首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
The short-term variability observed in the near surface meteorological parameters and in the vertical thermal structure of the upper layers of the northern Bay of Bengal during a weak monsoonal regime is examined with the aid of time series measurements. The variability of the mixed layer depth is interpreted in terms of forced mixing caused by the surface wind stress and free mixing by buoyancy flux, Ekman pumping controlled by the curl of the surface wind stress, convergence associated with a clockwise gyral circulation and stratification caused by freshwater discharges from rivers. The daily-averaged current vectors in the upper layers indicate the presence of clockwise gyral circulation in the polygon area.  相似文献   

2.
Satellite-derived sea-ice extent in the Indian Ocean Sector during the period November 1978 to December 2006 was studied in relation to the atmospheric forcing and oceanic thermohaline structure. The study revealed that sea-ice extent increased when the ocean exhibited higher stability. Low sea-ice extent was observed during 1985 to 1993, when the zonal winds and latent flux was relatively weak and when the ocean exhibited strong vertical mixing facilitated by low stability thereby, deepening the mixed layer to ∼250 m. This was reflected in the ocean surface layer temperature, which was relatively warm (−0.3°C). Winds increased during 1996 to 2000, but due to higher oceanic stability mixed layer depth shallowed (< 200 m) leading to reduced vertical mixing of deep warmer layers with the surface water, leading to an enhancement in the sea-ice extent.  相似文献   

3.
This paper discusses the observations of the Atmospheric Surface Layer (ASL) parameters during the solar eclipse of August 11th, 1999. Intensive surface layer experiments were conducted at Ahmedabad (23‡21′N, 72‡36′E), the western part of India, which was close to the totality path. This rare event provided by nature is utilised to document the surface layer effects during the eclipse period using measurements of high frequency fluctuations of temperature, tri-axial wind components as well as mean parameters such as temperature, humidity, wind speed and subsoil temperature. Analysis showed that during the eclipse period, the turbulence parameters were affected leading to the suppression of the turbulence process, the main dynamic process in the atmospheric boundary layer, while the mean parameters showed variations within the natural variability of the observational period. The spectra of the wind components and temperature indicated decrease in spectral power by one order in magnitude during the eclipse period. The rate of dissipation of turbulent kinetic energy is found to decrease by more than one order during the eclipse period. The stability parameter showed a change from unstable to stable condition during the period of eclipse and back to unstable condition by the end of eclipse  相似文献   

4.
Time-series data on upper-ocean temperature, Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents and surface meteorological parameters have been obtained for the first time in the southern Bay of Bengal at 7‡N, 10‡N, and 13‡N locations along 87‡E during October–November, 1998 under BOBMEX-Pilot programme. These data have been analysed to examine the diurnal variability of upper oceanic heat budget and to estimate the eddy diffusivity coefficient of heat in the upper layer. Diurnal variation of near-surface temperature is typical at northern location (13‡N) with a range of 0.5‡C while the diurnal range of temperature is enhanced to 0.8‡C at the central location (10‡N) due to intense solar radiation (1050 W/m2), clear skies and low wind speeds. At the southern location (7‡N), the diurnal variation of temperature is atypical with the minimum temperature occurring at 2000 hrs instead of at early morning hours. In general, the diurnal curve of temperature penetrated up to 15 to 20 m with decreasing diurnal range with depth. The VM-ADCP measured horizontal currents in the upper ocean were predominantly easterly/northeasterly at southern location, north/northerly at central location and northwesterly at northern location, thus describing a large-scale cyclonic gyre with the northward meridional flow along 87‡E. The magnitudes of heat loss at the surface due to air-sea heat exchanges and in the upper 50 m layer due to vertical diffusion of heat are highest at the southern location where intense convective activity followed by overcast skies and synoptic disturbance prevailed in the lower atmosphere. This and the estimated higher value (0.0235 m2/s) of eddy diffusivity coefficient of heat in the upper ocean (0–50 m depth) suggest that 1-D processes controlled the upper layer heat budget at the southern location. On the other hand, during the fair weather conditions, at the central and northern locations, the upper layer gained heat energy, while the sea surface lost (gained) heat energy at northern (central) location. This and lower values of eddy diffusivity coefficient of heat (0.0045 and 0.0150 m2/s) and the northward intensification of horizontal currents at these locations suggest the greater role of horizontal heat advection over the 1-D processes in the upper ocean heat budget at these two locations.  相似文献   

5.
The intra-seasonal variability observed in the salinity field of the upper layers at a few locations in the east central Arabian Sea and the northern Bay of Bengal during the summer monsoon seasons of 1977 and 1979 is documented with the aid of short time series (1–2 weeks) of salinity measurements made from USSR and Indian ships deployed during MONSOON-77 (1977) and MONEX-79 (1979) field experiments. In the Arabian Sea a typical subsurface maxima observed beneath the mixed layer base either disappeared or considerably weakened due to strong vertical mixing caused by the monsoonal forcing. In the northern Bay of Bengal the salinity variability in the top 30 m water column was rapid and appeared to be influenced by large amounts of fresh water from rain and probably from the major adjoining rivers. Some simple diagnostic calculations are presented to assess the relative importance of various processes which control the observed salinity variability.  相似文献   

6.
The atmospheric boundary layer characteristics observed during the BOBMEX-Pilot experiment are reported. Surface meteorological data were acquired continuously through an automatic weather monitoring system and manually every three hours. High resolution radiosondes were launched to obtain the vertical thermal structure of the atmosphere. The study area was convectively active, the SSTs were high, surface air was warm and moist, and the surface air moist static energy was among the highest observed over the tropical oceans. The mean sea air temperature difference was about 1.25‡C and the sea skin temperature was cooler than bucket SST by 0.5‡C. The atmospheric mixed layer was shallow, fluctuated in response to synoptic conditions from 100 m to 900 m with a mean around 500 m.  相似文献   

7.
The variability in partial pressure of carbon dioxide (pCO2) and its control by biological and physical processes in the mixed layer (ML) of the central and eastern Arabian Sea during inter-monsoon, northeast monsoon, and southwest monsoon seasons were studied. The ML varied from 80–120 m during NE monsoon, 60–80 m and 20–30 m during SW- and inter-monsoon seasons, respectively, and the variability resulted from different physical processes. Significant seasonal variability was found in pCO2 levels. During SW monsoon, coastal waters contain two contrasting regimes; (a) pCO2 levels of 520–685 μatm were observed in the SW coast of India, the highest found so far from this region, driven by intense upwelling and (b) low levels of pCO2 (266 μatm) were found associated with monsoonal fresh water influx. It varied in ranges of 416–527 μatm and 375–446 μatm during inter- and NE monsoon, respectively, in coastal waters with higher values occurring in the north. The central Arabian Sea pCO2 levels were 351–433, 379–475 and 385–432 μatm during NE-inter and SW monsoon seasons, respectively. The mixed layer pCO2 relations with temperature, oxygen, chlorophylla and primary production revealed that the former is largely regulated by physical processes during SW- and NE monsoon whereas both physical and biological processes are important in inter-monsoon. Application of Louanchiet al (1996) model revealed that the mixing effect is the dominant during monsoons, however, the biological effect is equally significant during SW monsoon whereas thermodynamics and fluxes influence during inter-monsoons.  相似文献   

8.
The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60‡N to 60‡S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5‡ x 5‡ and 9 discrete vertical levels. First a spin-up experiment has been done with ECMWF-AMIP 1979 January mean fields. The wind stress, ambient atmospheric temperature, evaporation and precipitation have been used in order to derive mechanical and thermodynamical surface forcings. Next, the experiment has been extended for another 30 years (3 cycles each of 10 year period) with varying surface boundary conditions (from January 1979 to December 1988 of ECMWF-AMIP monthly fields for each cycle) along with 120 years extended spin-up control run's results as initial conditions. The results presented here are for the last 10 years simulations. The preliminary results of this experiment show that the model is capable of simulating some of the general features and the pattern of interannual variability of the ocean.  相似文献   

9.
Characteristics of aerosols in the Atmospheric Boundary Layer (ABL) obtained from a bistatic CW lidar at Trivandrum for the last one decade are used to investigate the role of ABL micro-meteorological processes in controlling the altitude distribution and size spectrum. The altitude structure of number density shows three distinct zones depending on the prevailing boundary layer feature; viz, the well-mixed region, entertainment region and upper mixing region. In the lower altitudes vertical mixing is very strong (the well-mixed region) the upper limit of which is defined as aerosol-mixing height, is closely associated with the low level inversion. The aerosol mixing height generally lies in the range 150 to 400 m showing a strong dependence on the vertical eddy mixing processes in ABL. Above this altitude, the number density decreases almost exponentially with increase in altitude with a scale height of 0.5–1.5 km. The aerosol mixing height is closely associated with the height of the Thermal Internal Boundary Layer (TIBL). Sea-spray aerosols generated as a result of the interaction of surface wind with sea surface forms an important component of mixing region aerosols at this location. This component shows a non-linear dependence on wind speed. On an average, depending on the season, the mixing region contributes about 10–30% of the columnar aerosol optical depth (AOD) at 0.5Μm wavelength. A long term increasing trend (∼ 2.8% per year) is observed in mixing region AOD from 1989 to 1997. A study on the development of the aerosols in the nocturnal mixing region shows that the convectively driven daytime altitude structure continues to persist for about 4–5 hrs. after the sunset and thereafter the altitude structure is governed by vertical structure of horizontal wind. Stratified aerosol layers associated with stratified turbulence is very common during the late night hours.  相似文献   

10.
The depth profiles of electrical conductance, δ18O,210Pb and cosmogenic radio isotopes10Be and36Cl have been measured in a 30 m ice core from east Antarctica near the Indian station, Dakshin Gangotri. Using210Pb and δ18O, the mean annual accumulation rates have been calculated to be 20 and 21 cm of ice equivalent per year during the past ∼ 150 years. Using these acumulation rates, the volcanic event that occurred in 1815 AD, has been identified based on electrical conductance measurements. Based on δ18O measurements, the mean annual surface air temperatures (MASAT) data observed during the last 150 years indicates that the beginning of the 19th century was cooler by about 2‡ C than the recent past and the middle of 18th century. The fallout of cosmogenic radio isotope10Be compares reasonably well with those obtained on other stations (73‡ S to 90‡ S) from Antarctica and higher latitudes beyond 77‡N. The fallout of36Cl calculated based on the present work agrees well with the mean global production rate estimated earlier by Lal and Peters (1967). The bomb pulse of36Cl observed in Greenland is not observed in the present studies – a result which is puzzling and needs to be studied on neighbouring ice cores from the same region.  相似文献   

11.
Analysis of monthly momentum transport of zonal waves at 850 hPa for the period 1979 to 1993, between ‡S and ‡N for January to April, using zonal (u) and meridional (v) components of wind taken from the ECMWF reanalysis field, shows a positive correlation (.1% level of significance) between the Indian summer monsoon rainfall (June through September) and the momentum transport of wave zero TM(0) over latitudinal belt between 25‡S and 5‡N (LB) during March. Northward (Southward) TM(0) observed in March over LB subsequently leads to a good (drought) monsoon season over India which is found to be true even when the year is marked with the El-Nino event. Similarly a strong westerly zone in the Indian Ocean during March, indicates a good monsoon season for the country, even if the year is marked with El-Nino. The study thus suggests two predictors, TM(0) over LB and the strength of westerly zone in the Indian Ocean during March.  相似文献   

12.
Surface to atmosphere exchange has received much attention in numerical weather prediction models. This exchange is defined by turbulent parameters such as frictional velocity, drag coefficient and heat fluxes, which have to be derived experimentally from high-frequency observations. High-frequency measurements of wind speed, air temperature and water vapour mixing ratio (eddy covariance measurements), were made during the Integrated Ground Observation Campaign (IGOC) of Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) at Mahabubnagar, India (16°44N, 77°59E) in the south-west monsoon season. Using these observations, an attempt was made to investigate the behaviour of the turbulent parameters, mentioned above, with respect to wind speed. We found that the surface layer stability derived from the Monin–Obukhov length scale, is well depicted by the magnitude of wind speed, i.e., the atmospheric boundary layer was under unstable regime for wind speeds >4 m s?1; under stable regime for wind speeds <2 m s?1 and under neutral regime for wind speeds in the range of 2–3 m s?1. All the three stability regimes were mixed for wind speeds 3–4 m s?1. The drag coefficient shows scatter variation with wind speed in stable as well as unstable conditions.  相似文献   

13.
This paper describes the variability in the diurnal range of SST in the north Indian Ocean using in situ measurements and tests the suitability of simple regression models in estimating the diurnal range. SST measurements obtained from 1556 drifting and 25 moored buoys were used to determine the diurnal range of SSTs. The magnitude of diurnal range of SST was highest in spring and lowest in summer monsoon. Except in spring, nearly 75–80% of the observations reported diurnal range below 0.5°C. The distributions of the magnitudes of diurnal warming across the three basins of north Indian Ocean (Arabian Sea, Bay of Bengal and Equatorial Indian Ocean) were similar except for the differences between the Arabian Sea and the other two basins during November–February (winter monsoon) and May. The magnitude of diurnal warming that depended on the location of temperature sensor below the water level varied with seasons. In spring, the magnitude of diurnal warming diminished drastically with the increase in the depth of temperature sensor. The diurnal range estimated using the drifting buoy data was higher than the diurnal range estimated using moored buoys fitted with temperature sensors at greater depths. A simple regression model based on the peak solar radiation and average wind speed was good enough to estimate the diurnal range of SST at ∼1.0 m in the north Indian Ocean during most of the seasons except under low wind-high solar radiation conditions that occur mostly during spring. The additional information on the rate of precipitation is found to be redundant for the estimation of the magnitude of diurnal warming at those depths.  相似文献   

14.
滑移流对浅水湖泊风浪传播特性影响试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
浅水湖泊等有限风吹程及水深水域的风浪多处于发展阶段,风拖曳表层水体产生的滑移流会对风浪传播特性产生影响,风浪的波速、波长等参数难以通过线性波的理论频散关系获取。为准确预测湖泊风浪参数,在考虑浅水湖泊的有限吹程和水深特征的基础上,利用风洞水槽模拟研究了滑移流对风浪传播特性的影响。结果表明:滑移流、斯托克斯流及表面流均与风速正相关,滑移流与表面流比值随着风速的增加逐渐降低并稳定于75%;滑移流对波速和波长有促进作用,对小尺度波浪的促进作用尤其显著;波浪非线性会抑制滑移流对波速及波长的促进作用;建立了考虑滑移流影响的风浪经验频散关系式以及风浪主频波速经验关系式。  相似文献   

15.
浅水湖泊等有限风吹程及水深水域的风浪多处于发展阶段,风拖曳表层水体产生的滑移流会对风浪传播特性产生影响,风浪的波速、波长等参数难以通过线性波的理论频散关系获取。为准确预测湖泊风浪参数,在考虑浅水湖泊的有限吹程和水深特征的基础上,利用风洞水槽模拟研究了滑移流对风浪传播特性的影响。结果表明:滑移流、斯托克斯流及表面流均与风速正相关,滑移流与表面流比值随着风速的增加逐渐降低并稳定于75%;滑移流对波速和波长有促进作用,对小尺度波浪的促进作用尤其显著;波浪非线性会抑制滑移流对波速及波长的促进作用;建立了考虑滑移流影响的风浪经验频散关系式以及风浪主频波速经验关系式。  相似文献   

16.
Nkemdirim  Lawrence C. 《GeoJournal》1984,8(3):197-200
Data on CO, wind velocity and mixing depths collected over a five-year period show a definite association between higher levels of air pollution and SW winds in Calgary (pop. 610,000), a city 110 km E of the Canadian Rockies. The phenomenon most pronounced at wind speeds lower than 3m sec–1 is present during winds of up to 10 m sec–1. The shallow mixing depth associated with southwesterlies in this area appears to be a strong factor in the maintenance of the discrepancy. In addition, a climatological assessment of the distribution of mean mixing depths in the city shows that mixed layers are shallowest and least frequent in the S end of the city thereby increasing the potential for air pollution hazard in that part of the city.  相似文献   

17.
Thermodynamic structure of the marine atmosphere in the region between 80 and 87‡E along 13‡N over the Bay of Bengal was studied using 13 high resolution radiosonde profiles from surface-400 hPa collected onboard ORV Sagar Kanya during the period 27th–30th August, during BOBMEX-99. Saturation point concept, mixing line analysis and conserved variable diagrams have been used to identify boundary layer characteristics such as air mass movement and stability of the atmosphere. The results showed relatively dry air near the ocean surface between 1000 and 950 hPa. This feature is confirmed by the conserved tetav structure in this layer. Further, tetav seldom showed any inversions in this region. The tetae and tetaes profiles showed persistent low cloud layers between 900 and 700 hPa. The conserved variable diagrams (tetae-q) showed the existence of double mixing line structures approximately at 950 and 700 hPa levels.  相似文献   

18.
极端干旱荒漠区典型晴天大气热力边界层结构分析   总被引:3,自引:1,他引:3  
张强  赵映东  王胜  马芳 《地球科学进展》2007,22(11):1150-1159
利用极端干旱区敦煌野外观测试验资料,分析了极端干旱荒漠区夏季典型晴天位温、风速、比湿等主要物理要素的垂直结构特征及其地表热力和近地层大气运动特征的日变化规律。发现在极端干旱地区夏季晴天大气热力边界层结构十分独特。在夜间,贴地逆温层最低在900 m以上,最厚可以达到1 750 m,逆温层上面的残余层一般能达到4 000 m左右的高度。在白天,位温超绝热递减层高达1 000 m,超绝热递减层上面的混合层最高达3 700 m,混合层顶上还有大约450 m甚至更厚的夹卷层。当白天对流层发展达到残余层以后,混合层的发展明显加快。风速和比湿垂直廓线特征很好地印证了大气热力边界层独特的结构特征,地表热力和近地层大气运动特征也为这种独特的大气热力边界层结构提供了较好的物理支持。  相似文献   

19.
 Spatial variations in the density and velocity fields have been observed in the Gareloch (Scotland) during surveys in 1987–1988 and 1993–1994. The variation of the density field has been analyzed on a variety of time scales from semidiurnal to seasonal in order to quantify effects caused by the forcing factors of tidal mixing, freshwater input, and wind. Initial results indicate that water density in the loch is controlled (to a major degree) by the freshwater input from runoff from the local catchment area and from freshwater entering on the flood tide from the Clyde Estuary. It is estimated that during winter periods the high freshwater flows from the rivers Leven and Clyde into the Clyde Estuary account for up to 75% of the freshwater creating the density structure in the loch. Analysis of long-term dissolved oxygen data reveals that major bottom water renewals occurred between July and January in the years 1987–1994. Major bottom water dissolved oxygen renewals have a general trend but during the year sporadic renewals can take place due to abnormal dry spells increasing the density of the water entering from the Clyde, or consistently strong winds from the north reducing stratification in the loch and producing better mixed conditions. Velocities vary spatially, with the highest velocities of up to 0.6 m s–1 being associated with the velocity jet effect at the constriction at the sill of the loch. Observed near-surface mid-loch velocities increased as the vertical density gradients in the upper layers increased. This indicates for the observed conditions that increased stratification in the upper layers inhibits the entrainment rate and hence rate of gain of thickness of the wind-driven surface layer, resulting in increased surface velocities for a given wind speed and direction. The main flow is concentrated in the upper 10 m and velocities below 10 m are low. Observed mean spring tide surface velocities are on average 30% greater than mean neap tide surface velocities. Received: 22 May 1995 · Accepted: 23 August 1995  相似文献   

20.
A bottom-mounted Recording Doppler Current Profiler was placed at an offshore location (depth of 34 m) in the southeast Chukchi Sea, Alaska, from July through December 2007 (UTC) with the objective of linking observed wave activity—wind-sea and swells—to their synoptic drivers. A total of 47 intervals of elevated wave state were recorded: 29 exceeding 1 m significant wave height (SWH), 16 exceeding 2 m SWH, and 3 m exceeded on two occasions; during one of those, a SWH of 4 m was observed. Detailed analysis of the two large events, including comparison with high-resolution reanalysis wind data (North America Regional Reanalysis), showed wave direction from the east, varied about 15° to the north (counterclockwise) from the wind direction, and current flow in the opposite direction (from the west). This is thought to be the influence of a strong “wind-sea” presence. Regarding classic wave limitations, although the SE Chukchi Sea is a large embayment bordered by land to the east, fetch limitations from the northeast and southeast did not appear to be a constraint for the wind speeds indicated by reanalysis. These two events appeared to be driven by winds associated with cyclonic systems that moved into the eastern Bering Sea and stalled. Examination of smaller waves associated with these events suggested that waves of 1.5 m SWH or less are likely part of another regime and can either be swell or wind-sea, moving in from the open Chukchi Sea to the northwest or through the Bering Strait to the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号