首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Kalguty ore-magmatic system comprises two intrusive complexes: the Kalguty granite-leucogranite complex and Eastern Kalguty complex of dikes and small intrusions. U-Pb dating of individual zircon grains from granites of the main intrusive phase demonstrated that the crystallization age of small grains of magmatic habits and outer rims of large grains is almost concordant and is 216 ± 3 Ma. Ar-Ar isotope study shows that the K-Ar system of biotites from granites of the main phase within the Kalguty ore field was disturbed (radiogenic Ar was partially lost) and gave an age of 202 ± 1 Ma. The Ar-Ar dating of muscovites from intraore and postore dikes of the Eastern Kalguty complex devoid of signatures of postmagmatic recrystallization and superimposed greisenization gave similar ages of 205–201 Ma. This date is considered as the emplacement age of the Eastern Kalguty dikes and associated complex W-Mo-Bi-Be ore mineralization. Sm-Nd and Pb-Pb isotopic study of granites, ongonites, and elvans of the Kalguty ore-magmatic system and host rocks shows that these systems were closed. For example, recalculation of Nd isotopic ratios for corresponding ages of crystallization of magmatic systems (216 and 205 Ma) shows that ?Nd(T) values decrease from ?1.9 to ?3.5 ... ?5.08 with transition from granite-leucogranite to subvolcanic granite porphyry, ongonite, and elvan dikes with corresponding increase of model ages of protoliths from 1.0 to 1.25 Ga. Lead isotopic ratios for leaching residues of whole-rock samples of all rock varieties (206Pb/204Pb = 18.305–18.831; 207Pb/204Pb = 15.527–15.571) are plotted well below the line of average crustal lead evolution according to the Stacey-Kramers model.  相似文献   

2.
南岭成矿带加里东期大花岗岩基的钨锡成矿潜力是近年来地质学家关注的热点。本文以湖南省彭公庙岩体为研究对象,精确厘定了产于彭公庙岩体内部的石牛仙钨矿的形成时代,同时厘定了彭公庙岩体中粗粒黑云母花岗闪长岩形成时代,分析了其地球化学特征,并与典型的成钨锡矿花岗岩进行对比,以此评估其钨锡成矿潜力。黑云母花岗闪长岩LA-ICP-MS锆石和独居石U-Pb年龄分别为436.1±2.5 Ma(MSWD=1.9,n=19)和436.8±2.8 Ma(MSWD=2.7,n=20),指示其侵位于早志留世。石牛仙钨矿床白云母39Ar/40Ar同位素坪年龄为150.2±1.2 Ma(MSWD=0.42),成矿时代与彭公庙成岩时代明显不同。彭公庙岩体分异程度不高,成矿元素W和Sn含量低,主要来源于上地壳贫粘土的变质砂岩,与南岭典型的成钨、成锡花岗岩分异程度高、成矿元素含量高、来源于富粘土的上地壳物质部分熔融区别明显,说明其成矿潜力有限。最后,在综合前人研究成果的基础之上,指出应综合地球物理、地球化学、构造蚀变信息等资料,重点评价彭公庙岩体内部及周缘晚期晚侏罗世花岗岩岩脉或...  相似文献   

3.
朱永峰 《岩石学报》2012,28(7):2113-2120
在新疆西南天山科桑溶洞地区,新厘定出一套斜长角闪岩-花岗岩地质单元:侵入斜长角闪岩中的新元古代白云母花岗岩(片麻状构造)、以及侵入上述古老岩石单元的早奥陶世花岗岩(块状构造)。片麻状白云母花岗岩中锆石具有热液锆石边、岩浆锆石幔和碎屑锆石核(边-幔-核结构),剔除被热液锆石和碎屑锆石混染的SHRIMP测点,获得岩浆锆石幔的加权平均年龄752.3±5.1Ma(MSWD=0.95),代表岩浆的结晶年龄。块状花岗岩的锆石具有边-核结构,热液锆石边的U-Pb年龄(419.5±5.7Ma)明显偏低。剔除热液锆石和碎屑锆石,获得岩浆锆石的平均U-Pb年龄481.1±4.4Ma(MSWD=0.88),代表花岗岩的结晶年龄。早奥陶世早期,岩浆侵入新元古代片麻状白云母花岗岩中。在晚志留世或者更晚时期,两类花岗岩共同经受了变质热液改造,变质流体交代岩浆锆石,导致锆石溶蚀再生长。  相似文献   

4.
The sequence of rock and ore formation at the Yermakovsky beryllium deposit is established on the basis of geological relationships and Rb-Sr and U-Pb isotopic dating. The Rb-Sr age of amphibolitefacies regional metamorphism is determined for quartz-biotite-plagioclase schist (266 ± 18 Ma) and dolomitized limestone (271 ± 12 Ma) of the Zun-Morino Formation. The U-Pb zircon age of premineral gabbro is 332 ± 1 Ma. The Rb-Sr age of gabbro is somewhat younger (316 ± 8.3 Ma), probably owing to the effect of Hercynian metamorphism on sedimentary rocks of the Zun-Morino Formation and gabbroic intrusion that cuts through it. The U-Pb zircon age of gneissose granite of the Tsagan Complex at the Yermakovsky deposit is 316 ± 2 Ma, i.e., close to the age of metamorphism superimposed on gabbro rocks. The U-Pb zircon age of preore granitic dikes, estimated at 325 ± 3 and 333 ± 10 Ma, is close to the age of gabbro. The Ar/Ar age of amphibole from a granitic dike (302.5 ± 0.9 Ma) probably displays a later closure of this isotopic system or the effect of superimposed processes. The Rb-Sr age of alkali syenite intrusion is 227 ± 1.9 Ma. The U-Pb zircon age of alkali leucogranite stock pertaining to the Lesser Kunalei Complex is 226 ± 1 Ma, while the Rb-Sr age of beryllium ore is 225.9 ± 1.2 Ma. These data indicate that beryllium ore mineralization is closely related in space and time to igneous rocks of the Lesser Kunalei Complex dated at 224 ± 5 Ma and varying from gabbro to alkali granite in composition. Thus, the preore Hercynian magmatism at the Yermakovsky deposit took place ∼330 Ma ago and was completed by metamorphism dated at 271–266 Ma. The ore-forming magmatism and beryllium ore mineralization are dated at 224 ± 5 Ma. Postore magmatic activity is scarce and probably correlated with tectonic melange of host rocks.  相似文献   

5.
The intrusive rocks associated with the large Nezhdaninka gold deposit (Au > 470 t) hosted in the Permian carbonaceous terrigenous sequence have been dated on zircon and rock-forming minerals with precision U-Pb (ID-TIMS) and Rb-Sr methods. The lamprophyre of the dike complex that occurs in the ore field and spatially is related to gold mineralization has concordant U-Pb zircon age (121 ± 1 Ma) and the same isochron Rb-Sr age (121.0 ± 2.8 Ma). The concordant U-Pb zircon age of granodiorite that dominates in the Kurum pluton is 94 ± 1 Ma, whereas the Rb-Sr isochron age of various intrusive rocks from this pluton is 1–4 Ma younger. This difference is caused by long-term cooling of the Kurum pluton and later closure of Rb-Sr isotopic system of biotite (300–350°C) and other rock-forming minerals as compared with U-Pb isotopic system of zircon (~ 900°C). The Rb-Sr age of quartz diorite from the Gel’dy group of stocks (92.6 ± 0.8 Ma) coincides within uncertainty limits with the age of the Kurum pluton. Thus, the rocks pertaining to two epochs of magmatic activity, which developed in the South Verkhoyansk Foldbelt and divided by a time span of 25–28 Ma, are documented in the Nezhdaninka ore field. Taking into account that the age of gold mineralization is no less than 120 Ma, the data obtained allow us to specify the previously proposed formation model of the Nezhdaninka deposit. These data give grounds to rule out the Late Cretaceous Kurum pluton and the Gel’dy group of stocks from constituents of the ore-magmatic system, and to suggest that an Early Cretaceous deep-seated magma source existed beneath the deposit. Along with host terrigenous rocks, this magma source participated in the supply of matter to the hydrothermal system. The Nd, Sr, and Pb isotopic systematics of igneous rocks and ore mineralization in the Nezhdaninka ore field show that the Early and Late Cretaceous magma sources were formed in the Precambrian crust dated at ~1.8 Ga.  相似文献   

6.
本文报道了黑龙江嘉荫和俄罗斯远东Kundur(昆杜尔)地区黑龙江杂岩锆石U-Pb年代学和Hf同位素分析结果,并结合前人研究成果,探讨了黑龙江杂岩的物质组成、形成时代、构造就位时间及物源。黑龙江嘉荫地区黑龙江杂岩中两个石榴石白云母石英片岩(13HYC28-1和13HYC29-1)原岩为流纹岩,其锆石U-Pb年龄分别为185±1Ma和183±1Ma,应代表黑龙江杂岩中存在的中酸性火山岩原岩的形成时代;俄罗斯远东Kundur(昆杜尔)地区石榴石二云母片岩(14RF4-1)和白云母石英片岩(14RF5-1)碎屑锆石年龄频谱主要存在两个年龄区间:183~286Ma和420~525Ma,另外还有少量前寒武纪年龄。这些碎屑锆石年龄组合与佳木斯地块和松嫩-张广才岭地块东缘发育的岩浆事件相对应,揭示其沉积物源应来自于这些火成岩。黑龙江杂岩碎屑锆石年龄数据中早侏罗世的最小峰期年龄(188Ma)代表了黑龙江杂岩原岩成岩时代的下限,结合区内177~165Ma的单矿物变质变形年龄,可以判定黑龙江杂岩的构造就位时间为早侏罗世晚期-中侏罗世。黑龙江杂岩的形成与就位过程揭示了东北亚陆缘早中生代的构造演化历史:中-晚三叠世(240~230Ma),牡丹江洋沿嘉荫-牡丹江断裂裂开并逐渐扩张,早侏罗世期间,古太平洋板块开始向欧亚大陆之下俯冲,受其影响,牡丹江洋俯冲并闭合于早侏罗世晚期-中侏罗世,最终导致佳木斯地块与松嫩-张广才岭地块碰撞拼合以及黑龙江杂岩的构造就位。  相似文献   

7.
The Tagil structure representing a large fragment of the Paleozoic island arc on the eastern slope of the Urals has been sufficiently well studied in its southern part (Middle Urals). In contrast, reliable data on the age and geochemical properties of various, including granitoid, rock complexes available for its northern part are scarce. The first data on the U–Pb LA–ICP–MS age of zircons from quartz diorites of the Man’ya massif of the Petropavlovsk Complex (436 ± 3 Ma, MSWD = 1.3), tonalites of the same complex (439.4 ± 1.3 Ma, MSWD = 1.3), granites of the Yuzhno-Pomur massif of the Severorudnichnyi Complex (422.4 ± 3 Ma, MSWD = 1.5), and titanite of the same massif (423.4 ± 4.4 Ma, MSWD = 0.84) have been obtained. Based on these data combined with the geochemical properties of the host rocks, the conclusion that they were crystallized at the initial stages of the formation of comagmatic volcanic series is supported; by their composition, granitoids correspond to island arc igneous rocks.  相似文献   

8.
狮吼山矿区是江西省内规模最大的矽卡岩型硫铁多金属矿床,伴生W、Cu、Au多种成矿元素,成矿作用与矿区出露的茶山迳复式花岗岩体有关。岩体主要包括茶山迳似斑状黑云母二长花岗岩和莲湖细粒二长花岗岩两期,为研究成矿岩体的侵位时代、岩石成因及与成矿的关系,本次工作进行了U-Pb锆石定年、岩相学和岩石地球化学等测试分析。结果表明:岩体具有高硅、高钾、富铝的特征,属高钾钙碱性系列花岗岩;轻重稀土元素分馏明显,均为右倾型,弱Eu负异常,以富集Cs、Rb、Th、U、Pb,亏损Ba、Nb、Sr、和Ti等元素为主要特征,属于低Ba-Sr壳源花岗岩类;锆石具较好晶形,具典型岩浆锆石特征,利用LA-ICP-MS进行U-Pb测年,获得谐和年龄为(162.4±0.6)Ma(MSWD=1.8),加权平均年龄为(162.4±1.4)Ma(MSWD=1.4),谐和年龄与加权平均年龄在误差范围内高度一致,表明茶山迳复式岩体侵位于燕山早期中侏罗世;综合考虑岩体矿物组合、主微量元素及高分异特征,认为其成因分类应属于S型花岗岩;对比中国花岗岩成矿元素平均含量,茶山迳两期花岗岩均具有较高的W、Mo、Bi、Pb等成矿元素含量,可同时为成矿作用提供热源、流体及物质。  相似文献   

9.
1 Introduction The South China Block (SCB), located between the Qinling-Dabie and Songma Indosinian sutures, experienced successively two important tectonic movements during the Mesozoic, i.e. the Indosinian movement (early Mesozoic) and the Yanshanian movement (late Mesozoic). Therefore, the generally accepted viewpoint is that the key geological problems during the Mesozoic are essentially the dynamics and material expression of these two tectonic movements in South China (Chen et al.…  相似文献   

10.
The zircon SHRIMP dating of the Zhangtiantang granite gave an age of 159±7 Ma., which shows that the granite was produced at the early Late Jurassic. The Ar-Ar plateau ages of biotite and K-feldspar from the Zhangtiantang pluton are 153.2±1.1 Ma and 135.8±1.2 Ma, respectively. The Ar-Ar anti-isochrone ages of biotite and K-feldspar are 152.5±1.7Ma and 135.4±2.7Ma, respectively. The ages represent the isotopic closure ages of minerals in the pluton. The Zhangtiantang granites are regarded as peraluminous crust-derived type granites to possess the typical geochemical characteristics of calc-alkaline rocks on continental margin, with enriched Si, K, Al (average value of A/CNK as 1.18), HREE, Rb, U, and Th, heavily depleted V, Cr, Co, Ni, Ti, Nb-Ta, Zr, Sr, P, and Ba, strongly negative Eu and common corundum normative (average value of C as 1.84). The εNd(t) values of the Zhangtiantang granite are −5.84 to −7.79, and t 2DM values are 1.69 to 1.83 Ga, which indicates partial melting of continental-crust metamorphic sedimentary rocks during the Middle Proterozoic. The cooling history of the Zhangtiantang granitic pluton indicates that the cooling velocity of pluton was faster (about 67°C/Ma) from zircon (158 Ma) to biotite (152 Ma), and was slower (about12°C/Ma) from biotite (152.5 Ma) to K-feldspar (135.8 Ma). It can be deduced that the temporal gap (about 10 Ma) between the granite formmation and W-Sn mineralization in South China may be related to ordinary magma-hydrothermal processes by the variational cooling curve of the pluton. The Zhangtiantang pluton was formed in a compressive setting, with differentiation evolution and mineralization occurring in a relative relaxation setting.  相似文献   

11.
冈底斯岩基广泛发育三叠纪-中新世的岩浆岩,是研究与新特提斯洋北向俯冲和印度-欧亚大陆碰撞相关的构造岩浆作用特征的天然实验室。日多地区花岗岩体位于藏南墨竹工卡县东侧日多乡附近,其主体为花岗岩,被花岗闪长玢岩脉侵入。锆石U-Pb地质年代学表明:主体花岗岩形成于62.7±0.5Ma,侵入其中的花岗闪长玢岩脉形成于59.5±1.5Ma,并捕获了大量的侏罗纪岩浆岩锆石(155.4±1.8Ma)。日多地区花岗岩体的全岩地球化学特征为:(1)高Si O_2、Na_2O、Al_2O_3,低Fe O~T、MgO、Ti O_2;(2)富集轻稀土(LREE),亏损重稀土(HREE)及高场强元素Nb、Ta、Ti、P元素;(3)具有Eu负异常,总体显示高钾钙碱性、过铝质花岗岩和岛弧型岩浆岩特征。锆石Hf同位素特征暗示其岩浆源区为基性下地壳物质。花岗闪长玢岩脉裹挟大量侏罗纪岩浆型锆石,表明冈底斯岩基拉萨以东地区可能经历了较广泛的晚侏罗世岩浆作用。  相似文献   

12.
The paper reports newly obtained data on the geochronology of the Dovyren intrusive complex and associated metarhyolites of the Inyaptuk Formation in the Synnyr Range. The data were obtained by local LA-ICPMS analysis of zircons in samples. The U-Pb age of olivine-free gabbronorite from near the roof of the Yoko-Dovyren Massif is 730 ± 6 Ma (MSWD = 1.7, n = 33, three samples) is close to the estimated age of 731 ± 4 Ma (MSWD = 1.3, n = 56, five samples) of a 200-m-thick sill beneath the pluton. These data overlap the age of recrystallized hornfels found within the massif (“charnockitoid”, 723 ± 7 Ma, MSWD = 0.12, n = 10) and a dike of sulfidated gabbronorite below the bottom of the massif (725 ± 8 Ma, MSWD = 2.0, n = 15). The estimates are also consistent with the age of albite hornfels (721 ± 6 Ma, MSWD = 0.78, n = 12), which was produced in a low-temperature contact metamorphic facies of the host rocks. The average age of the Dovyren Complex is 728.4 ± 3.4 Ma (MSWD = 1.8, n = 99) based on data on the sill, near-roof gabbronorite, and “charnockitoid”) and is roughly 55 Ma older than the estimate of 673 ± 22 Ma (Sm-Nd; [13]). The U-Pb system of zircon in two quartz metaporphyre samples from the bottom portion of the Inyaptuk volcanic formation in the northeastern part of the Yoko-Dovyren Massif turns out to be disturbed. The scatter of the data points can be explained by the effect of two discrete events. The age of the first zircon population is then 729 ± 14 Ma (MSWD = 0.74, n = 8), and that of the second population is 667 ± 14 Ma (MSWD = 1.9, n = 13). The older value pertains to intrusive rocks of Dovyren, and the age of the “rejuvenated” zircon grains corresponds to the hydrothermal-metasomatic processes, which affected the whole volcano-plutonic sequence and involved the serpentinization of the hyperbasites. This is validated by the results of Rb-Sr isotopic studies with the partial acid leaching of two serpentinized peridotite samples from the Verblyud Sill. These studies date the overprinted processes at 659 ± 5 Ma (MSWD = 1.3, n = 3).  相似文献   

13.
大悟杂岩位于大别山西段,主体为花岗质片麻岩。为了限定其形成与变形过程,本文综合运用锆石U-Pb法和白云母~(40) Ar/~(39) Ar法进行年代学研究。锆石U-Pb LA-ICP-MS法对这些花岗质片麻岩定年结果显示:锆石的Th/U值为0.79~4.29,属于典型的岩浆锆石特征;206Pb/238 U的加权平均年龄为(810±63)Ma(n=12,MSWD=0.021),代表这些花岗质片麻岩的形成时代。大悟杂岩核部花岗质片麻岩的白云母坪年龄为(210.5±1.4)Ma,相应的等时线年龄为(211.6±2.5)Ma。这些新的研究结果支持以下两点认识:大悟杂岩中的花岗质片麻岩形成于新元古代,而不是白垩纪;这些前寒武纪岩石的构造抬升过程发生在三叠纪晚期(211 Ma)。由于西大别晚三叠世构造与高压—超高压变质岩的出露过程有关,因此,大悟杂岩的变形与高压—超高压变质岩的抬升之间的关系就成为一个耐人寻味的科学问题。同时,由于大悟杂岩中的多数构造面理和线理形成于区域高压—超高压变质作用之后,据此推断西大别三叠纪晚期的变形发生在造山晚期-后造山背景下,伴随着地壳和岩石圈的大规模伸展与减薄。  相似文献   

14.
Neoproterozoic carbonatites and related igneous rocks, including A-type granites in the Tatarka-Ishimba suture zone of the Yenisey Ridge are confined to a horst-anticlinal structure that was formed in a transpression setting during the oblique collision between the Central Angara terrane and the Siberian craton. The carbonatites, associating mafic (including alkaline) dikes as well as the Srednetatarka nepheline syenites are the oldest igneous formations of the Tatarka active continental margin complex. Geochronological data indicate that magmatic evolution continued in the studied anticline for nearly 100 m.y. On the earliest stage carbonatites were formed and on the last stage — the emplacement of mantle-crustal A-type Tatarka granites took place. According to new U/Pb zircon studies, the earliest rocks in the Tatarka pluton are A-type leucogranites aged 646 ± 8 Ma. The younger 40Ar/39Ar ages of carbonatites obtained for phlogopites (647 ± 7 and 629 ± 6 Ma) are related to the last tectonic events in the studied region of the Tatarka-Ishimba suture zone, which are coeval with the formation of the A-type granitoids (646–629 Ma).  相似文献   

15.
The crystallization age of Zhaunkar granites (829 ± 10 Ma) was determined by U–Pb zircon dating. Taking into account the data obtained earlier on the granite age (791 ± 7 Ma) in the Aktas Complex and the syenite age (673 ± 2 Ma) in the Karsakpai Complex, the Ulutau sialic massif is assumed to be composed of three igneous complexes formed during the Tonian–Cryogenian periods of the Neoproterozoic.  相似文献   

16.
粤北大宝山矿区加里东期火山岩的厘定及其地质意义   总被引:6,自引:2,他引:4  
粤北大宝山矿区一带出露一套与层状Fe-Cu-Pb-Zn矿化紧密共生的层状火成岩。层状火成岩产状与上覆页岩及大理岩和下伏碳质页岩基本一致。本文通过层状火成岩显微特征及锆石年龄探讨火成岩形成环境及时代。层状火成岩为斑状结构,块状构造,局部发育条带状构造及流动构造。层状火成岩的斑晶主要由火山喷发形成的棱角明显石英、斜长石、钾长石、少量角闪石、黑云母及黄铁矿等晶屑及少量岩屑组成,基质为火山熔浆凝结形成的全晶质矿物,主要由粒度极细的石英、钾长石、绢云母、白云母及少量黑云母等组成,石英和钾长石构成典型的霏细结构。层状火成岩含大量火山碎屑及具流动构造等现象表明其为火山碎屑熔岩类,主要为英安质凝灰熔岩、流纹质凝灰熔岩及角砾熔岩。大宝山矿区中部流纹质凝灰熔岩和东部丘坝一带英安质凝灰熔岩的锆石LA-ICP-MS U-Pb年龄分别为436.4±4.1Ma,MSWD=0.94和434.1±4.4Ma,MSWD=1.9,是加里东期形成的。据大宝山矿区熔岩锆石U-Pb年龄,结合层状熔岩和灰岩及碳质页岩紧密共生及区域深大断裂构造活动特征,我们认为大宝山与层状矿化关系密切的层状火成岩为加里东期海相火山熔岩,粤北一带加里东期海相火山活动可能和形成于加里东期的吴川-四会深大断裂活动有关。  相似文献   

17.
Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb method. Together with previously dated ages, the dates obtained provide important constraints on the timing of late Mesozoic tectonic events in SE China. The volcanic rock samples yield ages of 183.1±3.5 Ma, ca. 141 Ma to 135.8±1.1 Ma, 100.4±1.5 to 97.6±1.1 Ma, confirming three episodes of late Mesozoic volcanic activities, which peaked at 180±5 Ma, 140±5 Ma and 100±5 Ma, respectively, along the Wuyishan belt. Moreover, based on field investigations of these volcano-sedimentary basins, we have recognized two compressional tectonic events along this belt. The early one was characterized by Upper Triassic to Middle Jurassic NNE-trending folds that were intruded by late Jurassic granites; and the late one caused the Lower Cretaceous volcano-sedimentary layer to be tilted. The dated age 152.9±1.4 Ma of the granitic samples from the Hetian granitic pluton in the Changting Basin and that from the Baishiding granitic pluton, 100.2±1.8 Ma, in the Jianning Basin, give the upper boundaries of these two tectonic events respectively. Hence, the late Mesozoic tectonic evolution of SE China was alternated between extension and compression.  相似文献   

18.
苏门答腊岛位于东特提斯构造域,沿该岛分布了大量不同时代和成因的花岗岩,但这些花岗岩的形成时代和延伸以及对比均未能得到很好的界定,也限制了对东南亚主要岩浆岩带延伸及其构造背景的理解.对西苏门答腊实武牙地区新识别出的花岗岩体开展了精细的LA-ICP-MS锆石U-Pb年代学研究.结果显示,3个花岗岩样品的锆石均为典型的岩浆成因,其岩浆年龄分别为215.1±2.4 Ma(MSWD=0.14)、206.1±5 Ma(MSWD=0.22)、214.3±5 Ma(MSWD=0.11),锆石年代学研究表明西苏门答腊存在晚三叠世的岩浆作用.对比东南亚花岗岩省内同期侵入岩认为,西苏门答腊实武牙地区的晚三叠世花岗岩可与东南亚西部花岗岩省进行对比和联系,该套晚三叠世花岗岩可能形成于中特提斯洋初始俯冲的弧后裂谷环境.   相似文献   

19.
The Khan Bogd alkali granite pluton, one of the world’s largest, is situated in the southern Gobi Desert, being localized in the core of the Late Paleozoic Syncline, where island-arc calc-alkaline differentiated volcanics (of variable alkalinity) give way to the rift-related bimodal basalt-comendite-alkali granite association. The tectonic setting of the Khan Bogd pluton is controlled by intersection of the near-latitudinal Gobi-Tien Shan Rift Zone with an oblique transverse fault, which, as the rift zone, controls bimodal magmatism. The pluton consists of the eastern and the western ring bodies and comes into sharp intrusive contact with rocks of the island-arc complex and tectonic contact with rocks of the bimodal complex. The inner ring structure is particularly typical of the western body and accentuated by ring dikes and roof pendants of the country island-arc complex. According to preliminary gravity measurements, the pluton is a flattened intrusive body (laccolith) with its base subsiding in stepwise manner northwestward. Reliable geochronologic data have been obtained for both plutonic and country rocks: the U-Pb zircon age of alkali granite belonging to the main intrusive phase is 290 ± 1 Ma, the 40Ar/39Ar ages of amphibole and polylithionite are 283 ± 4 and 285 ± 7 Ma, and the Rb-Sr isochron yields 287 ± 3 Ma; i.e., all these estimates are close to 290 Ma. Furthermore, the U-Pb zircon age of red normal biotite granite (290 ± 1 Ma) and the Rb-Sr age of the bimodal complex in the southern framework of the pluton are the same. The older igneous rocks of the island-arc complex in the framework and roof pendants of the pluton are dated at 330 Ma. The geodynamic model of the Khan Bogd pluton formation suggests collision of the Hercynian continent with a hot spot in the paleoocean; two variants of this model are proposed. According to the first variant, the mantle plume, after collision with the margin of the North Asian paleocontinent, reworked the subducted lithosphere and formed a structure similar to an asthenospheric window, which served as a source of rift-related magmatism and the Khan Bogd pluton proper. In compliance with the second variant, the emergence of hot mantle plume resulted in flattening of the subducted plate; cessation of the island-arc magmatism; and probably in origin of a local convective system in the asthenosphere of the mantle wedge, which gave rise to the formation of a magma source. The huge body of the Khan Bogd alkali granite pluton and related volcanic rocks, as well as its ring structure, resulted from the caldera mechanism of the emplacement and evolution of magmatic melts.  相似文献   

20.
报道了鞍山地区东山杂岩带奥长花岗岩和二长花岗岩的锆石SHRIMP U-Pb年龄。中粗粒奥长花岗岩中岩浆锆石的年龄为3329 Ma ± 22 Ma (MSWD=9.6),存在年龄为3687~3784 Ma的残余锆石。细粒奥长花岗岩和二长花岗岩中岩浆锆石的年龄分别为3141 Ma ± 8 Ma (MSWD=1.5)和3142 Ma ± 5 Ma (MSWD=0.35)。研究表明,约~3.3 Ga和3.1 Ga是鞍山地区2个重要的地壳演化阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号