首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A suite of dolerite dykes from the Ahlmannryggen region of westernDronning Maud Land (Antarctica) forms part of the much moreextensive Karoo igneous province of southern Africa. The dykecompositions include both low- and high-Ti magma types, includingpicrites and ferropicrites. New 40Ar/39Ar age determinationsfor the Ahlmannryggen intrusions indicate two ages of emplacementat 178 and 190 Ma. Four geochemical groups of dykes have beenidentified in the Ahlmannryggen region based on analyses of60 dykes. The groups are defined on the basis of whole-rockTiO2 and Zr contents, and reinforced by rare earth element (REE),87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intrudedat 190 Ma and have low TiO2 and Zr contents and a significantArchaean crustal component, but also evidence of hydrothermalalteration. Group 2 dykes were intruded at 178 Ma; they havelow to moderate TiO2 and Zr contents and are interpreted tobe the result of mixing of melts derived from an isotopicallydepleted source with small melt fractions of an enriched lithosphericmantle source. Group 3 dyke were intruded at 190 Ma and formthe most distinct magma group; these are largely picritic withsuperficially mid-ocean ridge basalt (MORB)-like chemistry (flatREE patterns, 87Sr/86Sri 0·7035, Ndi 9). However, theyhave very high TiO2 (4 wt %) and Zr (500 ppm) contents, whichis not consistent with melting of MORB-source mantle. The Group3 magmas are inferred to be derived by partial melting of astrongly depleted mantle source in the garnet stability field.This group includes several high Mg–Fe dykes (ferropicrites),which are interpreted as high-temperature melts. Some Group3 dykes also show evidence of contamination by continental crust.Group 4 dykes are low-K picrites intruded at 178 Ma; they havevery high TiO2–Zr contents and are the most enriched magmagroup of the Karoo–Antarctic province, with ocean-islandbasalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 aresub-parallel (ENE–WSW) and both groups were emplaced at190 Ma in response to the same regional stress field, whichhad changed by 178 Ma, when Group 2 and Group 4 dykes were intrudedalong a dominantly NNE–SSW strike. KEY WORDS: flood basalt; depleted mantle; enriched mantle; Ahlmannryggen; Karoo dyke  相似文献   

2.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

3.
The formation, age and trace element composition of zircon andmonazite were investigated across the prograde, low-pressuremetamorphic sequence at Mount Stafford (central Australia).Three pairs of inter-layered metapelites and metapsammites weresampled in migmatites from amphibolite-facies (T 600°C)to granulite-facies conditions (T 800°C). Sensitive high-resolutionion microprobe U–Pb dating on metamorphic zircon rimsand on monazite indicates that granulite-facies metamorphismoccurred between 1795 and 1805 Ma. The intrusion of an associatedgranite was coeval with metamorphism at 1802 ± 3 Ma andis unlikely to be the heat source for the prograde metamorphism.Metamorphic growth of zircon started at T 750°C, well abovethe pelite solidus. Zircon is more abundant in the metapelites,which experienced higher degrees of partial melting comparedwith the associated metapsammites. In contrast, monazite growthinitiated under sub-solidus prograde conditions. At granulite-faciesconditions two distinct metamorphic domains were observed inmonazite. Textural observations, petrology and the trace elementcomposition of monazite and garnet provide evidence that thefirst metamorphic monazite domain grew prior to garnet duringprograde conditions and the second in equilibrium with garnetand zircon close to the metamorphic peak. Ages from sub-solidus,prograde and peak metamorphic monazite and zircon are not distinguishablewithin error, indicating that heating took place in less than20 Myr. KEY WORDS: accessory phases; anatexis; trace element partitioning; U–Pb dating  相似文献   

4.
Uranium–Pb sphene and apatite, and 40Ar/39Ar hornblende,muscovite and K-feldspar ages from the core of the ProterozoicNagssugtoqidian orogen, West Greenland, are used to constrainthe timing of granulite-facies metamorphism and the subsequentcooling history. Metamorphic monazite growth occurred at 1858± 2, 1830 ± 1 and 1807 ± 2 Ma and definesthe peak of metamorphism. The uncertainty in the cooling rateshas to include the error in the decay constants of the systemsused. This source of uncertainty is, however, negligible ifa single decay scheme is used or when the age difference betweenthe chronometers is large (>100 m.y.). Over the last twodecades increasingly higher closure temperatures have been proposed.This trend reflects the difficulty of determining ‘absolute’closure temperatures and in using a limited number of closuretemperature estimates to infer closure temperatures of othergeochronometers. Cooling rates at Ussuit were 2·9 ±1·7°C/m.y. from 1762 Ma (670°C) to 1705 Ma (500°C),1·5 ± 1·1°C/m.y. from 1705 Ma to 1640Ma (410°C), and 0·9 ± 0·4°C/m.y.between 1640 and 1416 Ma (200°C). Between 1720 and 1645Ma cooling rates in Lersletten, 60 km north of Ussuit, are indistinguishablefrom those at Ussuit. After 1645 Ma, however, the area cooledto 200°C at a slightly faster rate of 2·6 ±1·2°C/m.y. KEY WORDS: 40Ar/39Ar and U–Pb geochronometers; granulite metamorphism; slow cooling; T–t path  相似文献   

5.
Different lithologies (impure marble, eclogite and graniticorthogneiss) sampled from a restricted area of the coesite-bearingBrossasco–Isasca Unit (Dora Maira Massif) have been investigatedto examine the behaviour of 40Ar–39Ar and Rb–Srsystems in phengites developed under ultrahigh-pressure (UHP)metamorphism. Mineralogical and petrological data indicate thatzoned phengites record distinct segments of the PT path:prograde, peak to early retrograde in the marble, peak to earlyretrograde in the eclogite, and late retrograde in the orthogneiss.Besides major element zoning, ion microprobe analysis of phengitein the marble also reveals a pronounced zoning of trace elements(including Rb and Sr). 40Ar–39Ar apparent ages (35–62Ma, marble; 89–170 Ma, eclogite; 35–52 Ma, orthogneiss),determined through Ar laserprobe data on phengites (step-heatingand in situ techniques), show wide intra-sample and inter-samplevariations closely linked to within-sample microchemical variations:apparent ages decrease with decreasing celadonite contents.These data confirm previous reports on excess Ar and, more significantly,highlight that phengite acted as a closed system in the differentlithologies and that chemical exchange, not volume diffusion,was the main factor controlling the rate of Ar transport. Conversely,a Rb–Sr internal isochron from the same eclogite yieldsan age of 36 Ma, overlapping with the time of the UHP metamorphicpeak determined through U–Pb data and thereby corroboratingthe previous conclusion that UHP metamorphism and early retrogressionoccurred in close succession. Different phengite fractions ofthe marble yield calcite–phengite isochron ages of 36to 60 Ma. Although this time interval matches Ar ages from thesame sample, Rb–Sr data from phengite are not entirelyconsistent with the whole dataset. According to trace elementvariations in phengite, only Rb–Sr data from two wet-groundphengite separates, yielding ages of 36 and 41 Ma, are internallyconsistent. The oldest age obtained from a millimetre-sizedgrain fraction enriched in prograde–peak phengites mayrepresent a minimum age estimate for the prograde phengite relics.Results highlight the potential of the in situ 40Ar–39Arlaser technique in resolving discrete PT stages experiencedby eclogite-facies rocks (provided that excess Ar is demonstrablya negligible factor), and confirm the potential of Rb–Srinternal mineral isochrons in providing precise crystallizationages for eclogite-facies mineral assemblages. KEY WORDS: 40Ar–39Ar dating; Rb–Sr dating; phengite; SIMS; UHP metamorphism  相似文献   

6.
The ascent history of the Horoman peridotite complex, Hokkaido,northern Japan, is revised on the basis of a detailed studyof large ortho- and clinopyroxene grains 1 cm in size (megacrysts)in the Upper Zone of the complex. The orthopyroxene megacrystsexhibit distinctive M-shaped Al zoning patterns, which werenot observed in porphyroclastic grains less than 5 mm in sizedescribed in previous studies. Moreover, the Al and Ca contentsof the cores of the orthopyroxene megacrysts are lower thanthose of the porphyroclasts. The Upper Zone is inferred to haveresided not only at a higher temperature than previously suggestedbut also at a higher pressure (1070°C, 2·3 GPa) thanthe Lower Zone (950°C, 1·9 GPa), in the garnet stabilityfield, before the ascent of the two zones. The Horoman complexprobably represents a 12 ± 5 km thick section of lithosphericmantle with an 10 ± 8°C/km vertical thermal gradient.The current thickness of the Horoman complex is 3 km, whichis a result of shortening of the lithospheric mantle by 0·25± 0·1 during its ascent. The Upper Zone appearsto have experienced a heating event during its ascent throughthe spinel stability field, with a peak temperature as highas 1200°C. The effect of heating decreases continuouslytowards the base of the complex, and the lowermost part of theLower Zone underwent very minor heating at a pressure higherthan 0·5 GPa. The uplift and associated deformation,as well as heating, was probably driven by the ascent of a hotasthenospheric upper-mantle diapir into the Horoman lithosphere. KEY WORDS: Horoman; PT trajectory; thermal history; Al diffusion in pyroxene; geothermobarometry  相似文献   

7.
The digital image of airborne radiometric data across SouthAfrica reveals that the largest anomaly, 100 nGy/h, is causedby the granulite-facies rocks of the Namaquan metamorphic complex,whereas most of the country is <60 nGy/h. This observationis consistent with geochemical data that show that the 1900± 100 Ma greenschist-facies Richtersveld Terrane nearNamibia (max. U = 3·4 ppm; Th = 20·1 ppm) andthe adjacent, 1100 ± 100 Ma, amphibolite-facies Aggeneys/SteinkopfTerranes (max. U 10 ppm; Th 52 ppm) are the least enrichedin U, Th and K. In contrast, the lower-T granulite-facies OkiepTerrane near Springbok hosts more enriched granites (max. U 17 ppm; Th 66 ppm) and noritic intrusions (max. U = 14 ppm;Th = 83 ppm). The most enriched rocks are found in the 1030Ma higher-T granulite-facies core of the Namaquan belt and includequartzo-feldspathic gneisses (max. U = 46 ppm; Th = 90 ppm)and charnockites (max. U = 52 ppm; Th = 400 ppm). Our findingscontradict the notion that granulite-facies terrains are characteristicallydepleted in U and Th. In this study we modeled the heat productionin the core of the Namaquan complex, where the granulites havehad a very unusual metamorphic history, and show that ultra-high-T(1000°C, P 10 kbar) metamorphic conditions could have beenachieved by radiogenic heating without invoking external heatsources. However, monazite-rich veins of charnockite and patchesof granulites mark the passage of CO2-dominated melts and fluidsderived from fractionated noritic intrusions. KEY WORDS: charnockite; granulite; Namaqualand; thorium; uranium; radioactive heating; metamorphism  相似文献   

8.
The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle   总被引:5,自引:0,他引:5  
A detailed petrological and geochemical study of low-temperatureperidotite xenoliths from Kimberley and northern Lesotho ispresented to constrain the processes that led to the magmaphileelement depletion of the Kaapvaal cratonic lithospheric mantleand its subsequent re-enrichment in Si and incompatible traceelements. Whole-rocks and minerals have been characterized forRe–Os isotope compositions, and major and trace elementconcentrations, and garnet and clinopyroxene for Lu–Hfand Sm–Nd isotope compositions. Most samples are characterizedby Archaean Os model ages, low Al, Fe and Ca contents, highMg/Fe, low Re/Os, very low (< 0·1 x chondrite) heavyrare earth element (HREE) concentrations and a decoupling betweenNd and Hf isotope ratios. These features are most consistentwith initial melting at 3·2 Ga followed by metasomatismby hydrous fluids, which may have also caused additional meltingto produce a harzburgitic residue. The low HREE abundances ofthe peridotites require that extensive melting occurred in thespinel stability field, possibly preceded by some melting inthe presence of garnet. Fractional melting models suggest that30% melting in the spinel field or 20% melting in the garnetfield followed by 20% spinel-facies melting are required toexplain the most melt-depleted samples. Garnet Nd–Hf isotopecharacteristics indicate metasomatic trace element enrichmentduring the Archaean. We therefore suggest a model includingshallow ridge melting, followed by metasomatism of the Kaapvaalupper mantle in subduction zones surrounding cratonic nuclei,probably during amalgamation of smaller pre-existing terranesin the Late Archaean (2·9 Ga). The fluid-metasomatizedresidua have subsequently undergone localized silicate meltinfiltration that led to clinopyroxene ± garnet enrichment.Calculated equilibrium liquids for clinopyroxene and their Hf–Ndisotope compositions suggest that most diopside in the xenolithscrystallized from an infiltrating kimberlite-like melt, eitherduring Group II kimberlite magmatism at 200–110 Ma (Kimberley),or shortly prior to eruption of the host kimberlite around 90Ma (northern Lesotho). KEY WORDS: Kaapvaal craton; lithospheric mantle; metasomatism; Nd–Hf isotopes; Re–Os isotopes  相似文献   

9.
Leucocratic and Gabbroic Xenoliths from Hualalai Volcano, Hawai'i   总被引:1,自引:0,他引:1  
A diverse range of crustal xenoliths is hosted in young alkalibasalt lavas and scoria deposits (erupted 3–5 ka) at thesummit of Huallai. Leucocratic xenoliths, including monzodiorites,diorites and syenogabbros, are distinctive among Hawaiian plutonicrocks in having alkali feldspar, apatite, zircon and biotite,and evolved mineral compositions (e.g. albitic feldspar, clinopyroxeneMg-number 67–78). Fine-grained diorites and monzodioritesare plutonic equivalents of mugearite lavas, which are unknownat Huallai. These xenoliths appear to represent melt compositionsfalling along a liquid line of descent leading to trachyte—amagma type which erupted from Huallai as a prodigious lava flowand scoria cone at 114 ka. Inferred fractionating assemblages,MELTS modeling, pyroxene geobarometry and whole-rock norms allpoint to formation of the parent rocks of the leucocratic xenolithsat 3–7 kbar pressure. This depth constraint on xenolithformation, coupled with a demonstrated affinity to hypersthene-normativebasalt and petrologic links between the xenoliths and the trachyte,suggests that the shift from shield to post-shield magmatismat Huallai was accompanied by significant deepening of the activemagma reservoir and a gradual transition from tholeiitic toalkalic magmas. Subsequent differentiation of transitional basaltsby fractional crystallization was apparently both extreme—culminatingin >5·5 km3 of trachyte—and rapid, at 2·75x 106 m3 magma crystallized/year. KEY WORDS: geothermobarometry; magma chamber; xenolith; cumulate; intensive parameters  相似文献   

10.
BAKER  A. J. 《Journal of Petrology》1990,31(1):243-260
Stable isotope compositions of Ivrea Zone marbles and associatedlithologies are in general heterogeneous. The oxygen isotopecomposition of quartz in pelites ranges from 18O +9 to + 17(SMOW) and does not vary systematically with metamorphic grade.Peridotites retain oxygen isotope signatures close to mantlevalues. Marble calcites vary in isotopic composition from 13C + 2(PDB),180 +24(SMOW)to 13C –6(PDB), 18O + 13 (SMOW).Depletions in 18O and 13C may be explained dominantly by interactionwith fluids derived from within the observed metasedimentarysequence during prograde metamorphism. 18O and 13C show gradients of greater than 5/m across marblemargins and within marbles. The preservation of such isotopicgradients is not consistent with the long-term presence of grain-boundary-scaleinterconnected fluid films in and around marbles. There is ageneral lowering of 18O within individual marble bodies althoughlarge carbon and oxygen isotopic gradients are present. Calcitein marbles may attain oxygen isotope equilibrium, but rarelycarbon isotope equilibrium, with surrounding metapelites. Infiltrationof marbles must involve a component of channelized fluid flow. The general lack of isotopic equilibration within the sequencerequires channelized fluid flow and limited fluid-rock ratios.Large pervasive mantle to crust fluid fluxes are not consistentwith the observations. *Present address: Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU, England  相似文献   

11.
Pan-African high-grade metamorphism in the Kerala KhondaliteBelt (South India) led to the in situ formation of garnet-bearingleucosomes (L1) in sodic quartz—alkali feldspar—biotitegneisses. Microtextures, mineralogy and the geochemical characteristicsof in situ leucosomes (L1) and gneiss domains (GnD) indicatethat the development of leucosomes was mainly controlled bythe growth of garnet at the expense of biotite. This is documentedby the selective transfer of FeO, MgO, , Sm and the heavy rareearth elements into the L1 domains. P-T constraints (T>800C,P>6kbar, aH2O0.3) suggest that the leucosomes were formedthrough complete melting of biotite in fluid-absent conditions,following the model reaction Biotite+Alkali feldspar+QuartzlGarnet+Ilmenite+Melt.The fraction of melt generated during this process was low (<10vol.%). The identical size of the leucosomes as well as theirhomogeneous and isotropic distribution at outcrop scale, whichlacks any evidence for melt segregation, suggest that the migmatiteremained a closed system. Subsequent to migmatization, the leptyniticgneisses were intruded by garnet-bearing leucogranitic melts(L2), forming veins parallel and subperpendicular to the foliation.The leucogranites are rich in potassium (K2O5.5 wt%), (Ba400p.p.m.) and Sr (300 p.p.m.), and exhibit low concentrationsof Zr (40 p.p.m.), Th (<1 p.p.m.) and (<10 p.p.m.). Thechondrite-normalized REE spectra show low abundances (LaN20,LuN3) and are moderately fractionated (LaN/LuN7). An Eu anomalyis absent or weakly negative. The higher 87Sr/86Sr ratio at550 Ma (0.7345) compared with the migmatite (0.7164) precludesa direct genetic relationship between leptynitic gneisses andleucogranites at Manali.Nevertheless, the chemical and mineralogicalcompositions of the leuocogranites strongly favour a derivationthrough fluid-absent biotite melting of isotopically distinctbut chemically comparable Manali-type gneisses. The undersaturationof Zr, Th and REE, a typical feature of leucogranitic meltsgenerated during granulite facies anatexis of psammo-peliticlithologies and attributed to disequilibrium melting with incompletedissolution of accessory phases (zircon, monazite), is weaklydeveloped in the leucogranites of Manali.It is concluded thatthis is mainly due to the sluggish migration of the melts instatic conditions, which facilitated equilibration with therestitic gneisses. *Fax: 0228-732763; e-mail: ingo.braun{at}uni-bonn.de  相似文献   

12.
Staurolite Stability in a Part of the System Fe-Al-Si-O-H   总被引:1,自引:0,他引:1  
The following reactions, believed to be analogous to those whichdefine the maximum extent of staurolite-quartz compatibilityat moderate oxygen fugacity in metamorphic rocks, have beendetermined in terms of hydrous fluid pressure and temperature.The O: H composition ratio of the fluid was controlled withthe quartz-fayalite-magnetite (QFM) buffer assemblage. (I) Fe-staurolitequartz almandine+sillimanite+water. (II) Fe-staurolitequartz Fe-cordierite+sillimanite+water. (III) Fe-chloritoid+sillimanite Fe-staurolite+quartz+water. In addition, two reactions which delineate part of the stabilitylimits of Fe-cordierite have been investigated: (IV) Fe-cordierite almandine+sillimanite+quartz. (V) Fe-cordierite hercynite+sillimanite+quartz. The experimental information has been used to predict boundariesto the PT fields of all quartz and QFM-buffered fluid-bearingassemblages involving Fe-staurolite, Fe-cordierite, Fe-chloritoid,almandine, and sillimanite. Using information from this andother studies, three mineral assemblages are recognized whichare stable at similar temperatures but different fluid pressures.In order of decreasing pressure they are: (a) Above 5 kb: staurolite, quartz, kyanite, fluid; (b) Between 1.5 and 8.5 kb (outer limits; in natural rocks thisfield will have a much narrower pressure range) staurolite,quartz, cordierite, fluid. (c) Below 3.5 kb: Fe-cordierite, andalusite, fluid of oxygenfugacity equivalent to the quartz-fayalite-magnetite assemblage. These phase assemblages may be the equivalents of naturallyoccurring mineral facies, but this must be proven in the field.In addition the absence of cordierite from rocks of appropriatecomposition and temperature of formation betokens total pressuresgreater than 3–5 kb. 1Present address: Grant Institute of Geology, West Mains Road, Edinburgh 9, Scotland.  相似文献   

13.
Mount Galunggung is a historically active volcano in southwesternJava that has erupted four times in the last two centuries.During the most recent event, which occurred during a 9–monthinterval in 1982– 83, some 305 106 m3 of medium–K,calc–alkaline magma was erupted. This eruption was unusualbecause of its duration, the diversity of eruption dynamicsand products, and the range of lava compositions produced. Thecomposition of juvenile material changed gradually during thecourse of the eruption from initial plagioclase (An60–75)and two–pyrozene bearing andesites with 58% SiO2 to finalplagioclase (An85–90), diopside, and olivine (Fo85–90)bearing primitive magnesium basalts with 47% SiO2 Mineralogicaland compositional relationships indicate a magmatic evolutioninvolving differentitation of high–Mg parental melt. Theeruptive volumes of 35 106 m3 andesite, 120 106 m3 maficandesite, and 150 106 m3 basalt are consistent with the ideathat the 1982– 83 eruption progressively tapped and draineda magma chamber that had become chemically stratified throughextensive crystal fractionation. Separates of plagioclase and pyroxene have 18O( SMO W) rangesof + 5. 6 to + 6.0 and + 5.3 to + 5.6, respectively, with 18Oplag–pxvalues of + 0.4 to + 0.6o, indicating internal O–isotopeequiliburium at temperature of 1100–850 C. The magenesianbasalts have magmatic 18O/ 16O ratios similar to those of mid–oceanridge basalt, and the O–isotope ratios of compositionallyevolved derivative melts show no evidence for contaminationof the galunggung magmas by 18O–rich crust during differentiation.Andesites and transitional mafic and sites have a more variableO–isotope character, with laves and phenocrysts havingboth higher and lower 18O values than observed in the parentalmagnesium basalts. These features are interpreted to reflectintramagma chamber processes affecting the upper portions ofthe differentiating Galunggung magma body before the 1982–83eruption.  相似文献   

14.
Early Cretaceous tholeiitic picrite-to-rhyolite dykes aroundSpitzkoppe, western Namibia, are part of the extensive HentiesBay–Outjo swarm, penecontemporaneous with 132 Ma Etendekalavas 100 km to the NW. Although only intermediate to rhyoliticdykes contain clinopyroxene phenocrysts, the behaviour of Ca,Al and Sc in the dyke suite shows that liquidus clinopyroxene—togetherwith olivine—was a fractionating phase when MgO fell to9 wt %. Both a plot of CIPW normative di–hy–ol–ne–Qand modelling using (p)MELTS show that a mid-crustal pressureof 0·6 GPa is consistent with this early clinopyroxenesaturation. Sr, Nd, Hf and Pb isotope variations all show trendsconsistent with AFC contamination (assimilation linked to fractionalcrystallization), involving Pan-African Damara belt continentalcrust. The geochemical variation, including isenthalpic AFCmodelling using (p)MELTS, suggests that the picrites (olivine-richcumulate suspensions) were interacting with granulite-faciesmetamorphic lower crust, the intermediate compositions withamphibolite-facies middle crust, and the rhyolitic dykes (anda few of the basalts) with the Pan-African granites of the uppercrust. The calculated densities of the magmas fall systematicallyfrom picrite to rhyolite and suggest a magmatic system resemblinga stack of sills throughout the crust beneath Spitzkoppe, withthe storage and fractionation depth of each magma fraction controlledby its density. Elemental and isotopic features of the 20 wt% MgO picrites (including Os isotopes) suggest that their parentalmelts probably originated by fusion of mid-ocean ridge basalt(MORB) source convecting mantle, followed by limited reactionwith sub-continental lithospheric mantle metasomatized justprior to the formation of the parental magmas. Many of the distinctivefeatures of large-volume picritic–basaltic magmas maynot be derived from their ultimate mantle sources, but may insteadbe the results of complex polybaric fractional crystallizationand multi-component crustal contamination. KEY WORDS: flood basalts; Spitzkoppe; picrite; trace elements; hafnium isotopes; Etendeka  相似文献   

15.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

16.
Field, petrologic and geochemical data were used to characterizefluid infiltration and partial melting during metamorphism ofpelitic rocks in the contact aureole of the Onawa pluton, centralMaine, USA. Mineral assemblages delineate five metamorphic zoneswithin the contact aureole: chlorite zone, andalusite–cordierite(a–c) zone, alkali feldspar zone, sillimanite zone andleucocratic-vein (l–v) zone. The sequence of observedmineral assemblages and mineral–fluid reactions calculatedby mass balance is similar to those observed in other contactaureoles. Pressure of contact metamorphism is 3 kbar, on thebasis of optimum geothermobarometry calculations. Metamorphictemperatures vary from 500C in the andalusite–cordieritezone to 65OC in the leucocratic-vein zone. Data from fieldobservations, mineral textures, observed reaction stoichiometry,geothermometry and major-element geochemistry suggest that theleucocratic veins of the l-v zone represent crystallized, partialmelts. Two overall calculated mineral reactions are responsiblefor vein formation: which can be modeled as combinations of two NKFMTASH meltingreactions: Progress of (M1) and (M2) was measured in eight samples, andreaction (M1) is the dominant melt-forming reaction in all samples.Partial melting (and vein formation) was therefore driven byinfiltration of the l-v zone by H2O-rich fluids. Calculatedtime-integrated fluid fluxes for l-v zone samples range from09 104 to 31 104 mol/cm2, and flow was in the directionof increasing temperature. KEY WORDS: pelites; contact metamorphism; fluid infiltration; partial melting; Onawa Pluton; Maine; USA *Corresponding author. Telephone:(516) 632–8192. Fax (516)632–8240 e-mail: gsymmes{at}ccmail.sunysb.edu  相似文献   

17.
Bulk-rock geochemical compositions of hypabyssal kimberlites,emplaced through the Archaean Kaapvaal craton and ProterozoicNamaqua–Natal belt, are used to estimate close-to-primarymagma compositions of Group I kimberlites (Mg-number = 0·82–0·87;22–28 wt % MgO; 21–30 wt % SiO2; 10–17 wt% CaO; 0·2–1·7 wt % K2O) and Group II kimberlites(Mg-number = 0·86–0·89; 23–29 wt %MgO; 28–36 wt % SiO2; 8–13 wt % CaO; 1·6–4·6wt % K2O). Group I kimberlites are distinguished from GroupII by their lower Ba/Nb (<12), Th/Nb (<1·1) andLa/Nb (<1·1) but higher Ce/Pb (>22) ratios. Thedistinct rare earth element patterns of the two types of kimberlitesindicate a more highly metasomatized source for Group II kimberlites,with more residual clinopyroxene and less residual garnet. Thesimilarity of Sr and Nd isotope ratios and diagnostic traceelement ratios (Ce/Pb, Nb/U, La/Nb, Ba/Nb, Th/Nb) of Group Ikimberlites to ocean island basalts (OIB), but more refractoryMg-numbers and Ni contents, are consistent with derivation ofGroup I kimberlites from subcontinental lithospheric mantle(SCLM) that has been enriched by OIB-like melts or fluids. Sourceenrichment ages and plate reconstructions support a direct associationof these melts or fluids with Mesozoic upwelling beneath southernAfrica of a mantle plume(s), at present located beneath thesouthern South Atlantic Ocean. In contrast, the geochemicalcharacteristics of both on- and off-craton Group II kimberlitesshow strong similarity to calc-alkaline magmas, particularlyin their Nb and Ta depletion and Pb enrichment. It is suggestedthat Group II kimberlites are derived from both Archaean andProterozoic lithospheric mantle source regions metasomatizedby melts or fluids associated with ancient subduction events,unrelated to mantle plume upwelling. The upwelling of mantleplumes beneath southern Africa during the Mesozoic, at the timeof Gondwana break-up, may have acted as a heat source for partialmelting of the SCLM and the generation of both Group I and GroupII kimberlite magmas. KEY WORDS: kimberlite; geochemistry; petrogenesis; mantle plumes; South Africa  相似文献   

18.
The anhydrous phase relations of an uncontaminated (primitive),ferropicrite lava from the base of the Early Cretaceous Paraná–Etendekacontinental flood basalt province have been determined between1 atm and 7 GPa. The sample has high contents of MgO (14·9wt %), FeO* (14·9 wt %) and Ni (660 ppm). Olivine phenocrystshave maximum Fo contents of 85 and are in equilibrium with thebulk rock, assuming a of 0·32. A comparison of our results with previous experimental studiesof high-Mg rocks shows that the high FeO content of the ferropicritecauses an expansion of the liquidus crystallization field ofgarnet and clinopyroxene relative to olivine; orthopyroxenewas not observed in any of our experiments. The high FeO contentalso decreases solidus temperatures. Phase relations indicatethat the ferropicrite melt last equilibrated either at 2·2GPa with an olivine–clinopyroxene residue, or at 5 GPawith a garnet–clinopyroxene residue. The low bulk-rockAl2O3 content (9 wt %) and high [Gd/Yb]n ratio (3·1)are consistent with the presence of residual garnet in the ferropicritemelt source and favour high-pressure melting of a garnet pyroxenitesource. The garnet pyroxenite may represent subducted oceaniclithosphere entrained by the upwelling Tristan starting mantleplume head. During adiabatic decompression, intersection ofthe garnet pyroxenite solidus at 5 GPa would occur at a mantlepotential temperature of 1550°C and yield a ferropicriteprimary magma. Subsequent melting of the surrounding peridotiteat 4·5 GPa may be restricted by the thickness of theoverlying sub-continental lithosphere, such that dilution ofthe garnet pyroxenite melt component would be significantlyless than in intra-oceanic plate settings (where the lithosphereis thinner). This model may explain the limited occurrence offerropicrites at the base of continental flood basalt sequencesand their apparent absence in ocean-island basalt successions. KEY WORDS: continental flood basalt; ferropicrite; mantle heterogeneity; mantle melting; phase relations; pyroxenite  相似文献   

19.
Melt-Solid Dihedral Angles of Common Minerals in Natural Rocks   总被引:3,自引:0,他引:3  
The melt–solid dihedral angle has been measured in a rangeof igneous rock types, ranging in composition from picrite,through basalt, phonolite, andesite and rhyolite, for the mineralsquartz, leucite, plagioclase, olivine, amphibole and clinopyroxene.Populations of up to 104 true 3-D angles were measured in eachsample using a universal stage mounted on an optical microscope.The median and standard deviation of the angle populations foreach mineral are distinct (plagioclase 25°, with standarddeviation (SD) 11°; clinopyroxene 38°, with SD 14°;olivine 29°, with SD 13°; quartz 18°, with SD 9°;leucite 20°, with SD 11°), with no control by eithermelt composition or degree of approach of the grains to theirequilibrium shapes. KEY WORDS: dihedral angle; textural equilibrium; universal stage  相似文献   

20.
A Stable Isotope Study of Anorogenic Magmatism in East Central Asia   总被引:8,自引:0,他引:8  
A stable isotope study of 168 plutonic igneous rock and fivewater samples from Transbaikalia, East Asia, has been made,including 318 whole-rock and mineral 18O/16O analyses and 14D/H analyses. This represents the first detailed isotopic studyof the enormous Phanerozoic K-rich (mostly anorogenic) granitoidbelts of this region, which are thousands of kilometers in lengthand span an age range of >250Ma. Of the five main intrusivesuites, emplacement of the youngest (Permo-Triassic) was accompaniedby intense meteoric-hydrothermal activity, locally causing extreme18O depletio (18O feldspar<–12). This reflects thevery low 18O of the water involved in these systems, which probablyhad 18O < – 20 and D < – 150, consistent withthe high paleolatitude of Transbaikalia in the early Mesozoic(80N). Despite local post-emplacement, hydrothermal 18O-depletioneffects near Permo-Triassic and younger plutons, the variationof magmatic isotopic composition in the five intrusive suites,in space and time, can be clearly discerned using the 18O/16Ovariation in phases such as quartz and sphene that are resistantto sub-solidus exchange. A procedure for analyzing 18O/16O insphene using a laser fluorination technique is described: analysisof samples as small as 0.4 mg (including single crystals ofsphene from granitoids) is possible and provides an effectiveway to estimate the magmatic 18O value of plutonic igneous rocks.Most sphene and quartz 18O values vary by 1.0–2.0% withineach of the five main intrusive suites in Transbaikalia (rangingin age from mid-Paleozoic to Mesozoic), and are uniform bothwithin individual plutons and among plutons of the same suiteseparated by tens or hundreds of kilometers. However, each suitehas a unique range in 18O/16O, indicating that, on a regionalscale, the magmatic 18O values of these granitoids decreasedprogressively in 1% decrements from +10 in the earliest groupto +6 in the youngest. This progression was accompanied by increasesin the concentration of elements such as K and Zr, and decreasesin the concentration of elements such as Sr and Ba. These systematicsrequire large scale deep crustal melting and mixing processesto generate the compositional uniformity of individual plutonsand groups over such wide areas, and also a progressive hybridizationof the crust with alkalic, mantle-derived magmas to generatesyenites and granites with progressively lower 18O values. Thisprocess may be a hallmark of anorogenic granitoid petrogenesisand the intracontinental cratonization process in general, andalso represents an important (though largely cryptic) crustalgrowth mechanism. KEY WORDS: anorogenic granitoids; crustal growth; hybridization; hydrothermal systems; stable isotopes 1Present address: Galson Sciences Limited, 5 Grosvenor House, Melton Road, Oakham LE15 6AX, UK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号