉积物经由卑南溪及海下水道向南输送到绿岛西侧的台东海槽残留弧前盆地时受阻,转而沿台东峡谷及陆坡冲沟体系向东输送入花东海盆。浊流沉积物沿着峡谷/沟谷体系向下坡方向输送的过程中,在峡谷/冲沟的嘴部等地形限制性降低的位置卸载,或在台东峡谷的高弯曲段漫溢出来,从而形成沉积物波域。  相似文献   

8.
深水浊积岩通常发育在风暴浪基面以下、几十米至数千米的水体深度范围内。当沉积中心位于或接近陆架边缘时,浊流沉积系统往往最为活跃,而且通常与相对海平面下降时期的低位体系域有关。深水沉积事件可细分为低位域早期和低位域晚期。低位域早期以规模不断增大和更频繁的流体(浊流)事件为特征;而低位域晚期则以规模逐渐变小且频率降低的流体(浊流)事件为特征。因此,在低位域早期,流体流量不断增大,水道以侵蚀并逐渐变深为主,仅能残存较少的沉积物。随后,在低位域晚期,流体流量逐渐变小,因而水道内的沉积填充物可以得以保存。浊流体系通常发育3个特征迥异的区域:区域1对应浊流体系的近端(上游),以支流峡谷为特征;区域2为浊流体系的中间部分,以单一补给水道复合体系为特征,因浊流水体的高度比补给水道高,因而常常发育天然堤沉积;区域3为浊流体系的远端,以频繁的决口、砂质溢岸以及水道充填为特征,从地貌学上可以将其描述为末端扇,从沉积过程来看,可将其称为前缘分散体系。从层序地层学的角度来看,低位域沉积常常夹持于富泥的远端高位域和海侵体系域沉积之间。低位域早期—晚期沉积序列往往是以富砂的区域3末端扇沉积被区域2水道—天然堤沉积所覆盖为特征。  相似文献   

9.
海底水道-朵体体系内粗粒沉积物波的研究可以深化浊流搬运过程的认识。利用先进的地球物理成像技术,通过地震地貌分析,对东非鲁武马盆地海底水道-朵体体系内这种后期易被改造的特殊沉积体进行识别和解释,结合粗粒沉积物波的形态、尺度、移动方式、厚度变化、平面分布等特征,探讨其成因和影响因素。鲁武马盆地近海底水道-朵体体系内的粗粒浊流沉积物波具有多变的地貌和逆行砂丘的底形。水道内粗粒沉积物波规模较小,分布范围局限;水道-朵体过渡带的粗粒沉积物波规模大,波高约45~110 m,波长可达一千余米,总体规模大于其他地区已识别出的粗粒深水沉积物波。构造活动、超临界流产生的水跃作用、地形地貌的变化以及底流作用是鲁武马盆地粗粒浊流沉积物波形成的主控因素。  相似文献   

10.
杨茜  冯秀丽  李梦帅 《地质学报》2022,96(4):1412-1420
南海具有优越的地理位置和特殊的构造环境,其丰富充足的沉积物源、复杂多样的地形地貌以及广泛分布的陆坡都为浊流的发育提供了良好条件和理想场所。南海北部更是有华南大陆以及台湾岛的大量陆源沉积物搬运至陆坡,加上陆坡区合适的坡度,浊流沉积十分发育。南海北部陆坡发育有大量不同规模的海底滑坡,浊流沉积分布广泛。在南海北部莺琼陆坡的钻孔记录和地震数据中,发现多次的地层倒转,多是浊流沉积造成。本文在地质、地形和地层数据基础上,利用Sedsim软件对莺琼陆坡浊流沉积进行数值模拟分析。研究表明,浊流的流动和沉积特征随着浊流发育而不同。浊流形成初期,整体流速较慢,部分较粗的沉积物在陆坡中上部产生少量沉积;浊流形成中期,流体在陆坡上不断加速,在陆坡上的沉积不明显;浊流沉积后期,浊流在陆坡坡折处受到减速的作用,沉积物的主体发生沉积,剩余沉积物搬运到平坦地形沉积;沉积地形为逆流迁移状;浊流沉积基本分布在10 km范围内,沉积厚度会随流动距离的增加而减小,且会出现层状沉积。  相似文献   

11.
Continental slope sediment failures around the epicentre of the 1929 'Grand Banks' earthquake have been imaged with the SAR (Système Acoustique Remorqué) high-resolution, deep-towed sidescan sonar and sub-bottom profiler. The data are augmented by seismic reflection profiles, cores and observations from submersibles. Failure occurs only in water depths greater than about 650 m. Rotational, retrogressive slumps, on a variety of scales, appear to have been initiated on local steep areas of seabed above shallow (5–25 m) regional shear planes covering a large area of the failure zone. The slumps pass downslope into debris flows, which include blocky lemniscate bodies and intervening channels. Clear evidence of current erosion is found only in steep-sided valleys: we infer that debris flows passed through hydraulic jumps on these steep slopes and were transformed into turbidity currents which then evolved ignitively. Delayed retrogressive failure and transformation of debris flows into turbidity currents through hydraulic jumps provide a mechanism to produce a turbidity current with sustained flow over many hours.  相似文献   

12.
Turbidity currents are one of the main sediment transport processes on Earth, yet are notoriously difficult to monitor directly. This article presents the first direct and high bandwidth observation of a turbidity current using a cabled sea floor observatory. On 5 June 2012, a platform on Ocean Networks Canada, located in 107 m of water on the Fraser River delta slope, was displaced downslope and severed from its data cable. The platform weighed ca 1000 kg in water. The event took place during high river discharge, high tides and rapid sediment accumulation on adjacent upslope areas of the sea floor. Data recorded as it tumbled downslope allow a reconstruction of the flow, which is inferred to have been an unconfined turbidity current. Lines of evidence indicate that the flow came in as a bed hugging wedge, and built up to between 1 m and 4 m in height as the head passed through. Comparison with laboratory data suggest that the flow was initially supercritical. While the adjacent slope offset to the north clearly exhibits change over an annual resurvey period, the bathymetry directly at the event location show no resolvable change over a period from seven months before the event to one month after. Sediment cores collected after the event were pervasively biototurbated and they contain no obvious deposit connected with this event. The remarkable aspects of this research follow. The flow was powerful enough to carry a 1 tonne platform and sever a heavily armoured cable. The current occurred on the unchannelized open slope. This powerful event failed to cause discernible seabed elevation change. The flow was triggered by tidal conditions. The event was detected by a purpose‐designed cabled observatory, thus providing high bandwidth data and also alerting researchers in real time to mount follow‐on investigations.  相似文献   

13.
Controlled laboratory experiments reveal that the lower part of turbidity currents has the ability to enter fluid mud substrates, if the bed shear stress is higher than the yield stress of the fluid mud and the density of the turbidity current is higher than the density of the substrate. Upon entering the substrate, the turbidity current either induces mixing between flow‐derived sediment and substrate sediment, or it forms a stable horizontal flow front inside the fluid mud. Such ‘intrabed’ flow is surrounded by plastically deformed mud; otherwise it resembles the front of a ‘bottom‐hugging’ turbidity current. The ‘suprabed’ portion of the turbidity current, i.e. the upper part of the flow that does not enter the substrate, is typically separated from the intrabed flow by a long horizontal layer of mud which originates from the mud that is swept over the top of the intrabed flow and then incorporated into the flow. The intrabed flow and the mixing mechanism are specific types of interaction between turbidity currents and muddy substrates that are part of a larger group of interactions, which also include bypass, deposition, erosion and soft sediment deformation. A classification scheme for these types of interactions is proposed, based on an excess bed shear stress parameter, which includes the difference in the bed shear stress imposed by the flow and the yield stress of the substrate and an excess density parameter, which relies on the density difference between the flow and the substrate. Based on this classification scheme, as well as on the sedimentological properties of the laboratory deposits, an existing facies model for intrabed turbidites is extended to the other types of interaction involving soft muddy substrates. The physical threshold of flow‐substrate mixing versus stable intrabed flow is defined using the gradient Richardson number, and this method is validated successfully with the laboratory data. The gradient Richardson number is also used to verify that stable intrabed flow is possible in natural turbidity currents, and to determine under which conditions intrabed flow is likely to be unstable. It appears that intrabed flow is likely only in natural turbidity currents with flow velocities well below ca 3·5 m s?1, although a wider range of flows is capable of entering fluid muds. Below this threshold velocity, intrabed flow is stable only at high‐density gradients and low‐velocity gradients across the upper boundary of the turbidity current. Finally, the gradient Richardson number is used as a scaling parameter to set the flow velocity limits of a natural turbidity current that formed an inferred intrabed turbidite in the deep‐marine Aberystwyth Grits Group, West Wales, United Kingdom.  相似文献   

14.
利用岩心、粒度、测井信息和重力流沉积理论,系统研究了南堡凹陷东部洼陷带东营组重力流沉积特征和沉积模式。该区重力流沉积砂岩常夹于灰色、灰黑色泥岩中,砂岩相发育,其中正递变层理(含砾)中-细砂岩相(S-3)、粉砂岩相(S-4)和块状层理中-细砂岩相(S-2)发育层数最多,块状层理含砾砂岩相(S-1)次之;S-2沉积厚度最大,S-1和S-3次之。按支撑和沉积机制,将本区重力流分为浊流、砂质碎屑流、颗粒流和液化流,其中砂质碎屑流以基质支撑、冻结块状沉积为特征。不同重力流发育程度有明显差异。从砂岩层数看,浊流最多,砂质碎屑流次之,颗粒流和液化流最少;从单期沉积厚度看,砂质碎屑流最大,平均为1.17m,浊流沉积最小,仅平均为0.25m。为了回避取心的局限性、弱化重力流成因,突出具有油气储集意义的砂层概念,开展了测井岩性解释,结果表明该区重力流沉积为细砂岩或粉砂岩,单层平均厚度2.94m,最大厚度可达9.5m,其中单井中厚度在3m以上的砂体可达22层、累积达107.5m。本区重力流沉积为滑塌成因,除了(扇)三角洲前缘斜坡的自然滑塌外,断层(地震)活动或间歇式火山喷发是其关键的触发机制;断层活动除了提供滑塌的动力外,还影响着其堆积场所和沉积的结构。  相似文献   

15.
流体性质转换机制在重力流沉积体系分析中应用初探   总被引:5,自引:0,他引:5  
自1950年Kuenen发表"浊流形成粒序层理"一文至今,深水重力流研究取得了长足发展。然而,目前很多学者不仅对浊流理论分歧很大,而且对浊流概念、术语的使用也有不同的观点,这严重制约了重力流的分类及重力流沉积体系的识别。本文在重力流沉积过程和流态研究的基础上,提出了基于"流体性质转换"理论的重力流沉积体系分析方法。研究认为,重力流在形成、发展和消亡过程中不仅存在多个流体阶段,而且存在着多种流态之间的转换。这种流体发育的最终阶段特征决定了重力流沉积体系的形态与类别,而流态共存与转换的特性造成了深水紊流成因的浊积岩与其他流体成因的岩相共存的沉积特征。根据这一理论对牵引流—碎屑流成因的扇三角洲体系、浊流成因的近岸水下扇体系和碎屑流成因的斜坡裙体系进行成因分析与特征对比,阐述了"流体性质转换"理论在沉积体系识别中的作用。  相似文献   

16.
Two-dimensional experiments investigating sediment transport and turbulence structure in sustained turbidity currents that cross breaks in slope are presented as analogue illustrations for natural flows. The results suggest that in natural flows, turbulence generation at slope breaks may account for increased sand transport into basins and that the formation of a hydraulic jump may not be necessary to explain features such as the occurrence of submarine plunge pools and the deposition of coarser-grained beds in the bottomsets of Gilbert-type fan deltas. Experimental flows were generated on 0°, 3°, 6° and 9° slopes of equal length which terminated abruptly on a horizontal bed. Two-component velocities were measured on the slope, at the slope break and downstream of the slope break. Flows were depositional and non-uniform, visibly slowing and thickening with distance downstream. One-dimensional continuous wavelet transforms of velocity time series were used to produce time-period variance maps. Peaks in variance were tested against a background red-noise spectrum at the 95% level; a significant period banding occurs in the cross-wavelet transform at the slope break, attributed to increased formation of coherent flow structures (Kelvin–Helmholtz billows). Variance becomes distributed at progressively longer periods and the shape of the bed-normal-velocity spectral energy distribution changes with distance downstream. This is attributed to a shift towards larger turbulent structures caused by wake stretching. Mean velocity, Reynolds shear stress and turbulent kinetic energy profiles illustrate the mean distribution of turbulence through the currents. A turbulent kinetic energy transfer balance shows that flow non-uniformity arises through the transfer of mean streamwise slowing to mean bed-normal motion through the action of Reynolds normal stresses. Net turbulence production through the action of normal stresses is achieved on steeper slopes as turbulence dissipation due to mean bed-normal motion is limited. At the slope break, an imbalance between the production and dissipation of turbulence occurs because of the contrasting nature of the wall and free-shear boundaries at the bottom and top of the flows, respectively. A rapid reduction in mean streamwise velocity predominately affects the base of the flows and steeper proximal slope flows have to slow more at the break in slope. The increased turbulent kinetic energy, limited bed-normal motion and strong mixing imposed by steep proximal slopes means rapid slowing enhances turbulence production at the break in slope by focusing energy into coherent flow structures at a characteristic period. Thus, mean streamwise slowing is transferred into turbulence production at the slope break that causes increased transport of sediment and a decrease in deposit mass downstream of the slope break. The internal effects of flow non-uniformity therefore can be separated from the external influence of the slope break.  相似文献   

17.
Trapping of sustained turbidity currents by intraslope minibasins   总被引:1,自引:0,他引:1  
Depositional turbidity currents have filled many intraslope minibasins with sediment creating targets for petroleum exploration. The dynamics of sustained turbidity currents and their depositional characteristics are investigated in a scaled physical model of a minibasin. Each turbidity current deposited a downstream thinning wedge of sediment near the inlet. Farther downstream the turbidity current was ponded by a barrier. The ponded part of the turbidity current was separated from the sediment‐free water above by a relatively sharp, horizontal settling interface indicating highly Froude‐subcritical flow. The very slow moving flow within the ponded zone created conditions for the passive rainout of suspended sediment onto the bed. In the lower part of the ponded zone, the concentration and mean grain‐size of the sediment in suspension tended to be relatively uniform in both the vertical and streamwise directions. As a result, the deposit emplaced in the ponded zone showed only a weak tendency toward downstream fining and was passively draped over the bed in such a way that irregularities in the inerodible bed were accurately reflected. The discharge of suspended sediment overflowing the downstream end of the minibasin was significantly less than the inflow discharge, resulting in basin sediment trapping efficiencies >95%. A simple model is developed to predict the trapping of sediment within the basin based on the relative magnitudes of the input discharge of turbid water and the detrainment discharge of water across the settling interface. This model shows a limiting case in which an intraslope basin captures 100% of the sediment from a ponded turbidity current, even through a succession of sustained flow events, until sediment deposition raises the settling interface above the downstream lip of the minibasin. This same process defines one of the mechanisms for minibasin filling in nature, and, when this mechanism is operative, the trap efficiency of sediment can be expected to be high until the minibasin is substantially filled with sediment.  相似文献   

18.
L. J. STRACHAN 《Sedimentology》2008,55(5):1311-1332
The process by which slumps transform into other flow types is an understudied phenomenon; generally, sedimentologists have assumed that this is how many debris flows and turbidity currents form, yet there is a paucity of information relating to the specific processes involved. This paper aims to redress this imbalance and investigates the processes of slump flow transformation using a well‐exposed example, where the precursor slump and flows to which it was transforming have been preserved in the outcrop. A detailed field investigation of the Lower Miocene, Little Manly Slump, located within the Waitemata Basin, New Zealand, reveals a complex bi‐partite deposit, comprised of a lower slump‐debrite unit and an upper turbidite unit, separated from one another by an impersistent contact. Reconstruction of slump evolution, from preserved strain indicators, shows that slump motion was unsteady and non‐uniform, and that the slump arrested rapidly. Flow transformation is directly linked to slump evolution and progressed through the multiple processes of body transformation, fluidization transformation and surface transformation. The resultant flow comprised a very dense lower unit with slump and debris flow phases overlain by a turbidity current. This study shows that flow transformation did not result in en masse transformation to a debris flow by a single process, but rather it was characterized by partial transformation of the slump to generate a three‐phase flow. Density is thought to be the key parameter in controlling flow transformation efficiency, which appears to have varied rapidly as a function of slump unsteadiness and non‐uniformity.  相似文献   

19.
深水浊积砂体的成因机理及特征   总被引:1,自引:0,他引:1  
深水浊积砂体及其体系域以其重要的理论意义和作为油气储集层的经济价值始终是沉积地质学研究的主要领域之一。深水浊积砂体是在深水环境下在重力作用下所形成的一个连续过程的组成部分。这个连续部分可以分为五类:泥石流、颗粒流、流体化沉积物流、浊流和滑塌。由浊流过程形成的深水环境下的浊积砂体,具有海相浊积体和湖相浊积体的特征,与海(湖)平面的下隆低水位有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号