首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rainfall thresholds represent the main tool for the Italian Civil Protection System for early warning of the threat of landslides. However, it is well-known that soil moisture conditions at the onset of a storm event also play a critical role in triggering slope failures, especially in the case of shallow landslides. This study attempts to define soil moisture (estimated by using a soil water balance model) and rainfall thresholds that can be employed for hydrogeological risk prevention by the Civil Protection Decentrate Functional Centre (CFD) located in the Umbria Region (central Italy). Two different analyses were carried out by determining rainfall and soil moisture conditions prior to widespread landslide events that occurred in the Umbria Region and that are reported in the AVI (Italian Vulnerable Areas) inventory for the period 1991?C2001. Specifically, a ??local?? analysis that considered the major landslide events of the AVI inventory and an ??areal?? analysis subdividing the Umbria Region in ten sub-areas were carried out. Comparison with rainfall thresholds used by the Umbria Region CFD was also carried out to evaluate the reliability of the current procedures employed for landslide warning. The main result of the analysis is the quantification of the decreasing linear trend between the maximum cumulated rainfall values over 24, 36 and 48?h and the soil moisture conditions prior to landslide events. This trend provides a guideline to dynamically adjust the operational rainfall thresholds used for warning. Moreover, the areal analysis, which was aimed to test the operational use of the combined soil moisture?Crainfall thresholds showed, particularly for low values of rainfall, the key role of soil moisture conditions for the triggering of landslides. On the basis of these results, the Umbria Region CFD is implementing a procedure aimed to the near real-time estimation of soil moisture conditions based on the soil water balance model developed ad hoc for the region. In fact, it was evident that a better assessment of the initial soil moisture conditions would support and improve the hydrogeological risk assessment.  相似文献   

2.
Critical rainfall thresholds for landslides are powerful tools for preventing landslide hazard. The thresholds are commonly estimated empirically starting from rainfall events that triggered landslides in the past. The creation of the appropriate rainfall–landslide database is one of the main efforts in this approach. In fact, an accurate agreement between the landslide and rainfall information, in terms of location and timing, is essential in order to correctly estimate the rainfall–landslide relationships. A further issue is taking into account the average moisture conditions prior the triggering event, which reasonably may be crucial in determining the sufficient amount of precipitation. In this context, the aim of this paper is exploiting historical landslide and rainfall data in a spatial database for the derivation of critical rainfall thresholds for landslide occurrence in Sicily, southern Italy. The hourly rainfall events that caused landslides occurred in the twentieth century were specifically identified and reconstructed. A procedure was proposed to automatically convert rain guages charts recorded on paper tape into digital format and then to provide the cumulative rainfall hyetograph in digital format. This procedure is based on a segmentation followed by signal recognition techniques which allow to digitalize and to recognize the hyetograph automatically. The role of rainfall prior to the landslide events was taken into account by including in the analysis the rainfall occurred 5, 15 and 30 days before each landslide. Finally, cumulated rainfall duration thresholds for different exceedance probability levels were determined. The obtained thresholds resulted in agreement with the regional curves proposed by other authors for the same area; antecedent rainfall turned out to be particularly important in triggering landslides.  相似文献   

3.
Rainfall-induced landslides are a significant hazard in many areas of loess-covered terrain in Northwest China. To investigate the response of a loess landslide to rainfall, a series of artificial rainfall experiments were conducted on a natural loess slope, located in the Bailong River Basin, in southern Gansu Province. The slope was instrumented to measure surface runoff, pore water pressure, soil water content, earth pressure, displacement, and rainfall. The hydrological response was also characterized by time-lapse electrical resistivity tomography. The results show that most of the rainfall infiltrated into the loess landslide, and that the pore water pressure and water content responded rapidly to simulated rainfall events. This indicates that rainfall infiltration on the loess landslide was significantly affected by preferential flow through fissures and macropores. Different patterns of pore water pressure and water content variations were determined by the antecedent soil moisture conditions, and by the balance between water recharge and drainage in the corresponding sections. We observed three stages of changing pore water pressure and displacement within the loess landslide during the artificial rainfall events: Increases in pore water pressure initiated movement on the slope, acceleration in movement resulting in a rapid decrease in pore water pressure, and attainment of a steady state. We infer that a negative pore water pressure feedback process may have occurred in response to shear-induced dilation of material as the slope movement accelerated. The process of shear dilatant strengthening may explain the phenomenon of semi-continuous movement of the loess landslide. Shear dilatant strengthening, caused by intermittent or continuous rainfall over long periods, can occur without triggering rapid slope failure.  相似文献   

4.
Ashland  Francis X. 《Landslides》2021,18(6):2159-2174

The potential for widespread landslides is generally increased when extraordinary wet periods occur during times of elevated subsurface hydrologic conditions. A series of storms in early 2018 in Pittsburgh, Pennsylvania, overlapped with a period of increased shallow soil moisture and rising bedrock groundwater levels resulting from seasonally diminished evapotranspiration and induced widespread landslides in the region. Most of the landslides were shallow slope failures in colluvium, landslide deposits, and/or fill. However, deep-seated landslide activity also occurred and corresponded with record cumulative precipitation from late February to April and bedrock groundwater levels rising to an annual high. Landslides blocked or damaged roads, adversely affected multiple houses, disrupted electrical service, crushed vehicles, and resulted in considerable economic losses. The initial landslides occurred during or immediately after a rare period of three successive days of heavy rain that began on February 14. Subsequent landslides between late February and April were induced by multiday storms with smaller rainfall totals. As shallow soil moisture at a monitoring site rose above a volumetric water content of 32%, the mean rainfall intensities necessary to induce slope failure in colluvium and other surficial deposits decreased. Deep-seated landslide movement occurred in the region mostly when the groundwater level in a bedrock observation well was shallower than 1.7 m. The availability of hydrologic and landslide movement monitoring data during this extraordinary series of storms highlighted the evolution of the landslide hazard with changing moisture conditions and yielded insights into potential hydrologic criteria for anticipating future widespread landslides in the region.

  相似文献   

5.
Temporal distribution of landslides can be verified by means of climatic anomalies linked to the ENSO phenomenon. An increasing number of landslides triggered by rainfall have been recorded during warm episodes (El Niño) in the Cordillera Frontal, and a decreasing number during cold episodes (La Niña), concluding that this geological province is mainly influenced by the Pacific Anticyclone. However, slope instability in the Precordillera, located east of the Cordillera Frontal, seems to be mainly influenced by the Atlantic Anticyclone. Analysis of variance shows that there is no significant difference between landslide records and cold-warm episodes, and a higher number of landslides were recorded in years linked to wet periods than during dry periods. Furthermore, the precipitation threshold value associated with landslide occurrence and antecedent precipitation are analysed.  相似文献   

6.
Landslides are triggered by earthquakes, volcanoes, floods, and heavy continuous rainfall. For most types of slope failure, soil moisture plays a critical role because increased pore water pressure reduces the soil strength and increases stress. However, in-situ soil moisture profiles are rarely measured. To establish the soil moisture and landslide relationship, a qualitative comparison among soil moisture derived from AMSR-E, precipitation from TRMM and major landslide events was conducted. This study shows that it is possible to estimate antecedent soil moisture conditions using AMSR-E and TRMM satellite data in landslide prone areas. AMSR-E data show distinct annual patterns of soil moisture that reflect observed rainfall patterns from TRMM. Results also show enhanced AMSR-E soil moisture and TRMM rainfall prior to major landslide events in landslide prone regions of California, U.S.; Leyte, Philippines; and Dhading, Nepal.  相似文献   

7.
Majority of landslides in the Indian sub-continent are triggered by rainfall. Several attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity-duration and antecedent rainfall models on global, regional and local scales for the occurrence of landslides. However, in the context of the Indian Himalayas, the rainfall thresholds for landslide occurrences are not yet understood fully. Neither on regional scale nor on local scale, establishing such rainfall thresholds for landslide occurrences in Indian Himalayas has yet been attempted. This paper presents an attempt towards deriving local rainfall thresholds for landslides based on daily rainfall data in and around Chamoli-Joshimath region of the Garhwal Himalayas, India. Around 128 landslides taken place in last 4 years from 2009 to 2012 have been studied to derive rainfall thresholds. Out of 128 landslides, however, rainfall events pertaining to 81 landslides were analysed to yield an empirical intensity–duration threshold for landslide occurrences. The rainfall threshold relationship fitted to the lower boundary of the landslide triggering rainfall events is I?=?1.82 D ?0.23 (I?=?rainfall intensity in millimeters per hour and D?=?duration in hours). It is revealed that for rainfall events of shorter duration (≤24 h) with a rainfall intensity of 0.87 mm/h, the risk of landslide occurrence in this part of the terrain is expected to be high. Also, the role of antecedent rainfall in causing landslides was analysed by considering daily rainfall at failure and different period cumulative rainfall prior to failure considering all 128 landslides. It is observed that a minimum 10-day antecedent rainfall of 55 mm and a 20-day antecedent rainfall of 185 mm are required for the initiation of landslides in this area. These rainfall thresholds presented in this paper may be improved with the hourly rainfall data vis-à-vis landslide occurrences and also data of later years. However, these thresholds may be used in landslide warning systems for this particular region of the Garhwal Himalayas to guide the traffic and provide safety to the tourists travelling along this pilgrim route during monsoon seasons.  相似文献   

8.
The state of knowledge and resources available to issue alerts of precipitation-induced landslides vary across the USA. Federal and state agencies currently issue warnings of the potential for shallow, rapidly moving landslides and debris flows in a few areas along the Pacific coast and for areas affected by Atlantic hurricanes. However, these agencies generally lack resources needed to provide continuous support or to expand services to other areas. Precipitation thresholds that form the basis of landslide warning systems now exist for a few areas of the USA, but the threshold rainfall amounts and durations vary over three orders of magnitude nationwide and over an order of magnitude across small geographic areas such as a county. Antecedent moisture conditions also have a significant effect, particularly in areas that have distinct wet and dry seasons. Early warnings of shallow landslides that include specific information about affected areas, probability of landslide occurrence, and expected timing are technically feasible as illustrated by a case study from the Seattle, WA area. The four-level warning scheme (Null, Outlook, Watch, Warning) defined for Seattle is based on observed or predicted exceedance of a cumulative precipitation threshold and a rainfall intensity–duration threshold combined with real-time monitoring of soil moisture. Based on analysis of historical data, threshold performance varies according to precipitation characteristics, and threshold exceedance corresponds to a given probability of landslide occurrence. Experience in Seattle during December 2004 and January 2005 illustrates some of the challenges of providing landslide early warning on the USA West Coast.  相似文献   

9.
Soil water balance model for precipitation-induced shallow landslides   总被引:3,自引:2,他引:1  
Precipitation infiltration is one of the most significant triggering factors for slope failure occurrence in many places around the world. Knowledge of the mechanisms leading to precipitation-induced slope failures is of great importance to the management of landslide hazard. In this study, a soil water balance model is developed to estimate soil water flux during the process of infiltration from rainfall data, with consideration of storm periods and non-storm periods. Two important assumptions in this study are given: (1) instantaneous uniform distribution of the degree of saturation and (2) a linear relationship between evapotranspiration and the related degree of saturation. For storm periods, the Brooks and Corey model estimates both the soil water retention curve and soil water parameters. The infiltration partition is employed by an infinite-series solution of Philip in conjunction with the time compression approximation. For none-storm periods, evapotranspiration can be derived for the moisture depletion of soil water. This study presents a procedure for calculating the safety factor for an unsaturated slope suffering from precipitation infiltration. The process of infiltration into a slope due to rainfall and its effect on soil slope behavior are examined using modified Mohr–Coulomb failure criterion in conjunction with a soil water balance model. The results indicate that the matric suction, which is closely related to slope stability, is affected by the degree of saturation controlled by rainfall events.  相似文献   

10.
 Hydrological landslide-triggering thresholds separate combinations of daily and antecedent rainfall or of rainfall intensity and duration that triggered landslides from those that failed to trigger landslides. They are required for the development of landslide early warning systems. When a large data set on rainfall and landslide occurrence is available, hydrological triggering thresholds are determined in a statistical way. When the data on landslide occurrence is limited, deterministic models have to be used. For shallow landslides directly triggered by percolating rainfall, triggering thresholds can be established by means of one-dimensional hydrological models linked to the infinite slope model. In the case of relatively deep landslides located in topographic hollows and triggered by a slow accumulation of water at the soil-bedrock contact, simple correlations between landslide occurrence and rainfall can no longer be established. Therefore real-time failure probabilities have to be determined using hydrological catchment models in combination with the infinite slope model. Received: 15 October 1997 · Accepted: 25 June 1997  相似文献   

11.
Global change is expected to result in worldwide increases in temperature and alteration of rainfall patterns. Such changes have the potential to modify stability of slopes, both natural and constructed. This paper discusses the potential effect of global climate change on reactivation of landslides through examination of predicted changes in rainfall pattern on the active landslide at Mam Tor, Derbyshire, UK. This landslide is of Pleistocene origin and is crossed by a road that is now abandoned. Damaging winter movement is known to occur when precipitation reaches both 1-month triggering and 6-month antecedent thresholds. Return periods for threshold exceedence is modelled statistically, and the climate change data from the UKCIP 2002 report (Hulme et al. 2002) is applied to this model. For the predicted changes in precipitation, it is shown that the instability threshold could decrease from 4 to 3.5 years by the 2080s for the medium–high climate change scenario. However, predicted temperature changes could influence the response of the landslide through increased evapotranspiration leading to a change in the triggering precipitation thresholds, and this will help counter the impact of changes in precipitation. Analysis of sources of uncertainty in the model has been used to establish the factors that contribute to the predicted changes in stability. Assessment of these factors can provide an indication of the potential impact of climate change on landslides in other areas of the UK.  相似文献   

12.
滑坡监测预警国内外研究现状及评述   总被引:11,自引:0,他引:11  
本文从降雨临界值研究、监测技术方法、区域性监测预警系统三个方面对滑坡监测预警的国内外研究现状进行了回顾和总结。首先归纳了国内外28个国家或地区的滑坡降雨临界值及统计方法,三个模型——日降雨量模型、前期降雨量模型和前期土体含水状态模型,基本概括了当前降雨诱发滑坡临界值的确定方法;但由于降雨入渗触发滑坡的复杂性,不同机理的滑坡"需要"不同的降雨临界值;目前的研究趋势是对雨量雨强雨时—土体渗流场动态变化—土体抗剪强度变化的耦合关系进行研究。按监测对象的不同,滑坡监测可分为四大类,即位移监测、物理场监测、地下水监测和外部诱发因素监测;按监测手段的不同,则可分为人工监测、简易监测、专业监测三大类;目前国内外在滑坡监测技术、方法、手段上并无太大差距,专业仪器已成为常规设备,只是由于价格因素得不到普及;一些新技术如InSAR、三维激光扫描等能很快应用到滑坡监测领域;监测数据的采集和传输也都实现了自动化和远程化;监测和预警系统有向Web—GIS发展的趋势。利用一个地区的滑坡易发区划或危险区划,结合降雨临界值,可以设定不同的预警级别,在区内布设一定数量的雨量站,监测雨量加上预报雨量,就可进行滑坡预警预报,国内外的区域性降雨型滑坡监测预警大体都是这个思路和做法,该方法在对公众进行警示方面起到了良好效果,但由于预警的范围太大,在具体的单点防治上,难以做到有效。我国在近10年开展了大量的监测预警工作,并取得了丰硕的成果,但根据统计数据,其成功预警率却并不理想,这一方面表现在成功预警实例中专业预警所占比例过低,另一方面同时表现在发生的大量的地质灾害在已有的预警点之外。制约目前工作有效性的主要问题是滑坡隐患点的排查和识别问题,因为只有识别出了隐患点才能进行下一步的监测和预警,它是一切工作的基础。而解决这一问题的重要途径是分析区域上的滑坡发育规律,找到有效的隐患点识别技术方法,以及引进风险管理的概念,进行监测资源的合理分配和有效预警。  相似文献   

13.
Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfall-induced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity-Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall triggering events. Going from winter to summer conditions requires a strong increase of intensity and/or duration to induce landslides. The results identify an approach to account for different hazard conditions related to seasonality of hydrological processes inside the ash-fall pyroclastic soil mantle. Moreover, they highlight another important factor of uncertainty that potentially affects rainfall thresholds triggering shallow landslides reconstructed by empirical approaches.  相似文献   

14.
国道G316线天水市稍子坡滑坡群成因分析   总被引:1,自引:0,他引:1  
国道316线天水稍子坡段(K2556—K2562)滑坡十分发育,是甘肃境内滑坡灾害最为严重的路段之一。特别是雨季或丰水年,滑坡活动频繁,对公路安全运营造成很大危害和威胁。1999年及2000年雨季该路段发生滑坡灾害15处,正在改建的公路路基30%被破坏,增加工程投资2000多万元,并拖延了工期。本区滑坡多为老滑坡的复活,具有发育密集、复活性强等特点。特殊的地质构造及易滑地层广泛分布,老滑坡的发育和独特的水文地质条件是该滑坡成群发育的地质基础。大量降水入渗,不合理的人为开挖和填方活动是滑坡的主要诱发因素。  相似文献   

15.
The state of knowledge and resources available to issue alerts of precipitation-induced landslides vary across the USA. Federal and state agencies currently issue warnings of the potential for shallow, rapidly moving landslides and debris flows in a few areas along the Pacific coast and for areas affected by Atlantic hurricanes. However, these agencies generally lack resources needed to provide continuous support or to expand services to other areas. Precipitation thresholds that form the basis of landslide warning systems now exist for a few areas of the USA, but the threshold rainfall amounts and durations vary over three orders of magnitude nationwide and over an order of magnitude across small geographic areas such as a county. Antecedent moisture conditions also have a significant effect, particularly in areas that have distinct wet and dry seasons. Early warnings of shallow landslides that include specific information about affected areas, probability of landslide occurrence, and expected timing are technically feasible as illustrated by a case study from the Seattle, WA area. The four-level warning scheme (Null, Outlook, Watch, Warning) defined for Seattle is based on observed or predicted exceedance of a cumulative precipitation threshold and a rainfall intensity–duration threshold combined with real-time monitoring of soil moisture. Based on analysis of historical data, threshold performance varies according to precipitation characteristics, and threshold exceedance corresponds to a given probability of landslide occurrence. Experience in Seattle during December 2004 and January 2005 illustrates some of the challenges of providing landslide early warning on the USA West Coast.  相似文献   

16.
Rainfall-induced landslides in Hulu Kelang area, Malaysia   总被引:5,自引:2,他引:3  
Hulu Kelang is known as one of the most landslide-prone areas in Malaysia. The area has been constantly hit by landslide hazards since 1990s. This paper provides an insight into the mechanism of rainfall-induced landslide in the Hulu Kelang area. Rainfall patterns prior to the occurrences of five selected case studies were first analyzed. The results showed that daily rainfall information is insufficient for predicting landslides in the area. Rainfalls of longer durations, i.e., 3–30 days prior to the landslides should be incorporated into the prediction model. Numerical simulations on a selected case study demonstrated that both matric suction and factor of safety decreased steadily over time until they reached the lowest values on the day of landslide occurrence. Redistribution of infiltrated rainwater in the soil mass could be a reason for the slow response of failure mechanism to rainfall. Based on 21 rainfall-induced landslides that had occurred in the area, three rainfall thresholds were developed as attempts to predict the occurrence of rainfall-induced landslide. The rainfall intensity–duration threshold developed based on the local rainfall conditions provided a reasonably good prediction to the landslide occurrence. The cumulative 3- versus 30-day antecedent precipitation index threshold chart was capable of giving the most reliable prediction with the limiting threshold line for major landslide yielded a reliability of 97.6 %.  相似文献   

17.
浙江地区引发滑坡的降雨强度-历时关系   总被引:5,自引:0,他引:5  
由于独特的地理位置,复杂的地质、地形和气候背景,浙江成为中国降雨型滑坡(土体和岩体滑动,也包括泥石流和崩塌等)最频发的地区之一。为评价浙江地区的滑坡灾害,本文对该地区1990年至2003年雨量站记录的降雨数据进行了详细分析,确定了引发土体滑坡-泥石流的降雨强度―历时下限。  相似文献   

18.
陈宇龙  内村太郎 《岩土力学》2019,40(9):3373-3386
降雨是诱发滑坡最主要的因素。为减少滑坡灾害造成的人员伤亡和经济损失,滑坡早期预警系统成为了最佳选择之一。根据弹性波传播的基本原理和基于降雨型滑坡变形破坏的特点,提出利用弹性波波速来反映边坡表面土体含水率和位移的变化。开发研制了一套三轴渗流-弹性波测试三轴仪和相关系统。该装置能让水从底部渗入土体,模拟降雨入渗土体的过程,同时能测试弹性波波速。试验过程中同步测试含水率、变形和弹性波波速的变化。还进行了降雨滑坡模型试验。利用三轴弯曲元注水试验和降雨滑坡模型试验,深入分析和研究降雨引起的土体滑坡过程与弹性波波速演化规律,揭示波速与含水率和变形的耦合关系。研究结果表明,弹性波波速随着含水率的增大而缓慢减小,随着变形的增大而急剧减小,临近失稳时,波速骤然减小。根据试验结果对含水率和变形导致弹性波波速减小可能的机制进行了解释,提出弹性波在波速骤然减小时发出滑坡预警。研究结果为滑坡防灾减灾和预测预报提供新的方法和可靠的依据。  相似文献   

19.
李高  谭建民  王世梅  林旭  陈勇  王力  郭飞 《地学前缘》2021,28(6):283-294
降雨量和位移是当前降雨型滑坡监测预警最常用的指标。然而,降雨量和位移监测结果只能反映降雨作用下滑坡的变形情况,不能揭示滑坡内在物理力学性状对降雨的响应。因此,除降雨量和位移监测之外,建立包括体积含水率、基质吸力等反映滑坡动态演化过程的关键指标监测体系必将成为今后更真实地把握滑坡内在演化趋势、更准确地建立滑坡综合预警判据的最有效手段。笔者对赣南地区典型降雨型滑坡进行了多指标监测及综合预警示范研究。结果表明:(1)在降雨条件下滑坡土体内部体积含水率、基质吸力和温度等多指标均产生有规律的动态响应;(2)随着降雨的持续,滑体体积含水率与基质吸力的变化均具有显著的滞后现象;(3)体积含水率和基质吸力变化速率与滑体位移具有显著的正相关性;(4)滑体温度分布变化规律受大气温度和体积含水率的共同影响。以实测数据的滑坡稳定性分析为基准,在考虑实际降雨入渗深度与滑坡稳定性的关联度上,建立了包括日降雨量、体积含水率增加速率、基质吸力减小速率以及位移速度多元指标预警方法体系,提出了基于关键指标综合预警体系及确定方法,旨在为降雨滑坡准确预警提供新模式。  相似文献   

20.
开展降雨型黄土滑坡预警对于区域性防治滑坡具有重要意义。本研究在收集1985~2015年兰州市降雨型黄土滑坡历史数据的基础上,运用反距离权重插值(IDW)和核密度估算(KDE)方法揭示了降雨引发黄土滑坡的时空分布规律。该文基于统计学的基本原理,运用相关性和偏相关性等方法建立适合兰州市的有效降雨量模型。通过拟合有效降雨量与滑坡因子的线性回归关系,确定引发黄土滑坡的临界降雨量阈值,设定兰州市黄土滑坡的降雨量危险性预警等级。研究表明:(1)兰州市黄土滑坡灾害点沿着黄河及其支流沿岸分布,城关区滑坡点最多且呈环形分布,西固区次之,其他地区分布较少;(2)降雨是兰州市及其周边地区黄土滑坡的关键诱因,10d有效降雨量与滑坡因子均呈现显著正相关特性,其相关系数达到0.698;(3)依据10mm、20mm和40mm临界降雨量阈值将预警等级划分为低、中、高3个危险性等级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号