首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The combined information about the stratigraphies from the foreland basins surrounding the Swiss Alps, exhumation mechanisms and the structural evolution of the Alpine orogenic wedge allow an evaluation of the controls of erosion rates on large-scale Alpine tectonic evolution. Volumetric data from the Molasse Basin and fining-upward trends in the Gonfolite Lombarda indicate that at ∼20 Ma, average erosion rates in the Alps decreased by >50%. It appears that at that time, erosion rates decreased more rapidly than crustal uplift rates. As a result, surface uplift occurred. Because of surface uplift, the drainage pattern of the Alpine hinterland evolved from an across-strike to the present-day along-strike orientation. Furthermore, the decrease of average erosion rates at ∼20 Ma coincides with initiation of a phase of thrusting in the Jura Mountains and the Southern Alpine nappes at ∼50 km distance from the pre-20-Ma thrust front. Coupled erosion-mechanical models of orogens suggest that although rates of crustal convergence decreased between the Oligocene and the present, the reduction of average erosion rates at ∼20 Ma was high enough to have significantly influenced initiation of the state of growth of the Swiss Alps at that time. Received: 8 June 1998 / Accepted: 30 October 1998  相似文献   

2.
3.
Precise provenance analysis of andesite and dacite pebbles from conglomerates in the Eastern Alpine Molasse zone, using geochemical and geochronological methods, provides evidence for a synorogenic volcanic chain in the Eastern Alps which is completely eroded today. This volcanism was related to Periadriatic magmatism along the Periadriatic lineament and took place in the Palaeogene, roughly between 40 and 30 Ma. The occurrence of remnants of these volcanic rocks together with other marker lithologies in the Eastern Alpine Molasse, implies an early to middle Miocene drainage system which was, in some respects, similar to the present Inn river system, but had a considerably larger catchment area, reaching farther south. The Palaeo-Inn drained the central and eastern sections of the Periadriatic magmatic belt to the northern foreland basin.  相似文献   

4.
Denudation rates from cosmogenic 10Be measured in quartz from recent river sediment have previously been used in the Central Alps to argue that rock uplift occurs through isostatic response to erosion in the absence of ongoing convergence. We present new basin-averaged denudation rates from large rivers in the Eastern and Southern European Alps together with a detailed topographic analysis in order to infer the forces driving erosion. Denudation rates in the Eastern and Southern Alps of 170–1,400 mm ky−1 are within a similar range to those in the Central Alps for similar lithologies. However, these denudation rates vary considerably with lithology, and their variability generally increases with steeper landscapes, where correlations with topographic metrics also become poorer. Tertiary igneous rocks are associated with steep hillslopes and channels and low denudation rates, whereas pre-Alpine gneisses usually exhibit steep hillslopes and higher denudation rates. Molasse, flysch, and schists display lower mean basin slopes and channel gradients, and, despite their high erodibility, low erosion rates. Exceptionally low denudation rates are also measured in Permian rhyolite, which has high mean basin slopes. We invoke geomorphic inheritance as a major factor controlling erosion, such that large erosive glaciers in the late Quaternary cold periods were more effective in priming landscapes in the Central Alps for erosion than in the interior Eastern Alps. However, the difference in tectonic evolution of the Eastern and Central Alps potentially adds to differences in their geomorphic response; their deep structures differ significantly and, unlike the Central Alps, the Eastern Alps are affected by ongoing tectonic influx due to the slow motion and rotation of Adria. The result is a complex pattern of high mountain erosion in the Eastern Alps, which has evolved from one confined to the narrow belt of the Tauern Window in late Tertiary time to one affecting the entire underthrust basement, orogenic lid, and parts of the Southern Alps today.  相似文献   

5.
The response of fluvial systems to tectonic activity and climate change during the Late Pleistocene influenced sedimentary processes and hence the conditions of river terraces formation. The northern Alpine foreland is well adapted for such studies due to the high sediment input and the variety of depositional environments. This study focuses on sediments of a part of the Rhine River in the area of Basel, at the Border between Switzerland, Germany and France. A detailed evolution of the Lower Terrace is inferred from sedimentological, geomorphologic and pedological observations as well as historical documents, and calibrated using different dating methods (optically stimulated luminescence, uranium series disequilibrium, radiocarbon). The Lower Terrace was deposited during two periods (30–15 ka and 13–11 ka), which correlate with two cold climatic phases, representing the Last Glaciation of the Alps and the Younger Dryas. These ages underline that main incision of the Lower Terrace braidplain in the area of Basel is restricted to post Younger Dryas times, as sediments of that age (13–11 ka) are found atop the highest levels. From then on, a flight of cut-terraces were formed with minor re-accumulation due to Holocene flood events. These findings demonstrate that the surface of a terrace does not always represent the age of sediment aggradation, and this should be remembered when using terraces to reconstruct the tectonic history of an area.  相似文献   

6.
ABSTRACT Data are presented about modern sediment discharge of the Swiss rivers and related to the size of catchments. The information reveals that the Central Alps have experienced denudation rates of ≈0.15 mm yr−1 in the foreland, and ≈0.5 mm yr−1 in the Alpine core. Mapping, however, indicates that modern erosion only affects 30–50% of the Alpine surface, and that fluvial and associated hillslope processes have focused erosion in 50–200-m-deep valleys. These valleys are incised into the glacial surface. If this limited spatial extent of erosion is considered, then effective erosion rates are significantly higher than average denudation rates. These effective rates equal or locally exceed modern rates of rock uplift. This implies that the modification of erosional processes related to the Pleistocene/Holocene climate change has resulted in an increase in the relief at a local scale. At a drainage basin scale, however, the relief appears not to change at present.  相似文献   

7.
W. Sissingh 《Tectonophysics》1998,300(1-4):249-284
Comparative tectonostratigraphic analysis of the Tertiary (Middle Eocene–Pliocene) of the Rhine–Bresse graben system and the western Molasse Basin demonstrates the occurrence of eleven correlative sequences (CRF I–XI). These show a close relationship between intra-basinal tectonics and depositional history. Their punctuated sediment accumulation can be related to phases of extra-Alpine taphrogenesis and Alpine orogenesis, and to coeval eustatic changes in sea-level. Apparent simultaneity in rift and foredeep sequence development, structural deformation and global change in sea-level suggests a common causal control in which the development of the Alps played an important role.  相似文献   

8.
In this study, we use contrasting zircon fission track age signatures of Alpine detritus and detritus derived from the Variscan realm to trace sediment pathways in Central Europe. Our data show that the Molasse Basin was connected with the Rhine Graben Sea during the Mid-Oligocene, thus joining the North Sea to the Paratethys. Within the Rhine Graben Sea, fairly strong south–north directed currents existed, transporting sand-sized Alpine detritus nearly 300 km towards the north. A connection between the Rhône-Bresse Graben and the Rhine Graben and/or the French Molasse Basin and the Swiss Molasse Basin, by contrast, is not supported by the fission track data. This may be explained by the existence of submarine rises that hampered the transport of sand-sized sediment towards the north/northeast.  相似文献   

9.
The Wilhelmine Alpe section near Immenstadt (Allgäu, south Germany), which represents one of the best continuously exposed outcrops within the northern Alpine foreland basin, has been analyzed for magnetostratigraphic and palynostratigraphic signals. The section comprises the marine-to-terrestrial transition from Lower Marine (UMM) to Lower Freshwater Molasse (USM) sediments. Based on the correlation of the local magnetic pattern with the geomagnetic polarity timescale (GPTS) and palynostratigraphic data, an age of about 31 Ma is suggested for the UMM–USM transition in the Wilhelmine Alpe section. A comparison with coeval magnetostratigraphic sections from central and eastern Switzerland indicates that the regression of the UMM sea along the southern margin of the Molasse basin occurred strongly heterochronously between 31.5 and 30 Ma. The heterochroneity is attributed to the deposition of fan-delta and alluvial fan sediments which document that the overall marine conditions during the UMM were accompanied by strong clastic input derived from the rising Alps. This clastic contribution had a much stronger influence on the depositional pattern than previously thought.  相似文献   

10.
Re-evaluation of the river history, palaeosurface levels and exhumation history in northern Switzerland for the last 10 million years reveals that distinct morphotectonic events about 4.2 and 2.8 million years ago (Ma) caused major reorganisation of river networks and morphosculpture. As a result of the earlier formation of the Swiss Jura, potential relief energy in the piggy-back North Alpine Foreland Basin (NAFB) of northern central Switzerland south of the Jura fold belt was built up after 11–10 Ma. It was suddenly released by river capture at about 4.2 Ma when the Aare-Danube was captured by a tributary of the Rhône-Doubs river system which rooted southeast of the Black forest. This event triggered rapid denudation of weakly consolidated Molasse sediments, in the order of about 1 km, as constrained by apatite fission track data from drillholes in the NAFB. Likely mechanisms of river capture are (a) headward erosion of Rhône-Doubs tributaries, (b) uplift and rapidly increasing erosion of the Swiss Alps after about 5.3 Ma, and (c) gravel aggradation at the eastern termination of the Jura fold belt in the course of eastward and northward tilt of the piggy-back NAFB. A morphotectonic event between 4.2 and 2.5 Ma, probably at about 2.8 Ma, caused a phase of planation, accompanied by local gravel aggradation and temporary storage of Alpine debris. Between 2.8 and 2.5 Ma, the Aare-Rhône river system is cannibalised by the modern Rhine River, the latter later connecting with the Alpine Rhine River.  相似文献   

11.
Fission-track cooling ages of detrital apatite (AFT) in the East Alpine Molasse Basin display age groups corresponding to geodynamic events in the orogen since Jurassic times. These age groups are typical of certain thermotectonic units, which formed a patchwork in the Swiss and Eastern Alps. By a combination of petrographic and thermochronologic data, progressive erosion of source terrains is monitored in different catchments since the Oligocene. The AFT cooling ages show a decrease in lag time until when rapidly cooled debris derived from tectonically exhumed core complexes became exposed. After termination of tectonic exhumation, lag times of debris derived from the core complexes increased. Neither on the scale of the entire Eastern Alps, or on the scale of individual catchments, steady-state exhumation is observed, due to the highly dynamic changes of exhumation rates since Late Eocene collision.  相似文献   

12.
Magnetostratigraphic studies in the Oligocene to Miocene north Alpine foreland basin of Switzerland suggest a post-middle Miocene (< 13 Ma) clockwise rotation of the Swiss Alps. The angle of rotation is 16–17° with respect to the present-day earth's magnetic field. This rotation can be observed in 12 sections analysed for palaeomagnetic directions which cover a lateral distance of ≈ 250 km (SW–NE extension). The rotation angle shows neither a significant change throughout the examined period of deposition, nor is it dependent on the tectonic position of the individual regions in the basin (autochthonous or allochthonous Molasse).  相似文献   

13.
Balancing lateral orogenic float of the Eastern Alps   总被引:2,自引:0,他引:2  
Oligocene to Miocene post-collisional shortening between the Adriatic and European plates was compensated by frontal thrusting onto the Molasse foreland basin and by contemporaneous lateral wedging of the Austroalpine upper plate. Balancing of the upper plate shortening by horizontal retrodeformation of lateral escaping and extruding wedges of the Austroalpine lid enables an evaluation of the total post-collisional deformation of the hangingwall plate. Quantification of the north–south shortening and east–west extension of the upper plate is derived from displacement data of major faults that dissect the Austroalpine wedges. Indentation of the South Alpine unit corresponds to 64 km north–south shortening and a minimum of 120 km of east–west extension. Lateral wedging affected the Eastern Alps east of the Giudicarie fault. West of the Giudicarie fault, north–south shortening was compensated by 50 to 80 km of backthrusting in the Lombardian thrust system of the Southern Alps. The main structures that bound the escaping wedges to the north are the Inntal fault system (ca. 50 km sinistral offset), the Königsee–Lammertal–Traunsee (KLT) fault (10 km) and the Salzach–Ennstal–Mariazell–Puchberg (SEMP) fault system (60 km). These faults, as well as a number of minor faults with displacements less than 10 km, root in the basal detachment of the Alps. The thin-skinned nature of lateral escape-related structures north of the SEMP line is documented by industry reflection seismic lines crossing the Northern Calcareous Alps (NCA) and the frontal thrust of the Eastern Alps. Complex triangle zones with passive roof backthrusts of Middle Miocene Molasse sediments formed in front of the laterally escaping wedges of the northern Eastern Alps. The aim of this paper is a semiquantitative reconstruction of the upper plate of the Eastern Alps. Most of the data is published elsewhere.  相似文献   

14.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

15.
Paleofloristic data imply that paleoclimate changed in the Swiss Alps at the Oligocene/Miocene boundary from humid and hot conditions toward a climate with high temperature and low humidity. The aridization is associated with a change in depositional pattern from alluvial fans to lakes and floodplains, suggesting decreasing sediment discharge. A further 25-40% decrease of sediment discharge occurred at ca. 20 Ma when the orogenic core of the Alps became exposed to the surface. We applied a surface processes model to explore potential controls on the pattern of sediment discharge and on the evolution of the Alpine drainage basin. The model is based on the presumption that the rates of fluvial incision into bedrock are proportional to shear-stress exerted by the flowing water. The model results imply that the paleoclimate change resulted in an instantaneous decrease of sediment discharge and a vertical topographic growth until steady-state conditions between erosional and crustal mass flux are established. However, exposure of the crystalline core of the Alps at ca. 20 Ma is likely to have resulted in the 25-40% decrease of sediment discharge and the reorganization of the drainage pattern from an orogen-normal to an orogen-parallel orientation of dispersion.  相似文献   

16.
We present a quantification of total and partial (divided by time slices) sedimentary volumes in the Neogene basins of the Betic-Rif orogen. These basins include the Alboran Sea, the intramontane basins, the Guadalquivir and Rharb foreland basins and the Atlantic Margin of the Gibraltar Arc. The total volume of Neogene sediments deposited in these basins is ~ 209,000 km3 and is equally distributed between the internal (Alboran Basin and intramontane basins) and the external basins (foreland basins and Atlantic Margin). The largest volumes are recorded by the Alboran Basin (89,600 km3) and the Atlantic Margin (81,600 km3). The Guadalquivir and Rharb basins amount 14,000 km3 and 14,550 km3, respectively whereas the intramontane basins record 9235 km3. Calculated mean sediment accumulation rates for the early-middle Miocene show an outstanding asymmetry between the Alboran basin (0.24 mm/yr) and the foreland basins (0.06-0.07 mm/yr) and the Atlantic Margin (0.03 mm/yr). During the late Miocene, sedimentation rates range between 0.17 and 0.18 mm/yr recorded in the Alboran Basin and 0.04 mm/yr in the intramontane basins. In the Pliocene-Quaternary, the highest sedimentation rates are recorded in the Atlantic Margin reaching 0.22 mm/yr. Sedimentary contribution shows similar values for the inner and outer basins with a generalized increase from late Miocene to present (from 3500 to 6500 km3/My). Interestingly, the Alboran Basin records the maximum sedimentary contribution during the late Miocene (5500 km3/My), whereas the Atlantic Margin does during the Pliocene-Quaternary (6600 km3/My). The spatial and time variability of the sediment supply from the Betic-Rif orogen to basins is closely related to the morphotectonic evolution of the region. The high sedimentation rates obtained in the Alboran Basin during the early-middle Miocene are related to active extensional tectonics, which produced narrow and deep basins in its western domain. The highest sedimentary contribution in this basin, as well as in the foreland and intramontane basins, is recorded during the late Miocene due to the uplift of wide areas of the Betics and Rif chains. The analysis of the sedimentary supply also evidences strong relationships with the post-Tortonian crustal thickening and coeval topographic amplification that occurred in the central Betics and Rif with the concomitant evolution of the drainage network showing the fluvial capture of some internal basins by rivers draining to the Atlantic Ocean (the ancestral Guadalquivir).  相似文献   

17.
Foreland folding     
In the northern foreland of the Alps lithospheric subplate boundaries such as the Rheingraben may be distinguished from structures developed by deformation of the main plate boundary (foreland folding in the strict sense). The latter consists of a very gentle lithospheric bulge (foreland trough and welt) of regional dimensions, and superposed smaller-scale features which are sometimes compressive (Jura) and sometimes extensive (normal faults in the eastern Molasse basin). An explanation is sought in the distribution of weak and strong masses under the Alps and their foreland; a pronounced intracrustal low-velocity cushion under the Alps, and various incompetent sedimentary layers under the foreland. As the subducted lithosphere below and the competent crust above the intracrustal cushion are affected by different boundary displacements, separate stress systems are set up for the two and are superposed in the foreland. Under some circumstances the bending stresses of the lithospheric bulge may predominate and cause extensional (normal) faulting, whereas under other circumstances compression of the supra-cushion crust may be the dominant influence and cause focal mechanisms typical for horizontal compression or, where there is a suitable decollement horizon, even thrusting and folding.  相似文献   

18.
This study documents sediment infill features and their responses to the tectonic evolution of the Sichuan Basin and adjacent areas. The data include a comparison of field outcrops, well drillings, inter-well correlations, seismic data, isopach maps, and the spatial evolution of sedimentary facies. We divided the evolutionary history of the Sichuan Cretaceous Basin into three stages based on the following tectonic subsidence curves: the early Early Cretaceous (145–125 Ma), late Early Cretaceous to early Late Cretaceous (125–89.8 Ma), and late Late Cretaceous (89.8–66 Ma). The basin underwent NW–SE compression with northwestward shortening in the early Early Cretaceous and was dominated by alluvial fans and fluviolacustrine sedimentary systems. The central and northern areas of the Sichuan Basin were rapidly uplifted during the late Early Cretaceous to early Late Cretaceous with southwestward tilting, which resulted in the formation of a depression, exhibited southwestward compression, and was characterized by aeolian desert and fluviolacustrine deposits. The tectonic framework is controlled by the inherited basement structure and the formation of NE mountains, which not only affected the clastic supply of the sedimentary basin but also blocked warm-wet currents from the southeast, which changed the climatic conditions in the late Late Cretaceous. The formation and evolution of Cretaceous sedimentary basins are closely related to synchronous subtle far-field tectonism and changes in climate and drainage systems. According to the analysis of the migration of the Cretaceous sedimentation centers, different basin structures formed during different periods, including periods of peripheral mountain asynchronous thrusting and regional differential uplift. Thus, the Sichuan Cretaceous sedimentary basin is recognized as a superimposed foreland basin.  相似文献   

19.
We demonstrate that increasing erosion during the kinematic evolution of a thrust wedge will lead to out‐of‐sequence thrusting as a result of backwards critical taper movement. In‐sequence thrusting in the Subalpine German Molasse Basin built a critical‐tapered foreland Coulomb thrust wedge. Later, out‐of‐sequence thrusts dissected all but the frontal duplex stacks. The footwall/hangingwall relation visible on seismic data proves the out‐of‐sequence nature of the latest thrusting stage. Establishing a stable drainage system leads to increased erosion in elevated areas of the thrust wedge, resulting in flattening of the critical wedge. In order to keep its predefined angle, the critical wedge repositions and the tip of the taper moves towards the hinterland. Thus, thrusting will also reposition and move towards the hinterland.  相似文献   

20.
Apatite fission-track analyses along a W–E-orientated transect across northern Corsica indicate an important episode of crustal exhumation in late early Miocene time. Samples taken from the Alpine orogenic wedge, from the adjacent foreland basin and from the crystalline basement complex flooring the basin are completely reset. This implies that a ≥ 2.0–2.3-km-thick crustal section made of thrust sheets and/or autochthonous foreland deposits has been removed by erosion since early Miocene time. A geometric projection of this lost cover towards the west indicates that all of northern Corsica was covered either by Alpine nappes or middle Eocene foreland deposits. Fission-track ages are the same across the main boundary fault system separating the Alpine orogenic wedge and the foreland, indicating the absence of significant differential vertical displacement between upper and lower plates during Neogene unroofing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号