首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G were investigated by different analytical techniques. All these materials have a geological (basaltic) matrix and are therefore useful in igneous geochemistry as matrix-matched reference materials for microanalytical techniques. The new GS glasses have trace elements in groups at concentration levels of about < 0.01, 5, 50 and 500 μg g-1. Their major element compositions have been determined by EPMA, and trace elements have been analysed by LA-ICP-MS and two isotope dilution techniques using TIMS and ICP-MS. EPMA and LA-ICP-MS analyses indicated that the USGS reference glasses are homogeneous at the μm to mm scale with respect to major (variations < 1-2%) and most trace elements (variations 1-4%). Trace element data obtained from the different analytical techniques agreed within an uncertainty of 1-5%, indicating that between method results are comparable. Therefore, the preliminary working values for the four USGS GS glasses calculated from these data have a low level of uncertainty.  相似文献   

2.
To test whether the silicate reference glasses BAM‐S005‐A and BAM‐S005‐B from BAM (The Federal Institute for Materials Research and Testing, Germany) are suitable materials for microanalysis, we investigated the homogeneity of these reference glasses using the microanalytical techniques EPMA, LA‐ICP‐MS and SIMS. Our study indicated that all major and most trace elements are homogeneously distributed at micrometre sampling scale in both types of glass. However, some trace elements (e.g., Cs, Cl, Cr, Mo and Ni) seem to be inhomogeneously distributed. We also determined the composition of BAM‐S005‐A and BAM‐S005‐B. The EPMA data of major elements confirmed the information values specified by the certificate. With the exception of Sr, Ba, Ce and Pb, our trace element data by LA‐ICP‐MS were also in agreement with the certified values within the stated uncertainty limits. The reasons for the discrepancy in these four elements are still unclear. In addition, we report new data for twenty‐two further trace elements, for which the concentrations were not certified. Based on our investigation, we suggest that both of these materials are suitable for many microanalytical applications.  相似文献   

3.
电子探针定量分析是采用元素A在待测样品中的特征X射线强度与标准样品中元素A特征X射线强度相比较而进行的,要实现未知样品的元素定量分析必须要具有相应的标准样品,目前可用于铀元素分析的电子探针分析标准样品极少,且缺乏与天然矿物成分、结构近似的标准样品。国际和国内已经制定了电子探针标准物质研制的规范(GB/T 4930—2008/ISO14595:2003),按该规范规定的方法研究了产于陕西光石沟铀矿床的晶质铀矿,结果表明:这些晶质铀矿晶形发育好,颗粒大,具备良好的纯度、均匀性和稳定性。随机选择30个颗粒进行均匀性检测,UO2和PbO在95%的置信区间的平均浓度不确定度分别为0.275%和0.060%,具备非常好的均匀性;该晶质铀矿在电子探针电子束长时间(如360s)轰击下和在自然条件下存放,均具有良好的稳定性;采用五家实验室化学分析定值方法确定了该晶质铀矿的化学成分,并计算了不确定度,主量元素UO2为(86.80±0.36)%,PbO为(4.80±0.07)%,其他元素也给出了参考值。综合以上研究结果:产于光石沟铀矿床的晶质铀矿满足GB/T 4930—2008关于电子探针定量分析标准样品的各项判据,是一个潜在的适用于铀矿物化学成分电子探针定量分析使用的天然矿物标准样品。  相似文献   

4.
5.
We report on the major and trace element composition and homogeneity of NIST (National Institute of Standards and Technology) glass standard reference materials 611, 612, 614, and 1834 for use as microanalytical trace element standards in laser ablation-inductively coupled plasma-mass spectrometry. The four analyzed NIST glasses were not designed as microanalytical standards, but their availability and careful preparation made them obvious candidates. Our data indicate that NIST 1834 is inhomogeneous on a scale of 100 mg with respect to several trace elements. Within analytical uncertainty, NIST 611, 612, and 614 are apparently homogeneous.  相似文献   

6.
In situ laser ablation analyses rely on the microanalytical homogeneity of reference materials (RMs) and a similar matrix and mass fraction between unknown samples and RMs to obtain reliable results. Suitable carbonate and phosphate RMs for determination of Sr isotope ratios in such materials are limited. Thus, we determined 87Sr/86Sr ratios of several carbonate (JCt‐1, JCp‐1, MACS‐1, MACS‐3) and phosphate (MAPS‐4, MAPS‐5, NIST SRM 1400, NIST SRM 1486) international RMs using dissolved samples and two different multi‐collector inductively coupled plasma‐mass spectrometers (MC‐ICP‐MS). Our Sr isotope data are in agreement with published data and have an improved measurement precision for some RMs. For MACS‐1, we present the first 87Sr/86Sr value. We tested the suitability of these materials for microanalytical analyses by LA‐MC‐ICP‐MS, with two different laser ablation systems: a conventional nanosecond laser and a state‐of‐the‐art femtosecond laser. We investigated the RMs micro‐homogeneity and compared the data with our solution data. Both laser ablation systems yielded identical 87Sr/86Sr ratios within uncertainty to the solution data for RMs with low interferences of REEs. Therefore, these carbonate and phosphate RMs can be used to achieve accurate and precise results for in situ Sr isotope investigations by LA‐MC‐ICP‐MS of similar materials.  相似文献   

7.
Although over recent years, sensitivity and precision of modern analytical techniques have continuously improved, traditional analytical specification for the particle size of samples has remained at 74 μm (-200 mesh). For this reason, the uncertainty caused by inhomogeneity in test portions of the sample itself has become a more and more significant contribution to the total analytical uncertainty. Therefore, to reduce this total uncertainty, the first step is to improve the homogeneity by reducing the particle size of a sample. For this purpose, we have investigated a method for the preparation of ultra-fine reference materials. Using the modern ultra-fine crushing technique (jet mill), six marine sediment samples MSAn and MSCS-1 to 5 were prepared and the particle distributions of these samples were measured using a laser particle-analyser. The average particle size of these samples was 4–5 (im and the largest particle size was less than 30 (im. MSAn will be used as the sample for a future GeoPT(tm) proficiency testing round and MSCS-1 to 5 will be prepared as reference materials. All geochemical laboratories are welcome to participate in this co-operative research programme. The processing and use of ultra-fine samples (< 30 μm) will have a significant influence on the future development of geoanalytical techniques as a consequence of the potential reduction in the mass of test portion and the development of new geoanalytical systems.  相似文献   

8.
This paper contains the results of an extensive isotopic study of United States Geological Survey GSD‐1G and MPI‐DING reference glasses. Thirteen different laboratories were involved using high‐precision bulk (TIMS, MC‐ICP‐MS) and microanalytical (LA‐MC‐ICP‐MS, LA‐ICP‐MS) techniques. Detailed studies were performed to demonstrate the large‐scale and small‐scale homogeneity of the reference glasses. Together with previously published isotopic data from ten other laboratories, preliminary reference and information values as well as their uncertainties at the 95% confidence level were determined for H, O, Li, B, Si, Ca, Sr, Nd, Hf, Pb, Th and U isotopes using the recommendations of the International Association of Geoanalysts for certification of reference materials. Our results indicate that GSD‐1G and the MPI‐DING glasses are suitable reference materials for microanalytical and bulk analytical purposes.  相似文献   

9.
The in situ measurement of Sr isotopes in carbonates by MC‐ICP‐MS is limited by the availability of suitable microanalytical reference materials (RMs), which match the samples of interest. Whereas several well‐characterised carbonate reference materials for Sr mass fractions > 1000 µg g?1 are available, there is a lack of well‐characterised carbonate microanalytical RMs with lower Sr mass fractions. Here, we present a new synthetic carbonate nanopowder RM with a Sr mass fraction of ca. 500 µg g?1 suitable for microanalytical Sr isotope research (‘NanoSr’). NanoSr was analysed by both solution‐based and in situ techniques. Element mass fractions were determined using EPMA (Ca mass fraction), as well as laser ablation and solution ICP‐MS in different laboratories. The 87Sr/86Sr ratio was determined by well‐established bulk methods for Sr isotope measurements and is 0.70756 ± 0.00003 (2s). The Sr isotope microhomogeneity of the material was determined by LA‐MC‐ICP‐MS, which resulted in 87Sr/86Sr ratios of 0.70753 ± 0.00007 (2s) and 0.70757 ± 0.00006 (2s), respectively, in agreement with the solution data within uncertainties. Thus, this new reference material is well suited to monitor and correct microanalytical Sr isotope measurements of low‐Sr, low‐REE carbonate samples. NanoSr is available from the corresponding author.  相似文献   

10.
地质标准物质均匀性检验方法评介与探讨   总被引:6,自引:6,他引:0  
评介了目前中国地质标准物质研制中样品均匀性检验与评价所用方法,包括:检测方法,统计判别模式,结果的定性、定量表达和最小取样量确定等。对照国家相关技术规范、国际标准化组织导则和国际地质分析者协会的地质标准物质定值协议,探讨了我国地质标准物质均匀性检验与评价中的难点及现存问题。  相似文献   

11.
We present data on the concentration, the isotope composition and the homogeneity of boron in NIST silicate glass reference materials SRM 610 and SRM 612, and in powders and glasses of geological reference materials JB-2 (basalt) and JR-2 (rhyolite). Our data are intended to serve as references for both microanalytical and wet-chemical techniques. The δ11 B compositions determined by N-TIMS and P-TIMS agree within 0.5% and compare with SIMS data within 2.5%. SIMS profiles demonstrate boron isotope homogeneity to better than δ11 B = 2% for both NIST glasses, however a slight boron depletion was detected towards the outermost 200 μm of the rim of each sample wafer. The boron isotope compositions of SRM 610 and SRM 612 were indistinguishable. Glasses produced in this study by fusing JB-2 and JR-2 powder also showed good boron isotope homogeneity, both within and between different glass fragments. Their major element abundance as well as boron isotope compositions and concentrations were identical to those of the starting composition. Hence, reference materials (glasses) for the in situ measurement of boron isotopes can be produced from already well-studied volcanic samples without significant isotope fractionation. Oxygen isotope ratios, both within and between wafers, of NIST reference glasses SRM 610 and SRM 612 are uniform. In contrast to boron, significant differences in oxygen isotope compositions were found between the two glasses, which may be due to the different amounts of trace element oxides added at ten-fold different concentration levels to the silicate matrix.  相似文献   

12.
郑存江 《岩矿测试》2005,24(4):284-286
在分析地质标准物质标准值不确定度来源的基础上,提出了在多个实验室协作研制地质标准物质时,协作单位除提供重现性检测数据外,还应分别提供各项目检测数据的合成不确定度。分析方法或实验室之间的平均值的合成不确定度按不等精度方法处理。标准物质标准值的不确定度由分析方法、检测实验室、样品均匀性和样品稳定性的不确定度合成后乘以扩展不确定度置信水平下的包含因子而得。  相似文献   

13.
中国地质标准物质文献(1980~2010)综述   总被引:3,自引:1,他引:2  
评介了20世纪80年代中国首批地质标准物质诞生以来发表的有关地质标准物质的文献,包括:综合性评述,研制成果总结,样品加工、粒度检测、均匀性检测、稳定性检测评价、定值方式方法、不确定度评价、量值溯源等制备技术方法的研究与评述,研制工作的其它评述、专著等。最后对比了国内外地质标准物质的文献状况。  相似文献   

14.
Four silicate glasses were prepared by the fusion of about 1 kg powder each of a basalt, syenite, soil and andesite to provide reference materials of natural composition for microanalytical work. These glasses are referred to as ‘Chinese Geological Standard Glasses’ (CGSG) ‐1, ‐2, ‐4 and ‐5. Micro and bulk analyses indicated that the glasses are well homogenised with respect to major and trace elements. Some siderophile/chalcophile elements (e.g., Sn, Pt, Pb) may be heterogeneously distributed in CGSG‐5. This paper provides the first analytical data for the CGSG reference glasses using a variety of analytical techniques (wet chemistry, XRF, EPMA, ICP‐AES, ICP‐MS, LA‐ICP‐MS) performed in nine laboratories. Most data agree within uncertainty limits of the analytical techniques used. Discrepancies in the data for some siderophile/chalcophile elements exist, mainly because of possible heterogeneities of these elements in the glasses and/or analytical problems. From the analytical data, preliminary reference and information values for fifty‐five elements were calculated. The analytical uncertainties [2 relative standard error (RSE)] were estimated to be between about 1% and 20%.  相似文献   

15.
Five new natural white mica reference materials (RMs) were developed for in situ H2O content analyses by secondary ion mass spectrometry at the SwissSIMS laboratory of Lausanne University, Switzerland. The white mica reference materials cover a large part of the natural muscovite–phengite compositional range and are therefore suitable as reference materials for the analysis of natural rocks as well as individual minerals. The independent H2O content of the reference materials UNIL_WM1 to UNIL_WM5 was obtained by thermal conversion elemental analyser and corresponds to 4.35 ± 0.02, 4.33 ± 0.03, 4.30 ± 0.07, 4.50 ± 0.02 and 4.42 ± 0.11 (% m/m, ± 1s), respectively. SIMS determinations of H2O content revealed a matrix effect correlated to the FeO content of white mica. The compositional range in FeO of the reference materials that were calibrated for H2O determination is from 1.13% to 3.67% m/m. No crystallographic orientation dependency was observed at the level of homogeneity of these reference materials. An analytical precision of 0.02% to 0.08% m/m (1SE) is expected for the final uncertainty on measurements of unknown white micas in natural samples.  相似文献   

16.
铌钽精矿标准物质研制   总被引:2,自引:2,他引:0  
铌钽精矿标准物质在监控选冶样品分析的过程起到重要作用,在选厂及冶金系统有很大的需求,国内外的文献检索均未发现铌钽精矿标准物质的报道;而铌钽矿物的性质决定了铌钽精矿的粉碎粒度及均匀性对铌钽精矿标准物质的研制提出了更高的要求。本文阐述了4个铌钽精矿标准物质的研制过程,铌钽精矿采集于宜春及尼日利亚铌钽选厂,样品经气流粉碎和高铝球磨两次细碎及机械混匀后,随机抽取包装好的样品进行均匀性和稳定性检验及定值。采用电感耦合等离子体发射光谱法与质谱法(ICP-OES/MS)进行均匀性和稳定性检验,结果表明样品的均匀性和稳定性良好。采用多个实验室协同测试的定值方式,利用不同原理的分析方法对此样品的铌钽等12个元素进行定值,给出了各定值元素的认定值和不确定度。4个铌钽精矿标准物质Ta(Nb)_2O_5的含量为9. 89%、20. 55%、40. 79%、53. 69%,形成一个从粗精矿到精矿较为完整的含量体系,可以满足选冶试验各阶段流程样品分析对标准物质的需求。  相似文献   

17.
Microanalysis of native gold specimens has been hampered by the lack of a suitable reference material (RM) known to be sufficiently homogeneous at the scale of microanalytical sampling. The suitability of gold reference material AuRM2 for microanalysis was assessed. This RM was created for bulk analysis of refined gold and was only certified for homogeneity at the bulk scale. However, it contains trace elements in appropriate mass fraction ranges for analysis of native gold. This study was not intended to provide alternative mass fractions from the original certified values, only to assess its suitability for microanalytical methods. Micro‐scale (~ 3.4 μg sample mass) heterogeneity was calculated from measurement repeatability of LA‐ICP‐MS analyses of AuRM2 by factoring in signal (represented by counting statistics) and instrument set‐up‐specific variability (determined using measurement variability of a reference material known to be homogeneous). Elements determined to be homogeneous or to have minor heterogeneity (< 10% calculated heterogeneity RSD) are Mg, Al, Ti, Fe, Ni, Cu, Zn, Se, Rh, Sn, Sb, Pt and Pb. Elements with moderate heterogeneity (10–20% heterogeneity RSD) are: Mn, As, Pd, Te and Bi. Correlation of element mass fractions indicates that micro‐scale inclusions of chalcophile‐rich phases along grain boundaries may be responsible for some of the chemical heterogeneity. However, the level of heterogeneity is statistically negligible compared with the ranges of chemical signatures observed in sample populations of native gold. Therefore, AuRM2 is shown to be sufficiently homogenous at a micro‐scale for use as a RM for microanalysis of native gold.  相似文献   

18.
Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate mass fractionation during oxygen isotope measurement. Over one thousand SIMS oxygen isotope measurements were conducted on eleven natural mineral samples (five olivines, three clinopyroxenes and three orthopyroxenes) in nineteen sessions using CAMECA IMS 1280 SIMS instruments to evaluate their potential as SIMS reference materials. The obtained results reveal oxygen isotope homogeneity of these samples. No matrix effect was measured for the same variety of mineral samples with limited Mg‐number variations (89.6–94.2, 90–91.9 and 90.1–92.1 for olivine, clinopyroxene and orthopyroxene, respectively). The recommended oxygen isotope compositions of these samples were determined using laser fluorination. These samples are therefore suitable to be used as reference materials for in situ oxygen isotope microanalysis.  相似文献   

19.
Three synthetic reference glasses were prepared by directly fusing and stirring 3.8 kg of high‐purity oxide powders to provide reference materials for microanalytical work. These glasses have andesitic major compositions and are doped with fifty‐four trace elements in nearly identical abundance (500, 50, 5 µg g?1) using oxide powders or element solutions, and are named ARM‐1, 2 and 3, respectively. We further document that sector‐field (SF) ICP‐MS (Element 2 or Element XR) is capable of sweeping seventy‐seven isotopes (from 7Li to 238U, a total of sixty‐eight elements) in 1 s and, thus, is able to quantify up to sixty‐eight elements by laser sampling. Micro‐ and bulk analyses indicate that the glasses are homogeneous with respect to major and trace elements. This paper provides preliminary data for the ARM glasses using a variety of analytical techniques (EPMA, XRF, ICP‐OES, ICP‐MS, LA‐Q‐ICP‐MS and LA‐SF‐ICP‐MS) performed in ten laboratories. Discrepancies in the data of V, Cr, Ni and Tl exist, mainly caused by analytical limitations. Preliminary reference and information values for fifty‐six elements were calculated with uncertainties [2 relative standard error (RSE)] estimated in the range of 1–20%.  相似文献   

20.
The continuous improvement of analytical procedures using multi‐collector technologies in ICP‐mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERM‐AE143, ERM‐AE144, ERM‐AE145, IRMM‐009 and NIST SRM 980 were cross‐calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM‐AE143 anchors all magnesium δ‐scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM‐AE144 and ERM‐AE145, which are product and educt of a sublimation–condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号