首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
1961-2017年青海高原降雪时空变化分析研究   总被引:2,自引:1,他引:1  
基于1961-2018年青海高原47个台站观测资料,分析了青海高原降雪量、降雪日数的时空演变特征,结果表明:青海高原地区降雪量呈明显的减少趋势,每10年减少3.7 mm,其中1981-1989年、1990-1999年为降雪量偏多期,2000年以来为降雪量偏少期;近57年来青海高原降雪平均日数为11~43 d,青海高原降雪日数及各量级降雪日数总体均无明显趋势性变化,但存在阶段性变化;青海高原降雪量及降雪日数除常年干旱区柴达木盆地均为低值区外,其余地区高海拔地区多于低海拔地区,南部多于北部;青海高原月平均降雪量呈“U”型分布,而月平均降雪日数呈单峰型分布,降雪日数在冬季中末期偏多,春季偏少,其中小雪以上量级降雪日数易发生在秋末冬初,冬末向春季转换的时段内;近57年来青海高原降雪量在2002年前后存在明显的突变现象,其中青南牧区、青海湖地区及东部农业区年降雪量分别在2001年,1996年以及1996年前后存在明显突变现象,柴达木盆地降雪量无明显突变现象;而青海高原降雪日数在2000年前后存在明显突变现象,其中青南牧区1980年、2001年前后存在明显的突变现象,其余3个地区降雪日数无明显突变现象。  相似文献   

2.
基于CMIP5的东亚地区降雪量变化特征分析   总被引:1,自引:0,他引:1  
利用JMA的JRA-55降雪量及CMIP5的6个模式模拟的降雪量资料, 分析了东亚地区降雪量年变化特征及年际变化特征. 结果表明: 东亚地区降雪量在1958-2004年期间具有明显的年际变化特征及区域分布特征; 降雪主要集中在11月至翌年的4月, 这6个月中降雪量占年总降雪量的82%; 年际变化特征呈现出一种波动变化略有增加的趋势, 但是增加的幅度有所不同. 从区域分布特征来看, 东亚地区降雪主要分布在东北亚、青藏高原及新疆等3个区域. CMIP5的6个模式对东亚区域及其子区域东北亚、青藏高原、新疆1850-2004年降雪量年际变化特征的模拟差异较大. 多模式集合预报的结果表现为, 在过去155 a(1850-2004年)东亚区域降雪量呈现明显减小趋势, 东北亚和青藏高原降雪量为波动略有减小趋势, 新疆降雪量为明显增加趋势.  相似文献   

3.
1961-2016年中国天山不同级别降雪事件变化特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
秦艳  丁建丽 《水科学进展》2019,30(4):457-466
为了更好地理解降雪对气候变化的响应及机理,利用天山山区及周边49个站点日气象资料,采用参数化降雪判识方案提取降雪序列,以百分位阈值法分级别分析天山山区1961-2016年降雪事件变化特征。结果表明:①天山山区降雪量和降雪频次呈山区大于盆地,北坡大于南坡,自西北向东南递减的分布特征。②过去56年来,天山山区降雪量显著增加,降雪频次微弱增加;各级别降雪量和降雪频次变化趋势表现为:小雪显著减少,中雪变化平稳,大雪和极端降雪显著增加;降雪显著增加区域集中分布于天山北坡中部和伊犁河谷地区,降雪量的增加主要由极端降雪量和频次的增加所致。③年降雪量、大雪降雪量和频次、极端降雪量和频次在20世纪80年代中期发生突变增加,其他级别降雪量和频次无明显突变。④天山山区降雪量和极端降雪量的增加与气温变暖有关。  相似文献   

4.
1961-2007年辽宁省降雪量和降雪日数的气候变化特征   总被引:5,自引:3,他引:2  
利用辽宁省52个站1961—2008年的逐日降水量、降雪天气现象资料提取出了逐日降雪数据,分析了近47a(1981—2007年)的年降雪量和降雪日数的空间分布、长期变化状况、突变和周期性特征.结果表明:辽宁的降雪量和降雪日数是在1月达到最大值.近47a降雪量没有明显的长期变化趋势,降雪日数明显减少,平均每10a减少1....  相似文献   

5.
中国西北干旱区降雪和极端降雪变化特征及未来趋势   总被引:4,自引:4,他引:4  
降雪是中国西北干旱区水文系统中关键的组成要素, 同时也是对气候变化极为敏感的因子。利用中国西北干旱区的89个气象站点逐日气象资料结合IPCC-CMIP5气候情景数据, 研究了该区域降雪和极端降雪的时空变化特征, 并分析了其对气候变化的响应机理及未来变化趋势。结果表明: 1971—2010年, 我国西北干旱区年降雪量显著增加, 但降雪次数却明显减少; 年极端降雪发生次数占总降雪次数的比例不足3%, 但其对年降雪量的平均贡献可达1/4, 且极端降雪量和发生次数的增加是近40年西北干旱区降雪总量增加的主要原因。极端降雪发生时的气温要比非极端降雪发生时的气温平均高3.3 ℃; 当气温在1 ℃以下, 降雪强度随气温升高而增大, 该变化特征基本符合克劳修斯-克拉伯龙方程理论, 气候变暖是导致极端降雪显著增加的主要原因。在RCP4.5气候情景下, 我国西北干旱区未来年降雪次数将大幅减少, 年降雪量将在(2040±5)年前后达到峰值随后下降, 年极端降雪量和发生次数预计(2060±5)年左右达到峰值; 相比基准期, 2050s西北干旱区所有站点的年降雪发生次数都将明显减少, 区域平均年降雪量将减少5%, 而年极端降雪量和发生次数有微弱的增加, 分别增加约2%和4%。  相似文献   

6.
辽宁省不同等级降雪变化特征   总被引:9,自引:6,他引:3  
利用辽宁省52个站逐日降水量及降雪天气现象资料提取出逐日降雪数据,采用多种统计方法分析了近53 a(1961-2013年)不同等级降雪的时空变化特征,研究表明:降雪量和降雪日数空间分布上山地要大于平原地区,由东部山区向沿海地区减少;降雪强度中心位于辽宁中部城市群所在的平原地区。降雪量、降雪日数年内分配分别呈双峰型和单峰型分布,中雪等级以上的降雪多发生在冬末春初。年降雪量增加,年降雪日数(降雪强度)显著减少(减小);降雪日数的显著减少主要表现为微量降雪日数和小雪日数的减少,尤其是微量降雪日数,降雪强度的显著增大主要是暴雪强度的增大。1960s和1970s为降雪偏多时段,1990s以来降雪量增加,降雪日数减少。不同区域各级降雪占总降雪的比例,辽东地区以微量降雪日数最大,其他区域均以小雪日数和暴雪降雪量最大。全省降雪量有65.4%站点呈增加趋势,降雪日数96.2%的站点呈减少趋势,降雪强度90.4%站点呈增大趋势,辽西地区降雪变率要大于辽东山区。小雪降雪量和微量降雪日数贡献率均呈下降趋势,其他不同等级降雪贡献率均呈上升趋势。随着纬度升高(海拔增高),总降雪量(降雪日数)和各等级降雪量(降雪日数)均增加,总降雪强度和小雪强度减小。  相似文献   

7.
郭政昇 《水文》2020,40(1):81-85
2018年1月中国东部季风区发生异常的降雪分布及局地的雨雪冰冻灾害。在分析东部季风区降雪时空分布特征的基础上,模拟典型站点的气团移动轨迹,并利用OLR数据研究水汽源区变化及输送过程对降雪异常的影响。结果表明:1月降雪主要分布在黄河以南地区,降雪范围内呈现出降雪量由南向北降低的规律,且降雪持续时间减小;西北方向西风带混合输送与南向水汽源区及近源局地水汽循环是降雪区主要的水汽来源,随着水汽移动轨迹的变化,降雪的空间分布也随之改变;水汽源区的变化状况通过对水汽输送通量及路径的改变,进而决定着东部季风区降雪量与时空分布特征,2018年1月水汽源区表现出明显La Nina年特征,并与气团的移动轨迹相吻合,La Nina事件应是导致降雪异常的深层次原因。  相似文献   

8.
1961 - 2017年中国东北地区降雪时空演变特征分析   总被引:1,自引:1,他引:1  
利用东北地区162个气象台站逐日降水量和天气现象数据, 采用统计分析方法, 对近57年(1961 - 2017年)降雪的气候特征和时空演变规律进行了分析。结果表明: 降雪量和降雪日数最多出现在12月, 小雪和中雪最多出现在11月或12月, 大雪和暴雪在冬末春初出现概率最高。降雪分布为山地大于平原, 平原地区自北向南、 自东向西减少, 降雪高值区主要位于大兴安岭北部、 小兴安岭和长白山区, 降雪强度中心位于长白山区和辽宁中部平原地区。年、 秋季、 冬季、 春季降雪量占同期降水量比例分别为4.7%、 7.0%、 84.4%和7.6%; 辽宁省西部山区和南部大连地区日最大降雪量占年总降雪量比例最高, 最长连续降雪日数在2 d以下, 降雪较高纬度地区更为集中。近57年降雪量和降雪强度分别以1.93 mm?(10a)-1和0.11 mm?d-1?(10a)-1的速率显著增加, 降雪日数以2.08 d?(10a)-1速率显著减少; 降雪量增加主要表现为各等级降雪量的增加, 降雪日数减少主要是微量和小雪日数的减少, 降雪强度增加主要为大雪和暴雪降雪强度的增加。年、 秋季和冬季降雪量占同期降水量比例平均每10年增加0.36%、 0.48%和0.45%, 春季以0.11%?(10a)-1的速率减少。中雪、 大雪和暴雪对降雪贡献率均呈增加趋势, 小雪降雪量和微量降雪日数贡献率减少; 1987年降雪量和降雪日数突变后, 微量降雪日数和暴雪日数、 小雪降雪量贡献率改变显著。就区域平均而言, 2001 - 2017年的降雪量较1961 - 1980年增加了27.8%, 降雪日数减少了22.4%。  相似文献   

9.
利用鲁东南地区18个代表站1961-2015年的逐日降水量、逐日天气现象、积雪深度资料,对近55 a来降雪的气候特征进行了统计分析。结果表明:鲁东南地区年均降雪日数、强降雪日数、降雪量、强降雪量及年均雪深、年最大积雪深度的空间分布总体上山区多于平原和沿海,区域差异明显。21世纪00年代以前为多雪时期,以后为少雪时期。近55 a的年均降雪日数、强降雪日数、降雪量、强降雪量及年均雪深、年最大积雪深度皆呈减少趋势,降雪由多转少的转折年份均在1993年,年均雪深、年最大积雪深度的减少分别出现在1987年、1986年。鲁东南地区降雪主要集中在1-2月份,3月份强降雪量最大,平均雪深、最大积雪深度的最大月份分别出现在11月份、3月份。降雪时段为10月23日-次年4月28日,降雪的初终日西北部山区皆为最早。降雪日数、强降雪日数、降雪量、强降雪量、雪深均存在3 a的周期,最大积雪深度存在4~5 a的周期。  相似文献   

10.
利用清代雨雪分寸记录,重建了南昌1736年以来的初雪日期、降雪日数、降雪量及冬季气温变化序列.分析显示:1)1736~1910年的平均初雪日期比1951~2007年早20天,前一时期约58%的年份初雪日出现于12月,后一时期约51%的年份初雪日出现于1月;2)1736 ~ 1910年的冬季平均降雪日数比1951~200...  相似文献   

11.
气候变化对中国西北地区山区融雪径流的影响   总被引:22,自引:16,他引:22  
选择祁连山黑河流域作为中国西北地区山区积雪流域的典型代表,分析了1956-1995年40a以来气候,积雪变化的状况和特点以及春季融雪径 波动趋势,利用融雪径流模型(Snowmelt Runoff Model-SRM)和卫星遥感数据模拟气温上升框架上的融雪径流变化情势,结果表明,中国西北地区山区的气候变化主要表现在年平均气温的缓慢上升而降水基本平稳,年内气温的上升幅度以1-2月份比较强烈,而3-6月融雪期的气温并没有大的变化,导致融雪期在时间尺度上的扩大,融雪径流呈慢增加趋势且受径流周期变化控制,融雪径流峰值的时间上前移。  相似文献   

12.
中国区域1970-2000年622个气象观测台站资料EOF分析显示,气温的上升导致中国大部分地区饱和水汽压差呈上升趋势,大气热力强度增加,风动力明显减弱.内蒙中部以南至长江中游以北区域是大气热力增强最为敏感的地区.气温升高导致这一区域大气"干燥力"增强,区域蒸发潜力下降速度低于其他地区,气温的上升对低云覆盖产生一定程度...  相似文献   

13.
李健丽  余晔  赵素平 《冰川冻土》2018,40(2):388-394
利用1960-2015年新疆阿勒泰地区7个气象观测站的日降水量资料和中国气象数据共享网提供的2014-2015年中国地面时降水0.1°×0.1°格点数据集,初步评估了阿勒泰地区人工增水效果。结果表明,人工增雪使阿勒泰地区冬季平均降雪量增加了20.80 mm,冬季降雪量占全年降水量的比例也由15.50%提高到22.39%。同一时期年平均降水量增加了39.47 mm,有一半以上来自冬季增雪量。人工增雨使阿勒泰地区夏季平均降雨量增加了16.59 mm,增雨率为4%,夏季增雨不如冬季增雪效果明显。  相似文献   

14.
利用青藏高原55个气象站1971-2011年冬季(12月-翌年2月)逐月降雪量资料分析了冬季降雪的气候特征,得到高原冬季降雪总体上呈现东部和南部多、西北部和雅鲁藏布江中段少雪的分布特征,相对变率分布与降雪的分布几乎相反且变率大,以30°N为界高原降雪存在南北反相的变化趋势即北部降雪有所增加而南部减少.用旋转经验正交函数REOF结合相关分析进行降雪分区的基础上,重点分析了近40 a来高原降雪的演变特征和长期气候趋势.结果表明:降雪分布清楚地反映了高原的地理特征和气候特点,即高原南部迎风坡、冷暖气流交汇处降雪多,而背风坡、北部降雪少;近40 a降雪呈现“少-多-少”趋势,1980-1990年代期间降雪明显偏多,大约1970年代中期发生了由少雪到多雪的突变现象,其中南部2个区分别在2007年和1988年出现了降雪减少的突变现象;降雪具有显著的准14 a年代际变化和准8 a周期变化,且存在年代际特征.  相似文献   

15.
马力  韦志刚  李娴茹  王欢  郭仕侗 《冰川冻土》2022,44(6):1757-1772
Based on the daily minimum temperature data in China from 1961 to 2018, using n-order polynomial fitting, sliding t-test, empirical Orthogonal Function analysis, Morlet wavelet transform and other methods, this paper reveals the temporal and spatial distribution characteristics of the number of cold surge (CS) day, CS frequency and CS intensity by time and region. The results are as follows. On a national level, the number of CS day, CS frequency, and CS intensity decreased from 1962 to 2000. Specifically, the trend of every element of CS has changed from a previous decrease trend to an increase trend, and the inflection point was around 2000. The CS activity occurred more frequently, became more strengthen, and last for longer time after 2000. There are obvious spatial differences in the number of CS days, CS frequency, CS intensity and their changing trends in China. The number of CS days and CS frequency reach the maximum value in northeast China and northern Inner Mongolia. Meanwhile, the CS intensity value is low in the southeast China and high in the northwest China, with the exception of southern Xinjiang. The changes in the number of CS day and the CS frequency are mainly manifested as the “Northeast, Southwest Reverse Pattern”, the CS intensity is mainly manifested as the “Uniform Change Pattern”. The number of CS day, CS frequency, and CS intensity did not change significantly after, but a significant transition point was detected in 1980. On a regional scale, from 1962 to 2018, the number of CS day, frequency and intensity of cold surge in all regions showed a decreasing trend, while they increased after 2000. In the northern and northeastern of China, mean of three elements of cold surge increased after 2000. The transition year was different in different regions. The transition year of three elements of cold surge in Northeast China were the earliest. Mean value of the number of CS day, CS frequency, and CS intensity have an oscillation period of 3~5 years in total China and all regions. In addition, the periodic oscillations of the number of CS day and CS frequency in all regions are basically the consistent. © 2022 Science Press (China).  相似文献   

16.
利用1961-2011年我国东北地区(包括黑龙江、吉林、辽宁、内蒙古东部)的冬季降水资料,分析了东北地区冬季降水量的时空分布和冬季降水日数的时空分布,对比分析了东亚冬季风对我国东北地区冬季降水的影响. 结果表明:东北地区冬季降水量和降水日数分布有明显的区域差异,以内蒙古东南部、辽宁西北部、吉林西部、黑龙江西南部为低值中心,外围辽宁东部,吉林南部,黑龙江东部、中北部、北部,内蒙古东北部等地区为高值区;冬季降水量年际变化呈增加的线性趋势,1980年代中期以后冬季降水量的高值和低值都有明显的增大;年降雪日数年际变化呈线性增加趋势. 1948-2011年东亚冬季风强度指数的结果表明,东亚冬季风呈明显的线性减弱趋势,弱东亚季风主要集中在20世纪80年代中期以后,除内蒙古东南部等少数区域外,我国东北大部分地区的冬季降水量都和东亚冬季风呈负相关. 对应地,东北地区冬季降水量增大,年际变化的幅度变化增大,降水日数增量较小,这可能与东北地区冬季极端降水天气和干旱天气增加有关. 在东亚范围内,我国东北地区冬季降水多年200 hPa U风增强、500 hPa高压减弱、850 hPa东海南风增强,冬季降水少年则相反.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号