首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Carboniferous Bowland Shale in England, and its correlatives in Ireland, contain anomalously high concentrations of trace elements, including selenium (Se), molybdenum (Mo) and arsenic (As). High levels of these elements reflect high sulphur contents as these elements occur as trace constituents of pyrite. Anomalous Se in particular may have a volcanic provenance, from contemporary volcanic activity and/or drainage from Ordovician volcanogenic sulphide deposits. Following concern over the release of Se and As into groundwater during shale gas extraction in the US, the potential fate of Se and As during any future shale gas extraction from the Bowland Shale merits attention. It is at least an environmental issue that must be managed, but at best it could be an opportunity for extraction of Se in an environmentally sensitive manner.  相似文献   

2.
淮南煤田煤矸石中环境意义微量元素的丰度   总被引:11,自引:0,他引:11  
淮南煤田矿区开采历史长,煤矸石累计堆存量大,从环境意义角度研究该矿区煤矸石具有其典型性和现实性.根据煤矸石来源、矿区主采煤层和岩性特征,在井下煤系地层系统采集原始煤矸石样品44件,运用现代环境微量元素分析技术(INAA和ICP-MS)测定了煤矸石中46种微量元素,并用冷原子吸收法分析Hg、选择性电极法分析F.进而筛选出11种具有环境意义的有害元素:10种金属元素(Cd、Cu、Ni、Sn、Hg、Mn、As、Cr、Pb、Zn)和1种非金属元素F.并以总量法初步预测和评估这些元素的含量水平和潜在的环境影响.与淮南煤及其土壤、世界煤、华北泥岩的对比可知,煤矸石中Cd、Cu、Mn、Ni、Pb、Sn等超出土壤背景值,有必要对这些元素在矿区环境污染迁移性和累积件的环境效应进行深入调查研究.  相似文献   

3.
Bone coal, as a main mining object, can be used by local inhabitants as daily fuel and by local industrial enterprises as industrial fuel in Pinglin County, Shaanxi Province, China. This study reports how the environmental ecosystems have been polluted around the Badao bone coal mine. Geochemical samples (e.g. rock, water, soil, edible plant and animal) were collected. Bone coal from the Badao mine contains Se up to 75 µg/g Se and 28 µg/g Se in ashes after its combustion, with higher contents of other trace elements. Bone coal and its ash seem to be the main geochemical source of trace elements in soils and plants, which may cause contamination of the local environmental ecosystems. Three ways by which soils have been contaminated by these trace elements derived from bone coal are proposed in this paper. Radishes and beans have the ability to accumulate Mo and Se from soils. There is no obvious difference in concentrations of Cu, Cr and F in each plant from the two areas.  相似文献   

4.
大面积采动矿区水环境灾害特征及防治措施   总被引:1,自引:0,他引:1  
矿山采动前后,相应伴生水系调整和水体污染,产生水环境灾害。以阜新新邱矿区为研究对象,在对环境地质情况调查分析基础上,主要从水资源流失、废旧地下采场和露天矿坑积水、矿区地表和地下水质污染等方面探讨了矿区水环境灾害的形成及特征。大面积的开采,造成矿区水资源流失严重,矿山停采后,地下水位逐渐恢复;废旧地下采场和露天矿坑形成的积水,在入渗过程中,通过运移累积、吸附转化、溶解解析和离子交换等水岩作用对地下水产生污染;矿区矿井抽排水和河流水质污染物不同程度超标。针对矿山水环境灾害,建议采用矿山地质环境治理、修建防排水及净水设施、水环境监测等手段进行防治,以使矿区环境得到根本改善。  相似文献   

5.
结合甘肃省灵台县安家庄煤矿地下水环境影响评价实例,建立了评价区水文地质概念模型,并基于Visual MODFLOW对评价区地下水进行了数值模拟计算和验证;预报了设计开采条件下研究区不同含水层的地下水水位。预报结果表明:矿坑排水使得煤层所在含水层出现疏干现象,并且疏干范围随着开采范围的增加而不断扩大;在煤矿开采作用下,随着模拟时间的延续,煤系层上覆白垩系洛河组—宜君组含水层地下水位降落漏斗的范围及地下水位下降幅度不断增大,但降落漏斗的范围基本上不超过采空区范围;煤矿开采对白垩系环河组含水层无影响,至矿区开采期结束,未引起含水层水位下降;对上部孔隙、裂隙潜水含水层也无影响,至矿区开采期结束未引起含水层水位下降。  相似文献   

6.
煤地质学是以煤的形成、组成、煤系伴生矿产、煤层瓦斯和煤层气为主要研究内容的地质学分支。近年来随着我国和世界对煤炭资源安全开采、洁净利用的要求逐渐提高,煤及煤层气资源的勘探与开发,煤地质学的研究重点也在逐渐发生变化。通过分析2011-2015年《国际煤地质学》杂志发表的717篇学术论文,总结了近期煤地质学最新的研究热点与前沿。研究发现:煤层气资源评价以及与煤层气开发关系最为紧密的煤储层物性研究是各国煤地质科技工作者最为关注的热点;煤中的矿物质和元素地球化学一直为人们所重视;与煤的形成、开采和利用相关的煤岩学及有机地球化学,煤的自燃、燃烧与环境,沉积环境与煤炭演化,地理信息系统与矿区环境监测,矿井瓦斯,矿井构造,矿井水和煤的热解等方面的研究一直在持续开展;页岩气资源评价与开发越来越受到人们重视。   相似文献   

7.
With the increasing demand for coal resources, coal mining has gradually entered into the deep strata of coal seams. Although the increase in mining depth improves energy security, it is associated with severe hazards, especially coal and gas outburst. Protective seam mining is an efficient method for gas control and has been widely used in major coal-producing countries. However, studies on deep ultra-thin protective seam (thickness 0.1–1 m, average thickness 0.5 m) mining and its related problems have been rarely reported. Focusing on the challenges resulting from deep mining (mining depth >1100 m) and the research gap, a coal and gas co-exploitation technique, which combines the gas control technology and green mining (including coal preparation and backfilling), has been proposed in this work. Significant benefits have been achieved in the twelfth coal mine of the Pingdingshan coalfield (study area) following the implementation of this technique. The application of the gas control technology markedly improved the gas drainage efficiency, promoted increased gas utilization, and reduced the greenhouse gas emission, providing notable economic and environmental benefits. In addition, implementation of green mining improved the coal quality, relieved the burden of the transport system, and, in particular, effectively prevented surface subsidence, thus protecting the ecological environment of the mining area, which offered significant economic, environmental, and social benefits. The practice in the twelfth coal mine could be used as a valuable example for coal mines with similar geological conditions.  相似文献   

8.
Coal mine rejects and sulfide bearing coals are prone to acid mine drainage (AMD) formation due to aqueous weathering. These acidic effluents contain dissolved trace and potentially harmful elements (PHEs) that have considerable impact on the environment. The behavior of these elements in AMD is mainly controlled by pH. The focus of the present study is to investigate aqueous leaching of mine rejects for prediction of acid producing potential, rates of weathering, and release of PHEs in mine drainage. Mine reject (MR) and coal samples from the active mine sites of Meghalaya, India typically have high S contents (1.8–5.7% in MR and 1.7–4.7% in coals) with 75–90% of the S in organic form and enrichment of most of the PHEs in rejects. Aqueous kinetic leaching experiments on mine rejects showed high acid producing potential and release of trace and potentially harmful elements. The elements (Sb, As, Cd, Cr, Co, Cu, Pb, Mn, Ni, V and Zn) in mine sample leachates are compared with those in mine waters. The concentrations of Al, Si, P, K, Ti, Mn, Fe, Co, Ni, Cu, Zn and Pb are found to increase with leaching time and are negatively correlated with pH of the solution. The processes controlling the release of these elements are acid leaching, precipitation and adsorption. The critical loads of PHEs in water affected by AMD are calculated by comparing their concentrations with those of regulatory levels. The Enrichment Factors (EFs) and soil pollution indices (SPIs) for the elements have shown that PHEs from coal and mine reject samples are mobilized into the nearby environment and are enriched in the associated soil and sediment.  相似文献   

9.
In Brazil, intense coal exploitation activities have led to environmental deterioration, including soil mortification, water contamination, loss of ecosystem, and atmospheric contamination. In addition,considerable quantities of sulfur-rich residues are left behind in the mining area; these residues pose grave environmental issues as they undergo sulfide oxidation reactions. When sulfur oxides come in contact with water, extreme acid leachate is produced with great proportions of sulfate, and hazardous elements(HEs), which are identified as coal drainage(CMD). CMD is an environmental pollution challenge, particularly in countries with historic or active coal mines. To prevent CMD formation or its migration, the source must be controlled; however, this may not be feasible at many locations. In such scenarios, the mine water should be collected, treated, and discharged. In this study, data from 2005 to2010 was gathered on the geochemistry of 11 CMD discharges from ten different mines. There are several concerns and questions on the formation of nanominerals in mine acid drainage and on their reactions and interfaces. The detailed mineralogical and geochemical data presented in this paper were derived from previous studies on the coal mine areas in Brazil. Oxyhydroxides, sulfates, and nanoparticles in these areas possibly go through structural transformations depending on their size and formation conditions. The geochemistry of Fe-precipitates(such as jarosite, goethite, and hematite) existent in the CMD-generating coal areas and those that could be considered as a potential source of hazardous elements(HEs)(e.g., Cr) were also studied because these precipitates are relatively stable in extremely low pH conditions. To simplify and improve poorly ordered iron, strontium, and aluminum phase characterization, field emission scanning electron microscopy(FE-SEM), high-resolution transmission electron microscopy(HR-TEM), micro-Raman spectroscopy, and X-ray diffraction(XRD) and sequential extraction(SE) studies were executed on a set CMD samples from the Brazilian mines. This study aimed to investigate the role of both nanomineral and amorphous phase distribution throughout the reactive coal cleaning rejects profile and HEs removal from the water mine to provide holistic insights on the ecological risks posed by HEs, nanominerals, amorphous phases, and to assess sediments in complex environments such as estuaries.  相似文献   

10.
山东西南部南四湖流域环境地质综合调查   总被引:6,自引:0,他引:6       下载免费PDF全文
本文论述了水体污染、矿山环境地质灾害、地下水环境异常、南四湖淤积、地球化学环境与地方病等环境地质问题,探讨了煤炭开采对南四湖湖容演变的积极影响。湖体及主要人湖河流污染严重;流域内煤炭资源开发引起的矿山环境地质灾害比较严重,地面塌陷面积达112.395km^2;各种固体废弃物积存总量6412.68万t;矿井排水对矿区地下水资源造成严重破坏。地方病以地氟病和克山病为主。在对流域内环境地质问题综合分析的基础上,提出了对流域环境地质问题的治理措施。  相似文献   

11.
露天开采是我国煤矿开采的两大方式之一。与地下开采煤矿类似,露天煤矿在开采过程中同样面临防治水问题,由于我国露天煤矿水害类型相对单一,国内学者鲜有对露天煤矿的水害特征和防治水技术进行深入研究。以我国露天煤矿分布范围为出发点,从充水水源、充水通道、充水强度3方面分析露天煤矿水害特征,得出大气降水、地表水和浅层地下水是主要充水水源;人为开挖形成的直通式通道、强渗透含水层或透水层、垂向导水钻孔、滑坡形成的地表裂缝等是主要充水通道;季节性变化明显、疏排水周期长、排水量大是露天煤矿疏排水主要水害特征的结论。归纳目前我国露天煤矿常用的7种防治水技术,提出露天煤矿由远及近、由上而下、由面至点的立体防治水技术体系。从地下水资源保护和生态环保角度出发,为实现露天煤矿绿色开采和可持续发展,提出以切断补给通道、减小矿坑疏排水量为目的的帷幕截流技术是今后露天煤矿防治水的主要技术方法。   相似文献   

12.
煤矸石中潜在有害微量元素析出过程探讨   总被引:1,自引:0,他引:1  
引入LCA(生命周期评价法)中产品“生命周期”的概念,系统地对煤炭开采的副产品——煤矸石整个“生命周期”中微量元素的析出过程进行了研究。结果表明:煤矸石的整个生命周期是一个微量元素析出—富集—析出的长期过程,随着风化程度的增强,煤矸石的环境影响逐渐增大。   相似文献   

13.
刘卫卫  彭旭  王庆  孙阳 《探矿工程》2017,44(6):62-64,68
煤矿井下定向钻进技术具有钻孔轨迹可精确控制、有效距离长、一孔多用等优点。针对唐家会矿顶板水害,采用定向长钻孔进行预疏放,通过首采工作面的疏放水实践以及穿层钻孔检验,顶板水疏放效果明显,为工作面掘进和回采提供了安全保障。  相似文献   

14.
评价煤矿区地面煤层气抽采的效果,可为煤层气后续开发和矿井开采设计提供技术依据。通过分析目前地面煤层气抽采效果评价现状,结合煤层气资源开发和煤矿安全生产对煤层气抽采效果评价的需要,提出了以煤层气含量降低率和煤层剩余气含量作为评价指标、以煤储层地质条件相近为评价单元划分原则,并在评价单元内实施一定数量检测井实测煤层剩余气含量的煤矿区地面煤层气抽采效果检测与评价方法。在煤储层地质条件划分的前提下,还提出了以煤层气含量降低率和煤层剩余气含量结果为划分依据的煤矿区地面煤层气抽采效果分级方法供探讨。该方法在晋城寺河矿某区块的应用,一定程度上证明了该套煤矿区地面煤层气抽采效果评价方法的合理性和可操作性。   相似文献   

15.
湖南辰溪孝坪煤矿桠杉坡井为岩充水煤矿井,采用跨越法采煤,辅以封闭突水点、废弃巷道、采空区和将矿坑水排泄补给浅部溶洞水,控制了矿坑涌水量,保持了地下水基本平衡,防止了矿坑疏干排水诱发岩溶地面塌陷。其成功经验可供借鉴。  相似文献   

16.
郭庄煤矿七采区北翼涌水点标高-94m,排水管出水口标高-143m,涌水口与出水口垂直落差49m。根据流体力学知识,计算得出排水管路的扬程损失小于49m,满足水自流要求,安设煤矿井下用聚氯乙烯型排水管路两趟,实现绿色、环保、节能排水。  相似文献   

17.
Water is one of the receptors most affected by the impacts caused, especially in the case of mining sulphides and, to a lesser extent, of coal. Acid Mine Drainage (AMD) is the main problem associated with these mining operations, producing extremely high impacts, and in many cases irreversible impacts, until now. A new concept of mining can make this activity compatible with the environmental preservation and also to the recovery of the environment affected by the old mining operations that today are in the process of reopening. This new concept implicates the paradigm of Circular Mining as a derivative of the concept of Circular Economy, considered as a strategy that aims to reduce both the entry of materials and the production of virgin waste, closing the “loops” or economic and ecological flows of resources. The present work discusses the paradigm of Circular Mining, focused on the Iberian Pyrite Belt, one of the most paradigmatic metallogenetic regions in the world. Based on some examples, expeditious calculations show the possibility of recovering base metals as well as strategic elements from acid mine drainage, thus obtaining important economic assets.  相似文献   

18.
酸性矿井水在我国鲁西南、山西、内蒙、云南和贵州等煤矿区普遍存在,酸性矿井水其pH往往在2~5之间,高SO42?、HB、TDS、Fe、Mn。这些物质进入地下水、地表水或土壤后,会对其造成严重危害。文章选择山西阳泉市典型废弃煤矿区山底河流域为研究区,通过水文地质调查,水文地质钻探,水文地质剖面等方法阐述山底流域地层岩性,水文地质条件概况,得出受煤矿开采影响,与天然条件下相比山底河流域的地表水和地下水的补给、径流、排泄条件均发生了根本变化。补给通过破坏产生的导水裂隙带运移,以垂向运动为主;径流通过坑道,导水裂隙带运移,以横向运动为主;排泄以矿坑排水和泉水溢出方式为主。并简述山底河流域煤矿酸性矿井水试验站观测站分布情况与水化学特征。   相似文献   

19.
中国煤中硒的环境地球化学   总被引:1,自引:0,他引:1  
硒是煤中易挥发元素之一。伴随煤炭的开采、利用,煤中硒可能进入环境并引起环境质量的变化,影响生态环境和人体健康。本文在全面综合国内外研究文献的基础上,分析了中国煤中硒在不同省份、不同成煤时代中的含量及分布规律,总结了硒在煤中的赋存状态、形成机理和影响因素,概括了煤在燃烧和淋溶过程中硒的迁移转化及其环境影响,指出中国煤中硒的含量在不同煤田、不同成煤时代及不同变质程度的煤中,含量差别较大,全国平均值约为5.60 mg/kg。  相似文献   

20.
As hydrogeological conditions of coal field in North China are complicated, coal mine water hazards have been occurring frequently. Nearly 80% of coal mines are affected by Ordovician and Permo-Carboniferous Karst water. According to rough statistics, 200 incidents of water inrush have occurred since 1950, 1,500 persons have died, and there is an economic loss of 3 billion Yuan (RMB). The climate of North China belongs to drought or semi-drought zone. So the recharge amount of ground water by infiltration of precipitation is limited. Stronger coal mine water drainage has brought a series of environmental problems, such as water resource and lots of famous Karst springs exhausted, surface collapse emerged, mine water contaminated. Coal mine water hazards are so serious that the economic benefit of coal mines is dropping. Sustainable development of coal mines is affected. So, preventing coal mine water hazards and protecting geological environment are essential. This thesis focuses on preventing coal mine water hazards technologies. The technologies include four aspects: exploration of hydrogeological conditions; prediction and forecast of water inrush; mining under safe water pressure; and sealing off groundwater by grouting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号