首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We propose that prior to the Younger Dryas period, the Arctic Ocean supported extremely thick multi-year fast ice overlain by superimposed ice and firn. We re-introduce the historical term paleocrystic ice to describe this. The ice was independent of continental (glacier) ice and formed a massive floating body trapped within the almost closed Arctic Basin, when sea-level was lower during the last glacial maximum. As sea-level rose and the Barents Sea Shelf became deglaciated, the volume of warm Atlantic water entering the Arctic Ocean increased, as did the corresponding egress, driving the paleocrystic ice towards Fram Strait. New evidence shows that Bering Strait was resubmerged around the same time, providing further dynamical forcing of the ice as the Transpolar Drift became established. Additional freshwater entered the Arctic Basin from Siberia and North America, from proglacial lakes and meltwater derived from the Laurentide Ice Sheet. Collectively, these forces drove large volumes of thick paleocrystic ice and relatively fresh water from the Arctic Ocean into the Greenland Sea, shutting down deepwater formation and creating conditions conducive for extensive sea-ice to form and persist as far south as 60°N. We propose that the forcing responsible for the Younger Dryas cold episode was thus the result of extremely thick sea-ice being driven from the Arctic Ocean, dampening or shutting off the thermohaline circulation, as sea-level rose and Atlantic and Pacific waters entered the Arctic Basin. This hypothesis focuses attention on the potential role of Arctic sea-ice in causing the Younger Dryas episode, but does not preclude other factors that may also have played a role.  相似文献   

2.
《Quaternary Science Reviews》2007,26(7-8):1149-1191
Quaternary glacial stratigraphy and relative sea-level changes reveal at least four expansions of the Kara Sea ice sheet over the Severnaya Zemlya Archipelago at 79°N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from raised-beach sequences that occur at altitudes up to 140 m a.s.l. Chronologic control is provided by AMS 14C, electron-spin resonance, green-stimulated luminescence, and aspartic-acid geochronology. Major glaciations followed by deglaciation and marine inundation occurred during MIS 10-9, MIS 8-7, MIS 6-5e and MIS 5d-3. The MIS 6-5e event, associated with the high marine limit, implies ice-sheet thickness of >2000 m only 200 km from the deep Arctic Ocean, consistent with published evidence of ice grounding at ∼1000 m water depth in the central Arctic Ocean. Till fabrics and glacial tectonics record repeated expansions of local ice caps exclusively, suggesting wet-based ice cap advance followed by cold-based regional ice-sheet expansion. Local ice caps over highland sites along the perimeter of the shallow Kara Sea, including the Byrranga Mountains, appear to have repeatedly fostered initiation of a large Kara Sea ice sheet, with exception of the Last Glacial Maximum (MIS 2), when Kara Sea ice did not impact Severnaya Zemlya and barely graced northernmost Taymyr Peninsula.  相似文献   

3.
《Quaternary Science Reviews》2003,22(8-9):763-768
Estimates of the length of the Last Interglacial in Europe, conventionally defined by the presence of forest as inferred from pollen diagrams, have varied considerably. Here an account of recent developments, largely instigated by a paper by Kukla et al. (1997), is presented. These include the emergence of new records with improved chronologies and a re-evaluation of previous assumptions of synchroneity between marine and terrestrial stage boundaries and also between northern and southern European changes. The current scheme proposes that the onset of the Last Interglacial in Europe started well into MIS 5e, after deglaciation was complete and was coincident with a rise to peak sea-surface temperatures. However, the timing of the end of the Last Interglacial between northern and southern Europe appears to have diverged considerably: in the north the elimination of forest occurred ca 115 ka, near the time of the MIS 5e/5d transition, while in the south tree populations persisted into the interval of global ice growth, until the onset of significant ice rafting ca 110 ka. This significant N–S diachroneity may be a reflection of the effects of different bioclimatic parameters limiting tree growth in the two areas. These developments highlight the problems of correlating records of different proxies and from different geographical regions.  相似文献   

4.
Improved multiparameter records from the northern Barents Sea margin show two prominent freshwater pulses into the Arctic Ocean during MIS 5 that significantly disturbed the regional oceanic regime and probably affected global climate. Both pulses are associated with major iceberg-rafted debris (IRD) events, revealing intensive iceberg/sea ice melting. The older meltwater pulse occurred near the MIS 5/6 boundary (∼131,000 yr ago); its ∼2000 year duration and high IRD input accompanied by high illite content suggest a collapse of large-scale Saalian Glaciation in the Arctic Ocean. Movement of this meltwater with the Transpolar Drift current into the Fram Strait probably promoted freshening of Nordic Seas surface water, which may have increased sea-ice formation and significantly reduced deep-water formation. A second pulse of freshwater occurred within MIS 5a (∼77,000 yr ago); its high smectite content and relatively short duration is possibly consistent with sudden discharge of Early Weichselian ice-dammed lakes in northern Siberia as suggested by terrestrial glacial geologic data. The influence of this MIS 5a meltwater pulse has been observed at a number of sites along the Transpolar Drift, through Fram Strait, and into the Nordic Seas; it may well have been a trigger for the North Atlantic cooling event C20.  相似文献   

5.
Future projections of climate suggest our planet is moving into a ‘super‐interglacial’. Here we report a global synthesis of ice, marine and terrestrial data from a recent palaeoclimate equivalent, the Last Interglacial (ca. 130–116 ka ago). Our analysis suggests global temperatures were on average ~1.5°C higher than today (relative to the AD 1961–1990 period). Intriguingly, we identify several Indian Ocean Last Interglacial sequences that suggest persistent early warming, consistent with leakage of warm, saline waters from the Agulhas Current into the Atlantic, intensifying meridional ocean circulation and increasing global temperatures. This mechanism may have played a significant positive feedback role during super‐interglacials and could become increasingly important in the future. These results provide an important insight into a future 2°C climate stabilisation scenario. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
《Geodinamica Acta》2013,26(1):81-100
The North Volcanic Zone of Iceland was unglaciated during most interglacials. Subsequently, the region was covered by the Weichselian ice cap. A widespread interglacial complex, the Sy?ra Formation, has been mapped in this zone. It covers probably O.I.S.5e, 5d and 5c. Its formation and preservation are discussed in terms of rift and volcanism activity, in interrelations with the former deglaciation. A topographic bulge, presumed of glacio-isostatic origin, limited the downstream drainage of the Jökulsa a Fjolum river enabling the interglacial sedimentation and the excavation of one of the canyons of Dettifoss. Effusive volcanic activity in the rift is important prior to the Sy?ra 4 unit in association with an early abrupt event (SY2: Sy?ra ash), related to a phreato-magmatic eruption at the eastern hyaloclastite ridge or from the Askja volcano and to jökulhlaup events. It corresponds probably to ash Zone B as defined by Sejrup et al., (1989) on the Northern Iceland shelf. The previous activity of hyaloclastite ridge is recorded during the Marine Isotope Stage 6 (MIS 6 = Saalian) and its deglaciation, a younger effusive event is dated at 80 ka. The Interglacial paleo-seismic region is similar to the present one; during deglaciation, the seismic zone is widened, up to 60 km to the East. Continuous micro-seismicity related to dyke intrusion and effusive or phreato-magmatic eruptions develop at the onset of deglaciation. It is discrete during the full interglacials, and most intense during pyroclastic eruptions. A comparison with the Late Glacial/Holocene deglaciation is provided in the same region.  相似文献   

7.
北冰洋西部晚第四纪浮游有孔虫Neogloboquadrina pachyderma(sin.)(Nps)壳体的δ18O和δ13C与浮游有孔虫丰度和筏冰碎屑含量的综合研究表明,MIS 7晚期以来,Nps的δ18O和δ13C值出现7次明显的偏轻,可能与海冰形成速率的提高造成轻同位素卤水的生产和下沉相关.偏轻的Nps δ18O和δ13C值对应于极低的浮游有孔虫丰度和筏冰碎屑含量,因此这些轻值与温暖的大西洋水和淡水的输入无关,应当指示进入北冰洋的大西洋水减弱和楚科奇海陆架水的大量减少.相反,Nps δ18O的重值则反映输入北冰洋的淡水和太平洋水的减少;Nps δ13C的重值指示来自陆架流通性更好的表层和盐跃层水向北冰洋的输送.  相似文献   

8.
The distribution of neodymium isotopes in Arctic Ocean basins   总被引:1,自引:0,他引:1  
Nd concentration and isotope data have been obtained for the Canada, Amundsen, and Makarov Basins of the Arctic Ocean. A pattern of high Nd concentrations (up to 58 pM) at shallow depths is seen throughout the Arctic, and is distinct from that generally seen in other oceans where surface waters are relatively depleted. A range of isotopic variations across the Arctic and within individual depth profiles reflects the different sources of waters. The dominant source of water, and so Nd, is the Atlantic Ocean, with lesser contributions from the Pacific and Arctic Rivers. Radiogenic isotope Nd signatures (up to εNd = −6.5) can be traced in Pacific water flowing into the Canada Basin. Waters from rivers draining older terrains provide very unradiogenic Nd (down to εNd = −14.2) that can be traced in surface waters across much of the Eurasian Basin. A distinct feature of the Arctic is the general influence of the shelves on the Nd concentrations of waters flowing into the basins, either from the Pacific across the Chukchi Sea, or from across the extensive Siberian shelves. Water-shelf interaction results in an increase in Nd concentration without significant changes in salinity in essentially all waters in the Arctic, through processes that are not yet well understood. In estuarine regions other processes modify the Nd signal of freshwater components supplied into the Arctic Basin, and possibly also contribute to sedimentary Nd that may be subsequently involved in sediment-water interactions. Mixing relationships indicate that in estuaries, Nd is removed from major river waters to different degrees. Deep waters in the Arctic are higher in Nd than the inflowing Atlantic waters, apparently through enrichments of waters on the shelves that are involved in ventilating the deep basins. These enrichments generally have not resulted in major shifts in the isotopic compositions of the deep waters in the Makarov Basin (εNd ∼ −10.5), but have created distinctive Nd isotope signatures that were found near the margin of the Canada Basin (with εNd ∼ −9.0). The deep waters of the Amundsen Basin are also distinct from the Atlantic waters (with εNd = −12.3), indicating that there has been limited inflow from the adjacent Makarov Basin through the Lomonosov Ridge.  相似文献   

9.
To a varying degree the Middle and Late Pleistocene ice sheets in northern Eurasia redirected the drainage of major catchments in Europe and western Siberia from the North Sea and Arctic Ocean south to the Caspian, Black Sea, and ultimately the Mediterranean. During the Late Weichselian, glacial meltwater reached the Mediterranean through the Dniepr and Don catchments and to a minor extent through the Danube. During the Warthe Substage of the Saalian, meltwater from the Volga was most likely added. During the Drenthe Substagc of the Saalian the watershed shifted Par to the east, and meltwater reached the Mediterranean also from the Oh. Irtysh, Yenisei, and Tunguska catchments in Siberia. Depending on the extent of the ice sheets, the increase in freshwater supply during deglaciations resulted in reductions of Mediterranean overflow into the North Atlantic. Such overflow reductions may have reduced vapour transport to the ice sheets and thus accelerated wastage.  相似文献   

10.
Houmark‐Nielsen, M. 2010: Extent, age and dynamics of Marine Isotope Stage 3 glaciations in the southwestern Baltic Basin. Boreas, 10.1111/j.1502‐3885.2009.00136.x. ISSN 0300‐9483 The southwestern Baltic region is known as a major crossroad for the expansion of Pleistocene glaciers from the Scandinavian Ice Sheet (SIS). At the peak of the Last Glacial Maximum (LGM, 25–20 kyr BP), steady‐flowing inter‐stream glaciers expanded radially from the major ice divide over central Scandinavia. During the subsequent deglaciation phase (20–15 kyr BP), streaming ice was flowing through the Baltic gateway onto the North European lowland. The lithology and directional ice‐flow properties of pre‐LGM till formations of Baltic provenance in Denmark (the Ristinge till and Klintholm till) suggest that the ice‐sheet dynamics during the Marine Isotope Stage (MIS) 3 glacier expansion were similar to those for the post‐LGM advances. Increasing geological evidence indicates that glaciers extended onto the Circum‐Baltic lowlands during MIS 3. Reconstructions of flow paths and estimates of the basal ice‐sheet coupling in Denmark suggest that southward flow of the SIS through the Baltic was probably the result of ice streaming. Despite methodological uncertainties, available OSL and 14C dates indicate that glaciers advanced at least twice during the mild second half of the Middle Weichselian (c. 75–25 kyr BP), most probably in connection with Dansgaard‐Oeschger (D‐O) events 14–13 (54–46 kyr BP) and 8–5 (35–30 kyr BP). The chronology and dynamics of glacier expansion in the southwestern Baltic in response to long‐term cooling trends, the contemporary presence of a low Arctic biota in large parts of Scandinavia and of possible leads or lags in relation to North Atlantic climate changes during MIS 3 are discussed.  相似文献   

11.
Heggen, H. P., Svendsen, J. I. & Mangerud, J. 2009: River sections at the Byzovaya Palaeolithic site – keyholes into the late Quaternary of northern European Russia. Boreas, 10.1111/j.1502‐3885.2009.00109.x. ISSN 0300‐9483. The geological history of northern European Russia over the past two glacial cycles is reconstructed from the stratigraphy in river bluffs along the upper reaches of the Pechora River. From a till bed near the base of the sections it is inferred that the Barents–Kara Ice Sheet covered the area during the late Saalian (MIS 6). After deglaciation, and prior to the last interglacial, the area was flooded by an ice‐dammed lake, suggesting that the Pechora Basin was blocked by a subsequent ice advance at the very end of the Saalian. Ice‐wedge casts and periglacial sediments reflect a pronounced cooling with formation of permafrost during the Early Weichselian (MIS 5d). An overlying thick sequence of shallow lacustrine sediments accumulated in the ice‐dammed Lake Komi, formed by the advancing Barents–Kara Ice Sheet 80–100 kyr BP (MIS 5b?). Following drainage of the lake, many of the older formations were eroded by fluvial activity. Animal remains found together with palaeolithic artefacts within debrisflow sediments at the base of one of the incised gullies yielded radiocarbon ages around 28 000–30 000 14C yr BP (33–34 cal. kyr BP). The surface with traces of human activities was subsequently covered by aeolian sediments representing the northern extension of the European belt of periglacial coversand that accumulated in the cold and dry climate during the late Weichselian (MIS 2). The results of this work confirm the assumption that the last shelf‐centred ice sheet that covered this part of Russia occurred during the late Saalian (MIS 6), but that this glaciation was followed by a younger and less extensive ice advance that has not been described before. There are no indications that local glaciers originating in the Ural Mountains reached the Pechora River valley throughout the last two glacial cycles.  相似文献   

12.
It is summarized based on previous studies that warm and salty Atlantic Water (AW) brings huge amount of heat into Arctic Ocean and influences oceanic heat distribution and climate. Both heat transportation and heat release of AW are key factors affecting the thermal process in Eurasian Basin. The Arctic circumpolar boundary current is the carrier of AW, whose flow velocity varies to influence the efficiency of the warm advection. Because the depth of AW in Eurasian Basin is much shallower than that in Canadian Basin, the upward heat release of AW is an important heat source to supply sea ice melting. Turbulent mixing, winter convention and double-diffusion convention constitute the main physical mechanism for AW upward heat release, which results in the decrease of the Atlantic water core temperature during its spreading along the boundary current. St. Anna Trough, a relatively narrow and long trough in northern continental shelf of Kara Sea, plays a key role in remodeling temperature and salinity characteristics of AW, in which the AW from Fram Strait enters the trough and mixes with the AW from Barents Sea. Since the 21st Century, AW in the Arctic Ocean has experienced obvious warming and had the influence on the physical processes in downstream Canada Basin, which is attributed to the anomalous warming events of AW inflowing from the Fram Strait. It is inferred that the warming AW is dominated by a long-term warming trend superimposed on low frequency oscillation occurring in the Nordic Seas and North Atlantic Ocean. As the Arctic Ocean is experiencing sea ice decline and Arctic amplification, the role of AW heat release in response to the rapid change needs further investigation.  相似文献   

13.
During an early phase of the Last Ice Age (Weichselian, Valdaian), about 90 000 yr ago, an ice sheet formed over the shallow Barents and Kara seas. The ice front advanced on to mainland Russia and blocked the north‐flowing rivers (Yenissei, Ob, Pechora, Dvina and others) that supply most of the freshwater to the Arctic Ocean. The result was that large ice‐dammed lakes were formed between the ice sheet in the north and the continental water divides to the south. Here we present reconstructions and calculations of the areas and volumes of these lakes. The lake on the West Siberian Plain was nearly twice as large as the largest lake on Earth today. The well‐mapped Lake Komi in northeast Europe and a postulated lake in the White Sea Basin would also rank before the present‐day third largest lake. The lakes overflowed towards the south and thus the drainage of much of the Eurasian continent was reversed. The result was a major change in the water balance on the continent, decreased freshwater supply to the Arctic Ocean, and increased freshwater flow to the Aral, Caspian, Black and Baltic seas. A sudden outburst of the lakes' water to the Arctic Ocean when the ice sheet thinned is postulated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
At Airedale Reef, western North Island, New Zealand, a ca. 4 m thick volcanogenic debris avalanche deposit has facilitated the preservation of an enveloping sequence of peats with interbedded andesitic tephras spanning marine isotope (MIS) 5. The sequence closely overlies a wave‐cut terrace correlated to MIS 5e and, in turn, is overlain by andic beds with tephra interbeds including the Rotoehu and Kawakawa tephras deposited during early MIS 3 and mid‐MIS 2, respectively. Pollen analysis of the organic sequence shows a coherent pattern of fluctuating climate for the Last Interglacial–Last Glacial transition that corresponds with marine isotope stratigraphy and supports the contention that orbital variations were a primary factor in late Quaternary southern mid‐latitude climate change. A five‐stage subdivision of MIS 5 is clearly recognised, with marine isotope substage (MISS) 5b drier than MISS 5d, and the cooling transition from 5a to MIS 4 also may have been comparatively dry and characterised by natural fire, perhaps associated with volcanism. Several other examples of volcanic impact on vegetation and the landscape are evident. The Airedale Reef sequence exhibits strong similarities with fragmentary MIS 5 pollen records preserved elsewhere in New Zealand and enables the proxy record of southern mid‐latitude climatic variability during the Last Interglacial–Glacial cycle to be extended. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The Atlantic Meridional Overturning Circulation (AMOC) is a key feature of the climate system. However, its role during climate change is still poorly constrained particularly during an Interglacial to Glacial climate transition and the associated global cooling. We present here the first reconstruction of the evolution of the vertical structure of the rate of the AMOC from the Last Interglaciation to the subsequent glaciation (128,000–60,000 years ago) based on sedimentary (231Pa/230Th) records. We show a deep AMOC during the interglacial warmth Marine Isotope Stage (MIS) 5.5 and a shallower glacial one during glacial MIS 4. The change between these two patterns occurred mostly during the glacial inception, i.e. the transition from MIS 5.5 to MIS 5.4. Our data show that AMOC was enhanced during this latter transition as a consequence of a large increase of the overturning rate of the Intermediate Waters, above 2500 m. We suggest that this AMOC pattern required a reinforced Gulf Stream-North Atlantic Current system that ultimately supported ice-sheet growth by providing heat and moisture to the Northern high latitudes. From MIS 5.4 to MIS 5.1, the AMOC was broadly continuous below 2000 m and supported periods of ice-sheet growth. As a result, a glacial AMOC is triggered at the beginning of MIS 4 due to the extension of ice-sheet and the subsequent reorganization of deep-water formation. This study highlights the role of intermediate waters as a major player during climate change.  相似文献   

16.
南极和北极海域的深海钻探(DSDP)和大洋钻探(ODP)研究所取得的成就是举世瞩目的,为人类研究过去全球变化打开了新的视野。它们揭示了北大西洋高纬度海区新近纪的古海洋学和古气候的演化历史,发现了早更新世"41ka世界"千年尺度的气候波动,以及冰期表层水温与深层水的耦合颤动,说明冰期旋回中冰消期气候的不稳定性。检验了新近纪环南极洋流的形成历史,并揭示了南极新生代的气候变冷和冰盖的演变历史,以及证实了南大洋温度变化领先于全球冰量的变化。2004年北极罗蒙诺索脊的综合大洋钻探(IODP)将宣告科学探索时代的到来,其研究将重建北冰洋新生代环境变化和气候的演变历史,展示北冰洋在全球气候变化中的作用。  相似文献   

17.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

18.
The neodymium concentration, CNd, and isotopic composition, εNd, in seawater have been determined in the water column at five sites in the Barents Sea-Fram Strait area where most of the water exchange between the Arctic Ocean and the North Atlantic takes place. In the main Arctic Ocean inflow branch across the Barents Sea the concentration and isotopic composition (CNd = 15.5 pmol/kg and εNd = −10.8) are similar to those reported for the northeastern Nordic Seas, which is consistent with this region being a source area for the Arctic inflow. Due to the addition of Nd from Svalbard shelf sediments, the CNd in the surface waters above 150 m, in the Fram Strait inflow branch is higher by a factor of 2 and the εNd is shifted to lower values (−11.8).In the stratified Nansen Basin, where cold low salinity water overlies warmer Atlantic water the CNd and εNd do not vary with the vertical temperature-salinity structure but are essentially constant and similar to those of the Atlantic inflow throughout the entire water column, down to 3700 m depth, which indicates that the Nd is to a large extent of Atlantic origin.Compared to the Atlantic inflow water, the Nd in the major Arctic Ocean outflow, the Fram Strait, show higher CNd in the surface waters above 150 m, and a higher εNd (−9.8) throughout the entire water column down to 1300 m depth. Sources for the more radiogenic Nd isotopic composition in deep water of the Fram Strait outflow most likely involve boundary exchange with sediments on the shelf and slope as the water passes along the Canadian archipelago. River water is a possible source in the surface water but it also seems likely that Pacific water Nd, modified by interactions on the shelf, is an important component in the Fram Strait surface outflow. Changes in the relative proportions of inflow of river water and flow of Pacific water through the Arctic Ocean could thus influence the isotopic composition of Nd in the North Atlantic.  相似文献   

19.
Marine sediments from river sections in the Mezen River drainage, northwest Russia, have been analysed for dinoflagellate cysts, foraminifers and molluscs. The sediments were dated by pollen analysis and by reference to the local sea-level history, and are Late Saalian to late Eemian (c. 133 to 119.5 kyr in age). The Late Saalian deglaciation was characterized by Arctic conditions, but a few centuries into the Eemian the Gulf Stream system carried warm Atlantic water into the region. At 129.8 kyr BP there was a marked increase in the influx of Atlantic water, and the advection of warm Atlantic water was stronger and probably penetrated further eastwards than at present. The molluscs, dinoflagellate cysts and foraminifers reflect conditions warmer than present and that the optimum temperature occurred at the time of the early Eemian global sea-level rise. Around 128 kyr BP, the eustatic sea-level rise was curbed by isostatic rebound and accompanying regression and constriction of marine passages to the White Sea. Local, low-saline, stratified basins developed and characterized the next five to six millennia.  相似文献   

20.
《Quaternary Science Reviews》2007,26(17-18):2090-2112
The geomorphology and morphostratigraphy of numerous worldwide sites reveal the relative movements of sea level during the peak of the Last Interglaciation (Marine Isotope Stage (MIS) 5e, assumed average duration between 130±2 and 119±2 ka). Because sea level was higher than present, deposits are emergent, exposed, and widespread on many stable coastlines. Correlation with MIS 5e is facilitated by similar morphostratigraphic relationships, a low degree of diagenesis, uranium–thorium (U/Th) ages, and a global set of amino-acid racemization (AAR) data. This study integrates information from a large number of sites from tectonically stable areas including Bermuda, Bahamas, and Western Australia, and some that have experienced minor uplift (∼2.5 m/100 ka), including selected sites from the Mediterranean and Hawaii. Significant fluctuations during the highstand are evident at many MIS 5e sites, revealed from morphological, stratigraphic, and sedimentological evidence. Rounded and flat-topped curves derived only from reef tracts are incomplete and not representative of the entire interglacial story. Despite predictions of much different sea-level histories in Bermuda, the Bahamas, and Western Australia due to glacio- and hydro-isostatic effects, the rocks from these sites reveal a nearly identical record during the Last Interglaciation.The Last Interglacial highstand is characterized by several defined sea-level intervals (SLIs) that include: (SLI#1) post-glacial (MIS 6/5e Termination II) rise to above present before 130 ka; (SLI#2) stability at +2 to +3 m for the initial several thousand years (∼130 to ∼125 ka) during which fringing reefs were established and terrace morphology was imprinted along the coastlines; (SLI#3) a brief fall to near or below present around 125 ka; (SLI#4) a secondary rise to and through ∼+3–4 m (∼124 to ∼122 ka); followed by (SLI#5) a brief period of instability (∼120 ka) characterized by a rapid rise to between +6 to +9 m during which multiple notches and benches were developed; and (SLI#6) an apparently rapid descent of sea level into MIS 5d after 119 ka. U/Th ages are used to confirm the Last Interglacial age of the deposits, but unfortunately, in only two cases was it possible to corroborate the highstand subdivisions using radiometric ages.Sea levels above or at present were relatively stable during much of early MIS 5e and the last 6–7 ka of MIS 1, encouraging a comparison between them. The geological evidence suggests that significant oceanographic and climatic changes occurred thereafter, midway through, and continuing through the end of MIS 5e. Fluctuating sea levels and a catastrophic termination of MIS 5e are linked to the instability of grounded and marine-based ice sheets, with the Greenland (GIS) and West Antarctic (WAIS) ice sheets being the most likely contributors. Late MIS 5e ice volume changes were accompanied by oceanographic reorganization and global ecological shifts, and provide one ominous scenario for a greenhouse world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号