首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
东川式铜矿地球化学研究   总被引:2,自引:0,他引:2  
东川式铜矿赋矿围岩落雪组白云岩的常量元素投影点在Al2O3──SiO2──(CaO+MgO)图解、lg(SiO2/Al2O3)──lg[(CaO+NaO)/K2O]图解和(al─alk)──C图解上有一些非正常沉积的特点,并与红海现代热水化学沉积物有相似的特征。黄铜矿Co/Ni值及落雪组白云岩微量元素在Co+Ni─As+Cu+Mo+pb+V+Zn图解上也反映出热水沉积特征。稀土元素研究成果表明落雪组是热水沉积与正常沉积相混合的产物。包裹体研究后认为成矿热水属Na+(Ca2+、Mg2+)─HCO-3─Cl-型,并含CO、H2O(气)、CO2、CH4等气相组分,成矿温度110─214℃,成矿深度3─150m。硫、碳、氧和氢的同位素反映了这四种组分多来自海水,成矿热水主要是下渗对流循环而受加热的海水及部分建造水。结合地质研究成果,本文提出“热水微裂隙喷溢沉积成矿”的新认识,即海水下渗,受裂谷高热流加热,萃取流经围岩中的硅质及矿质在还原环境中,沿落雪期尚未彻底固结沉积物中的微裂隙间断式喷溢沉积成矿。  相似文献   

2.
王璞Xun  任延广 《沉积学报》1995,13(A01):53-62
通过对松辽盆地三肇凹陷S113井泉头组蒸发盐岩沉积层序的详细沉积学矿物学、元素地球化学和同位素地球化学的系统研究。认为该蒸发盐属海水与淡水混合成因,其形成与周期性的海水入侵有关。  相似文献   

3.
在浙江西裘地区晚元古界地层中存在与地层整合产出的层状硅质岩。硅质岩富Fe、Mn,相对贫A1,富集As、Sb、Bi、Ga,稀土元素总量低,铈负异常,重稀土相对富集,具热水沉积硅质岩的地球化学特征。在A1-Fe-Mn和Fe-Mn-(Ni+Co+Cu)三角图上均属于热水沉积硅质岩。硅质岩硅、氧同位素地球化学也显示其热水成因之特点。硅质岩的MnO/TiO2、δCe和δ30Si值分析表明本区层状硅质岩主要是在深海环境下沉积的。硅质岩形成温度较高,约为82-165℃。  相似文献   

4.
浙江西裘矿区新元古代火山-热泉活动强烈,矿石Cu:Zn:Pb原子百分比与火山岩和热水沉积硅质岩相似。矿床δ^34S值为-6.5‰~2.8‰,δ^18O值为8.14‰~22.32‰,铅同位素示踪主要为下地壳铅;矿石具较高的As、Sb、Bi、Ga、Zn、Ba等含量;具较低的Al/(Al+Fe=Mn)比值,Zn(Pb+Zn)比值接近1,均表现出火山-热泉沉积成矿地球化学特征。  相似文献   

5.
粤北白垩纪基性岩脉的年代学和地球化学   总被引:174,自引:23,他引:174  
对粤北白垩纪基性岩脉进行了系统的年代学、元素和Sr-Nd同位素地球化学研究。基性岩脉主要形成于-140Ma、d-105Ma、-90Ma三个阶段,其化学成分以拉斑质玄武岩为主,高的εNd(T)值(+5)表明其母岩来源于一大离子亲石元素和轻稀土元素长期较亏损的地幔源。  相似文献   

6.
将元素地球化学行为的一般规律与R因子分析、Q聚类分析和Q因子分析以及其它地质特征结合起来揭示出大庆油田东部外围中白垩统泉头组第三段和第四段湖泊-三角洲(水下部分)沉积总体泥质岩中各元素丰度及其比率受到盆体性因子(还原度F1、酸度F2)和盆围性因子(母岩F3和胶体输入量F4)的控制,最突出的表现是:Sr/Ca与还原度和酸度正相关,CaO/MgO与酸度负相关,Ni/Co(或Ni、Cr)与还原度负相关,Ti/V与偏基性母岩影响强度负相关,Sr/Ba与胶体输入量负相关。这些泥质岩可分成四类,与其中所夹粉砂岩(扩散流成因单位)一起分别构成水下河道周缘细屑沉积组合、滨浅湖沉积组合、前三角洲沉积组合和较深湖沉积组合,其沉积水深依次增加,氧化性和碱性依次减弱。偏基性母岩影响在水下河道周缘和前三角洲一带相对较强,在较深湖,因有导源于三角洲前缘的重力流发生,这种影响也时有表现。胶体输入量在所有沉积组合之间无特别明显的差异。  相似文献   

7.
鄂尔多斯地区南部和东秦岭北部是华北稳定陆块与秦岭海槽之间的过渡带.早古生代可划分为5个中层序(mesosequence).MS-1.包括下寒武统及中寒武统徐庄组,为混水台地沉积体系,时间跨度在35Ma;MS-2.包括下寒武统张夏组、上寒武统和下奥陶统冶里—亮甲山组,为清水台地沉积体系,时间跨度近37.9Ma;MS-3.包括下奥陶统马家沟组和峰峰组,为蒸发型台地沉积体系,时间跨度近31Ma.三者组成显生宙第一大层序(megasequence),形成一巨大沉积旋回,为地壳动力伸张所成;MS-4.包括赵老峪组,为弧后盆地形成的斜坡沉积体系和盆地沉积体系,时间跨度17Ma;MS-5.系上奥陶统,包括背锅山组、上店组、两岔口组等,为残留海台地型沉积体系.这两个中层序形成显生宙第二大层序的主体,形成一巨大沉积旋回,为地壳动力挤压所成.  相似文献   

8.
黔中沉积磷灰石的硫碳同位素及其地质意义   总被引:5,自引:0,他引:5  
陈其英  封兰英 《岩石学报》1996,12(4):594-597
本文研究了黔中磷块岩中磷灰石的结构硫同位素组成。磷灰石的δ34S值为34.2‰~42.4‰,它高于同期海水的δ34S(约34.2‰),也高于共生的成岩黄铁矿的δ34S(15.4‰~19.8‰),表明磷灰石形成于富有机质沉积物早期成岩作用硫酸盐还原带的最上部,其间同时伴有大量硫酸盐细菌的还原过程。磷灰石的碳同位素组成(δ13C=-3.63‰~1.0‰),表明它含有微生物有机质分解演化而来的CO2-3,而磷灰石比胶结白云石更富集轻同位素则反映出沉积阶段生物作用的影响比成岩阶段更为明显  相似文献   

9.
扬子地台西缘富碱花岗斑岩特征及成因探讨   总被引:12,自引:2,他引:12  
本详细研究了扬子地台西缘富碱花花岗斑岩的岩石学、矿物学、稀土元素地球化学和Sr、S、Pb同位素的特征,指出富碱花岗斑岩侵入年代新,同其同位素年龄范围为35-52Ma,属于喜马拉雅期产物,岩石主要成分钾长石(35%-45%)、斜长石(15%±)、黑云母(10%±)和角闪石(5%±)。  相似文献   

10.
(古)盐度研究的一种重要工具——锶同位素   总被引:1,自引:0,他引:1  
本文详细地阐述了海水-陆表水双元体系中锶同位素的混合原理、混合水体中^87Sr/^86Sr值与盐度的定量关系。利用Sr同位素不随生物、何尝作用过程发生分馏作用及Sr与Ca化学性质相似等特征,地层、沉积物中生物壳体和碳酸盐岩^87Sr/^86Sr值可作为沉积水体(古)盐度确定的一种有用工具。文中详细地综述了国内外在这方面的研究进展,并讨论了成岩后生作用对生物壳体和碳酸盐岩^87Sr/^86Sr原始值  相似文献   

11.
The Beni Suef Basin is a petroliferous rift basin straddling the River Nile containing a thick Mesozoic–Paleogene succession. The Kharita Formation is formed in the syn-rift phase of the basin formation and is subdivided into the Lower and Upper Kharita members. These two members are regarded as two third-order depositional sequences (DSQ-1 and DSQ-2). The lowstand systems tract (LST-1) of the DSQ-1 is represented by thick amalgamated sandstone bodies deposited by active braided channels. Mid-Albian tectonic subsidence led to a short-lived marine invasion which produced coastal marine and inner-shelf facies belts during an ensuing transgressive systems tract (TST-1). At the end of the mid-Albian, a phase of tectonic uplift gradually rose the continent creating a fall in relative sea level, resulting in deposition of shallow marine and estuarine facies belts during a highstand systems tract (HST-1). During the Late Albian, a new phase of land-rejuvenation commenced, with a prolonged phase of fluvial depositional. Fluvial deposits consisted of belts of amalgamated, vertically aggraded sandstones interpreted as braided and moderately sinuous channels, in the lower part of the Upper Kharita Member lowstand stage (LST-2). The continuous basin filling, coupled with significant lowering in the surrounding highlands changed the drainage regime into a wide belt of meandering river depositing the transgressive stage (TST-2). The history of the Kharita Formation finalized with a Cenomanian marine transgressive phase. Economically, the TST-1 and HST-1 play a significant role as source rocks for hydrocarbon accumulations, whereas LST-2 act as good reservoir rocks in the Early Cretaceous in the Basin.  相似文献   

12.
The isotopic and geochemical studies of the Upper Cretaceous-Cenozoic flysch sequences of the Kamchatka Peninsula and southern Koryak region revealed that they were formed at least from two sources: one depleted (T) with low 87Sr/86Sr and high positive SrNd(T) values and one enriched (T) with high 87Sr/86Sr and negative SrNd(T) values. The enriched source was likely represented by complexes of ancient upper continental crust. The subduction-related rocks and, to a lesser extent, basalts of mid-oceanic ridges or back-arc basins could serve as a juvenile source for most of the flysch sediments. The Upper Cretaceous flysch sediments differ from their Cenozoic analogues in composition. The Upper Cretaceous rocks are dominated by enriched upper crustal material. The Cenozoic sequences of the Ukelayat Trough and Paleocene-Eocene sequences of the Kumroch Range contain a substantial amount of island-arc volcanoclastic material; the Eocene flysch of Karaginskii Island is compositionally similar to the Upper Cretaceous flysch sequences.  相似文献   

13.
西藏班公湖地区竟柱山组时代及其构造意义   总被引:9,自引:0,他引:9  
上白垩统竟柱山组呈近EW向分布于班公湖–怒江缝合带内,该组以陆相磨拉石建造为特征,角度不整合在蛇绿岩及老的海相地层之上,从早到晚由河流相向湖泊相演化。本文以班公湖–怒江缝合带西段的班公湖地区出露的竟柱山组为主要研究对象,对其岩性特征、沉积环境及形成时代进行了分析,认为竟柱山组为班公湖–怒江特提斯洋全面闭合后的陆相山间盆地沉积,是洋陆转换全面完成之后的陆相沉积。本文首次对班公湖地区竟柱山组进行了ESR年代学、磁性地层学研究,得出了研究区竟柱山组底部砾岩的ESR年龄为92.0±9.0 Ma,古地磁测年显示该组的底界年龄约为96 Ma。班公湖地区在96 Ma左右全面完成了由洋到陆的转换,进入了陆内环境。  相似文献   

14.
C and Sr isotope compositions of carbonate rocks from the intracontinental São Francisco basin can track ocean connections and restriction. The lower three formations of the Bambuí Group can be grouped into three chemostratigraphic intervals (CI), recording different evolution stages of the basin. Lowermost CI-1 comprises the basal cap carbonates of the Sete Lagoas Formation displaying an initial C negative excursion, followed by a coeval C and Sr positive excursions (δ13C values from − 5 to 0‰ and 87Sr/86Sr ratios from 0.7074 to 0.7082) in 10 m of stratigraphic record. It marks a change from a restricted shallow basin influenced by freshwater to a basin connected to external seawaters due to marine transgression. CI-2 comprises carbonates of the middle portion of the Sete Lagoas Formation with δ13C values around 0‰ and 87Sr/86Sr ratios around 0.7082 that matches those observed worldwide for the Late Ediacaran. It records the onset of a Gondwana sea pathway connecting several epicontinental basins, allowing migration of index-fossil Cloudina sp. Uppermost CI-3 starts after a major positive excursion in the δ13C values reaching + 16‰ and a steepened decrease of 87Sr/86Sr ratios to 0.7075 which are lower than those expected for the Ediacaran-Cambrian boundary. This interval comprises the upper Sete Lagoas, Serra de Santa Helena and Lagoa do Jacaré formations and records the end of the connection of the São Francisco basin to the Gondwana sea pathway setting a restricted epeiric sea. Restriction was probably caused by Late Ediacaran uplifting of orogenic belts surrounding the basin. Other West Gondwana Cloudina bearing units also display the same mismatch in the Sr isotope ratios, suggesting that the establishment of intracontinental basins inside large continental masses may challenge the use of isotope chemostratigraphy for interbasinal correlations.  相似文献   

15.
A new Cenozoic dataset in the subsurface of the South Flank of the Golfo San Jorge Basin (Santa Cruz province) allowed to identify a non-previously recognized transgressive event of late Eocene to early Oligocene age. Below of a marine succession containing a dinoflagellate cyst assemblage that characterizes the C/G palynological zone of the Chenque Formation (early Miocene), a 80–110 m thick marine succession contains a palynological assemblage integrated by Gelatia inflata, Diphyes colligerum and Reticulatosphaera actinocoronata supporting the occurrence of a marine incursion in the basin during the Eocene–Oligocene transition (EOT). The new lithostratigraphic unit - here defined as El Huemul Formation – covers in sharp contact to the Sarmiento Formation, and become thinner from East to West; the unit has been identified in about 1800 well logs covering up to 3500 km2, and its subsurface distribution exceed the boundaries of the study area. The El Huemul Formation consists of a thin lag of glauconitic sandstones with fining-upward log motif, followed by a mudstone-dominated succession that coarsening-upward to sandstones, evidencing a full T-R cycle. Preservation of the El Huemul Formation in the subsurface of the South Flank has been favored by the reactivation of WNW-ESE late Cretaceous normal faults, and by the generation of N–S striking normal faults of Paleocene-Eocene age. Flexural loading associated to igneous intrusions of Paleocene?- middle Eocene age also promoted the increase of subsidence in the South Flank of the basin prior to the transgression.  相似文献   

16.
Abstract

The upper Lower Carboniferous to lowermost Permian terrigenous succession of the Spiti Valley can be subdivided into five formations (Thabo Formation, Fenestella Shale, Kabjima Quartzarenite, Chichong Formation and Ganmachidam Diamictite), here described in detail and subdivided into members or lithozones.

The Po Group, overlying the platform carbonates and gypsum deposits of the Lipak Formation, records an increase of subarkosic to quartzarenitic terrigenous detritus derived from uplift and erosion of continental blocks in the south during the initial stage of Neo-Tethyan rifting. Increasing mineralogic stability through the Thabo Formation broadly coincides with a climate change from tropical arid to temperate humid conditions during the Visean-Serpukhovian. The Fenestella Shale, containing rich brachiopod associations of Bashkirian age, documents a stage of widespread subsidence and transgression, followed by the regressive Kabjima Quartzarenite, which records recycling of quartzose sedimentary sequences in the south.

The Chichong Formation marks another transgressive event, associated with a significant increase of granitoid detritus, partly from nearby Lesser to High Himalayan source areas. Chaetetid, cephalopod and brachiopod faunas hint at a Moscovian age for the “Chaetetid beds”, at the top of which varve-like lamination and scattered pebbles suggest glacially influenced deposition. The overlying glacio-fluvial (?) cobble conglomerates (“Pebbly beds”) reflect onset of rapid tectonic uplift.

Abundant detritus from sedimentary rocks characterizes the overlying Ganmachidam Diamictite, deposited in glacio-marine environments; cold-water marine faunas of Asselian age occur in its middle part. Erosion of progressively older pre-rift sedimentary successions is ascribed to basin inversion, associated with unroofing of anatectic granitoids of the Lesser and High Himalayas. Basaltic to rhyolitic volcanic detritus documents alkalic magmatism at the climax of continental rifting.  相似文献   

17.
The Upper Cretaceous (Campanian) Kenilworth Member of the Blackhawk Formation (Mesaverde Group) is part of a series of strand plain sandstones that intertongue with and overstep the shelfal shales of the western interior basin of North America. Analysis of this section at a combination of small (sedimentological) and large (stratigraphical) scales reveals the dynamics of progradation of a shelf-slope sequence into a subsiding foreland basin. Four major lithofacies are present in the upper Mancos and Kenilworth beds of the Book Cliffs. A lag sandstone and channel-fill shale lithofacies constitutes the thin, basal, transgressive sequence, which rests on a marine erosion surface. It was deposited in an outer shelf environment. Shale, interbedded sandstone and shale, and amalgamated sandstone lithofacies were deposited over the transgressive lag sandstone lithofacies as a wave-dominated delta and its flanking strand plains prograded seaward. Analysis of grain size and primary structures in Kenilworth beds indicates that there are four basic strata types which combine to build the observed lithofacies. The fine- to very fine-grained graded strata of the interbedded facies are tempestites, deposited out of suspension by alongshelf storm flows (geostrophic flows). There is no need to call on cross-shelf turbidity currents (density underflows) to explain their presence. Very fine- to fine-grained hummocky strata are likewise suspension deposits created by waning storm flows, but were deposited under conditions of more intense wave agitation on the middle shoreface. Cross-strata sets in this region are bed-load deposits that accumulated on the upper shore-face, in the surf zone. Lag strata are multi-event, bed-load deposits that are the product of prolonged storm winnowing. They occur on transgressive surfaces. While the graded beds are tempestites in the strict sense, all four classes of strata are storm deposits. The distribution of strata types and their palaeocurrent orientations suggests a model of the Kenilworth transport system driven by downwelling coastal storm flows, and probably by a northeasterly alongshore pressure gradient. The stratification patterns shift systematically from upper shoreface to lower shoreface and inner shelf lithofacies partly because of a reduction in fluid power expenditure with increasing water depth, but also because of progressive sorting, which resulted in a decrease in grain size in the sediment load delivered to successive downstream environments. The Kenilworth Member and an isolated outlier, the Hatch Mesa lentil, constitute a delta-prodelta shelf depositional system. Their rhythmically bedded, lenticular, sandstone and shale successions are a prodelta shelf facies, and may be prodelta plume deposits. Major Upper Cretaceous sandstone tongues in the Book Cliffs are underlain by erosional surfaces like that beneath the Blackhawk Formation, which extend for many tens of kilometres into the Mancos shale. These surfaces are the boundaries of Upper Cretaceous depositional sequences. The sequences are large-scale genetic stratigraphic units. They result from the arranging of facies into depositional systems; the depositional systems are in turn stacked in repeating arrays, which constitute the depositional sequences. The anatomy of these foreland basin sequences differs  相似文献   

18.
Petrographic and geochemical studies of an Upper Eocene reef and associated basinal sediments from the mixed carbonate–siliciclastic fill of the south‐eastern Pyrenean foreland basin near Igualada (NE Spain) provide new insights into the evolution of subsurface hydrology during the restriction of a marine basin. The reef deposits are located on delta‐lobe sandstones and prodelta marls, which are overlain by hypersaline carbonates and Upper Eocene evaporites. Authigenic celestite (SrSO4) is an important component in the observed diagenetic sequences. Celestite is a significant palaeohydrological indicator because its low solubility constrains transportation of Sr2+ and SO42? in the same diagenetic fluid. Stable isotopic analyses of carbonates in the reef indicate that meteoric recharge was responsible for aragonite stabilization and calcite cementation. Sulphur and oxygen isotope geochemistry of the celestite demonstrates that it formed from residual sulphate after bacterial sulphate reduction, but also requires that there was a prior episode of sulphate recycling. Meteoric water reaching the reef and basinal areas was most probably charged with SO42? from the dissolution of younger Upper Eocene marine evaporites. This sulphate, combined with organic matter present in the sediments, fuelled bacterial sulphate reduction in the meteoric palaeoaquifer. Strontium for celestite precipitation was partly derived in situ from dissolution of aragonite corals in the reef and basinal counterparts. However, 87Sr/86Sr data also suggest that Sr2+ was partly derived from dissolution of overlying evaporites. Mixing of these two fluids promoted celestite formation. The carbonate stable isotopic data suggest that the local meteoric water was enriched in 18O compared with that responsible for stabilization of other reefs along the basin margin. Furthermore, meteoric recharge at Igualada post‐dated evaporite deposition in the basin, whereas other parts of the same reef complex were stabilized before evaporite formation. This discrepancy resulted from the spatial distribution of continental siliciclastic units that acted as groundwater conduits.  相似文献   

19.
20.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号