首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Rainfall thresholds represent the main tool for the Italian Civil Protection System for early warning of the threat of landslides. However, it is well-known that soil moisture conditions at the onset of a storm event also play a critical role in triggering slope failures, especially in the case of shallow landslides. This study attempts to define soil moisture (estimated by using a soil water balance model) and rainfall thresholds that can be employed for hydrogeological risk prevention by the Civil Protection Decentrate Functional Centre (CFD) located in the Umbria Region (central Italy). Two different analyses were carried out by determining rainfall and soil moisture conditions prior to widespread landslide events that occurred in the Umbria Region and that are reported in the AVI (Italian Vulnerable Areas) inventory for the period 1991?C2001. Specifically, a ??local?? analysis that considered the major landslide events of the AVI inventory and an ??areal?? analysis subdividing the Umbria Region in ten sub-areas were carried out. Comparison with rainfall thresholds used by the Umbria Region CFD was also carried out to evaluate the reliability of the current procedures employed for landslide warning. The main result of the analysis is the quantification of the decreasing linear trend between the maximum cumulated rainfall values over 24, 36 and 48?h and the soil moisture conditions prior to landslide events. This trend provides a guideline to dynamically adjust the operational rainfall thresholds used for warning. Moreover, the areal analysis, which was aimed to test the operational use of the combined soil moisture?Crainfall thresholds showed, particularly for low values of rainfall, the key role of soil moisture conditions for the triggering of landslides. On the basis of these results, the Umbria Region CFD is implementing a procedure aimed to the near real-time estimation of soil moisture conditions based on the soil water balance model developed ad hoc for the region. In fact, it was evident that a better assessment of the initial soil moisture conditions would support and improve the hydrogeological risk assessment.  相似文献   

2.
Majority of landslides in the Indian sub-continent are triggered by rainfall. Several attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity-duration and antecedent rainfall models on global, regional and local scales for the occurrence of landslides. However, in the context of the Indian Himalayas, the rainfall thresholds for landslide occurrences are not yet understood fully. Neither on regional scale nor on local scale, establishing such rainfall thresholds for landslide occurrences in Indian Himalayas has yet been attempted. This paper presents an attempt towards deriving local rainfall thresholds for landslides based on daily rainfall data in and around Chamoli-Joshimath region of the Garhwal Himalayas, India. Around 128 landslides taken place in last 4 years from 2009 to 2012 have been studied to derive rainfall thresholds. Out of 128 landslides, however, rainfall events pertaining to 81 landslides were analysed to yield an empirical intensity–duration threshold for landslide occurrences. The rainfall threshold relationship fitted to the lower boundary of the landslide triggering rainfall events is I?=?1.82 D ?0.23 (I?=?rainfall intensity in millimeters per hour and D?=?duration in hours). It is revealed that for rainfall events of shorter duration (≤24 h) with a rainfall intensity of 0.87 mm/h, the risk of landslide occurrence in this part of the terrain is expected to be high. Also, the role of antecedent rainfall in causing landslides was analysed by considering daily rainfall at failure and different period cumulative rainfall prior to failure considering all 128 landslides. It is observed that a minimum 10-day antecedent rainfall of 55 mm and a 20-day antecedent rainfall of 185 mm are required for the initiation of landslides in this area. These rainfall thresholds presented in this paper may be improved with the hourly rainfall data vis-à-vis landslide occurrences and also data of later years. However, these thresholds may be used in landslide warning systems for this particular region of the Garhwal Himalayas to guide the traffic and provide safety to the tourists travelling along this pilgrim route during monsoon seasons.  相似文献   

3.
Review of the literature on the reconstruction of the rainfall responsible for slope failures reveals that criteria for the identification of rainfall events are lacking or somewhat subjective. To overcome this problem, we developed an algorithm for the objective and reproducible reconstruction of rainfall events and of rainfall conditions responsible for landslides. The algorithm consists of three distinct modules for (i) the reconstruction of distinct rainfall events, in terms of duration (D, in h) and cumulated event rainfall (E, in mm), (ii) the identification of multiple ED rainfall conditions responsible for the documented landslides, and (iii) the definition of critical rainfall thresholds for possible landslide occurrences. The algorithm uses pre-defined parameters to account for different seasonal and climatic settings. We applied the algorithm in Sicily, southern Italy, using rainfall measurements obtained from a network of 169 rain gauges, and information on 229 rainfall-induced landslides occurred between July 2002 and December 2012. The algorithm identified 29,270 rainfall events and reconstructed 472 ED rainfall conditions as possible triggers of the observed landslides. The algorithm exploited the multiple rainfall conditions to define objective and reproducible empirical rainfall thresholds for the possible initiation of landslide in Sicily. The calculated thresholds may be implemented in an operational early warning system for shallow landslide forecasting.  相似文献   

4.
Landslides are a significant hazard in many parts of the world and represent an important geohazard in China. Rainfall is the primary triggering agent for landslides and often used for prediction slope failures. However, the relationship between rainfall and landslide occurrences is very complex. Great efforts have been made on the study of regional rainfall-induced landslide forecasting models in recent years; still, there is no commonly accepted method for rainfall-induced landslide prediction. In this paper, the quantitative antecedent soil water status (ASWS) model is applied to investigate the influence of daily and antecedent rainfall on the triggering of landslides and debris flows. The study area is Wudu County in Gansu Province, an area which exhibits frequent landslide occurrences. The results demonstrate a significant influence of high intensity rainfall events on landslide triggering. Still, antecedent rainfall conditions are very important and once a threshold of approximately 20 mm is exceeded, landslides and debris flows can occur even without additional rainfall. The study presented could also facilitate the implementation of a regional forecasting scheme once additional validation has been carried out.  相似文献   

5.
 Hydrological landslide-triggering thresholds separate combinations of daily and antecedent rainfall or of rainfall intensity and duration that triggered landslides from those that failed to trigger landslides. They are required for the development of landslide early warning systems. When a large data set on rainfall and landslide occurrence is available, hydrological triggering thresholds are determined in a statistical way. When the data on landslide occurrence is limited, deterministic models have to be used. For shallow landslides directly triggered by percolating rainfall, triggering thresholds can be established by means of one-dimensional hydrological models linked to the infinite slope model. In the case of relatively deep landslides located in topographic hollows and triggered by a slow accumulation of water at the soil-bedrock contact, simple correlations between landslide occurrence and rainfall can no longer be established. Therefore real-time failure probabilities have to be determined using hydrological catchment models in combination with the infinite slope model. Received: 15 October 1997 · Accepted: 25 June 1997  相似文献   

6.
开展降雨型黄土滑坡预警对于区域性防治滑坡具有重要意义。本研究在收集1985~2015年兰州市降雨型黄土滑坡历史数据的基础上,运用反距离权重插值(IDW)和核密度估算(KDE)方法揭示了降雨引发黄土滑坡的时空分布规律。该文基于统计学的基本原理,运用相关性和偏相关性等方法建立适合兰州市的有效降雨量模型。通过拟合有效降雨量与滑坡因子的线性回归关系,确定引发黄土滑坡的临界降雨量阈值,设定兰州市黄土滑坡的降雨量危险性预警等级。研究表明:(1)兰州市黄土滑坡灾害点沿着黄河及其支流沿岸分布,城关区滑坡点最多且呈环形分布,西固区次之,其他地区分布较少;(2)降雨是兰州市及其周边地区黄土滑坡的关键诱因,10d有效降雨量与滑坡因子均呈现显著正相关特性,其相关系数达到0.698;(3)依据10mm、20mm和40mm临界降雨量阈值将预警等级划分为低、中、高3个危险性等级。  相似文献   

7.
Rainfall patterns for shallow landsliding in perialpine Slovenia   总被引:2,自引:0,他引:2  
This paper presents two types of analysis: an antecedent rainfall analysis based on daily rainfall and an intensity-duration analysis of rainfall events based on hourly data in perialpine Slovenia in the ?kofjelo?ko Cerkljansko hills. For this purpose, eight rainfall events that are known to have caused landslides in the period from 1990 to 2010 were studied. Over the observed period, approximately 400 records of landslides were collected. Rainfall data were obtained from three rain gauges. The daily rainfall from the 30 days before landslide events was investigated based on the type of landslides and their geo-environmental setting, the dates of confirmed landslide activity and different consecutive rainfall periods. The analysis revealed that the rainfall events triggering slope failure can be divided into two groups according to the different antecedent periods. The first group of landslides typically occurred after short-duration rainstorms with high intensity, when the daily rainfall exceeded the antecedent rainfall. The second group comprises the rainfall events with a longer antecedent period of at least 7 days. A comparison of the plotted peak and mean intensities indicates that the rainfall patterns that govern slope failure are similar but do not necessarily reflect the rainfall intensity at the time of shallow landslides in the Dav?a or Poljane areas, where the majority of the landslides occurred. Because of several limitations, the suggested threshold cannot be compared and evaluated with other thresholds.  相似文献   

8.
滑坡监测预警国内外研究现状及评述   总被引:11,自引:0,他引:11  
本文从降雨临界值研究、监测技术方法、区域性监测预警系统三个方面对滑坡监测预警的国内外研究现状进行了回顾和总结。首先归纳了国内外28个国家或地区的滑坡降雨临界值及统计方法,三个模型——日降雨量模型、前期降雨量模型和前期土体含水状态模型,基本概括了当前降雨诱发滑坡临界值的确定方法;但由于降雨入渗触发滑坡的复杂性,不同机理的滑坡"需要"不同的降雨临界值;目前的研究趋势是对雨量雨强雨时—土体渗流场动态变化—土体抗剪强度变化的耦合关系进行研究。按监测对象的不同,滑坡监测可分为四大类,即位移监测、物理场监测、地下水监测和外部诱发因素监测;按监测手段的不同,则可分为人工监测、简易监测、专业监测三大类;目前国内外在滑坡监测技术、方法、手段上并无太大差距,专业仪器已成为常规设备,只是由于价格因素得不到普及;一些新技术如InSAR、三维激光扫描等能很快应用到滑坡监测领域;监测数据的采集和传输也都实现了自动化和远程化;监测和预警系统有向Web—GIS发展的趋势。利用一个地区的滑坡易发区划或危险区划,结合降雨临界值,可以设定不同的预警级别,在区内布设一定数量的雨量站,监测雨量加上预报雨量,就可进行滑坡预警预报,国内外的区域性降雨型滑坡监测预警大体都是这个思路和做法,该方法在对公众进行警示方面起到了良好效果,但由于预警的范围太大,在具体的单点防治上,难以做到有效。我国在近10年开展了大量的监测预警工作,并取得了丰硕的成果,但根据统计数据,其成功预警率却并不理想,这一方面表现在成功预警实例中专业预警所占比例过低,另一方面同时表现在发生的大量的地质灾害在已有的预警点之外。制约目前工作有效性的主要问题是滑坡隐患点的排查和识别问题,因为只有识别出了隐患点才能进行下一步的监测和预警,它是一切工作的基础。而解决这一问题的重要途径是分析区域上的滑坡发育规律,找到有效的隐患点识别技术方法,以及引进风险管理的概念,进行监测资源的合理分配和有效预警。  相似文献   

9.
Floods and associated landslides account for the largest number of natural disasters and affect more people than any other type of natural disaster. With the availability of satellite rainfall analyses at fine time and space resolution, it has also become possible to mitigate such hazards on a near-global basis. In this article, a framework to detect floods and landslides related to heavy rain events in near-real-time is proposed. Key components of the framework are: a fine resolution precipitation acquisition system; a comprehensive land surface database; a hydrological modeling component; and landslide and debris flow model components. A key precipitation input dataset for the integrated applications is the NASA TRMM-based multi-satellite precipitation estimates. This dataset provides near real-time precipitation at a spatial-temporal resolution of 3 h and 0.25° × 0.25°. In combination with global land surface datasets it is now possible to expand regional hazard modeling components into a global identification/monitoring system for flood/landslide disaster preparedness and mitigation.  相似文献   

10.
Shallow landslides are unforeseeable phenomena often resulting in critical conditions in terms of people’s safety and damage. The main purpose of this paper is the comparison of different statistical methods used to determine the rainfall thresholds for the shallow landslide occurrence. Rainfall data over a 46-year period were collected for one rain gauge located in a test area of northwest Italy (Riviera Spezzina; RS). In the RS, intense rainfalls often induce shallow landslides causing damage and sometimes casualties. The rainfall events occurred in the 1967–2006 period were classified as events inducing shallow landslides (SLEs1967–2006) and events that did not trigger shallow landslides (NSLEs1967–2006). Thresholds for various percentiles of SLEs1967–2006 were computed by identifying the lower limit above which shallow landslides occurred. Another set of thresholds, corresponding to different probabilities of occurrence, was determined using SLEs1967–2006 and NSLEs1967–2006. The least-squares linear fit (LSF) and the quantile regression (QR) techniques were employed in the former approach, while the logistic regression (LR) was applied in the latter. The thresholds were validated with the same data used for their definition and with the data recorded in the 2008–2014 period. Contingency tables were created and contingencies and skill scores were computed. The 10% probability threshold obtained using the LR method is characterized by the best values of at least two skill scores for both periods considered; therefore, it may be considered the “best” threshold for the RS. The results of this work can help the choice of the best statistical method to determine the shallow landslide rainfall thresholds.  相似文献   

11.
Many large landslides in the crystalline schist region of Shikoku Island, Japan, are susceptible to intense rainfall. Through the use of on-site monitoring systems, the activity of landslides and their meteorological triggers can be assessed. Continuous high-intensity rainfall was found to play a key role in provoking landslide movement. This paper investigates the influence of intense rainfall on the activity of crystalline schist landslides by examining rainfall and displacement of four typical landslides. By defining and calculating the effective rainfall and the relative landslide displacement, the relationship between intense rainfall and rainfall-induced landslide movement was analysed. Results indicate that the intense rainfall-induced landslide movement can be correlated with the effective rainfall. From these results, two rainfall thresholds were identified for the landslide risk management of Shikoku Island.  相似文献   

12.
A landslide database for Nicaragua: a tool for landslide-hazard management   总被引:3,自引:1,他引:3  
A digital landslide database has been created for Nicaragua to provide the scientific community and national authorities with a tool for landslide-hazard assessment, emergency management, land-use planning, development of early warning systems, and the implementation of public and private policies. The Instituto Nicaragüense de Estudios Territoriales (Nicaraguan Geosciences Institute, INETER) began to compile the database in a digital format in 2003 as part of a comprehensive geographical information system for all types of geohazards. Landslide data have been obtained from a variety of sources including newspapers, technical reports, and landslide inventory maps. Inventory maps are largely based on fieldwork and aerial-photo analyses conducted by foreign development agencies in collaboration with INETER and other Nicaraguan institutions. This paper presents the sources of landslide information, introduces the database, and presents the first analyses of the data at national and regional scales. The database currently contains spatial information for about 17,000 landslides that occurred in mountainous and volcanic terrains. Information is mainly recorded for the period 1826–2003, with a large number of events that occurred during the disastrous Hurricane Mitch in October 1998. The oldest historical event is dated at 1570, some events are recorded as prehistorical, and other events have unknown dates of occurrence. Debris flows have been the most common types of landslides, both in volcanic and nonvolcanic areas, but other types, including rockfalls and slides, have also been identified. Intense and prolonged rainfall, often associated with tropical cyclones, and seismic and volcanic activity represent the most important landslide triggers. At a regional scale, the influence of topographic (elevation, slope angle, slope aspect) and lithologic parameters on the occurrence of landslides was analyzed. The development of the database allowed us to define the state of knowledge on landslide processes in the Nicaragua and to provide a preliminary identification of areas affected by landslides.  相似文献   

13.
Flash flood disaster is a prominent issue threatening public safety and social development throughout the world, especially in mountainous regions. Rainfall threshold is a widely accepted alternative to hydrological forecasting for flash flood warning due to the short response time and limited observations of flash flood events. However, determination of rainfall threshold is still very complicated due to multiple impact factors, particular for antecedent soil moisture and rainfall patterns. In this study, hydrological simulation approach (i.e., China Flash Flood-Hydrological Modeling System: CNFF-HMS) was adopted to capture the flash flood processes. Multiple scenarios were further designed with consideration of antecedent soil moisture and rainfall temporal patterns to determine the possible assemble of rainfall thresholds by driving the CNFF-HMS. Moreover, their effects on rainfall thresholds were investigated. Three mountainous catchments (Zhong, Balisi and Yu villages) in southern China were selected for case study. Results showed that the model performance of CNFF-HMS was very satisfactory for flash flood simulations in all these catchments, especially for multimodal flood events. Specifically, the relative errors of runoff and peak flow were within?±?20%, the error of time to peak flow was within?±?2 h and the Nash–Sutcliffe efficiency was greater than 0.90 for over 90% of the flash flood events. The rainfall thresholds varied between 93 and 334 mm at Zhong village, between 77 and 246 mm at Balisi village and between 111 and 420 mm at Yu village. Both antecedent soil moistures and rainfall temporal pattern significantly affected the variations of rainfall threshold. Rainfall threshold decreased by 8–38 and 0–42% as soil saturation increased from 0.20 to 0.50 and from 0.20 to 0.80, respectively. The effect of rainfall threshold was the minimum for the decreasing hyetograph (advanced pattern) and the maximum for the increasing hyetograph (delayed pattern), while it was similar for the design hyetograph and triangular hyetograph (intermediate patterns). Moreover, rainfall thresholds with short time spans were more suitable for early flood warning, especially in small rural catchments with humid climatic characteristics. This study was expected to provide insights into flash flood disaster forecasting and early warning in mountainous regions, and scientific references for the implementation of flash flood disaster prevention in China.  相似文献   

14.
Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfall-induced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity-Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall triggering events. Going from winter to summer conditions requires a strong increase of intensity and/or duration to induce landslides. The results identify an approach to account for different hazard conditions related to seasonality of hydrological processes inside the ash-fall pyroclastic soil mantle. Moreover, they highlight another important factor of uncertainty that potentially affects rainfall thresholds triggering shallow landslides reconstructed by empirical approaches.  相似文献   

15.
The Piemonte regional warning system service, managed by the Environmental Protection Agency of Piemonte (“ARPA Piemonte” as official Italian acronym), is based on an advanced meteo-hydrological automatic monitoring system, and it is integrated with forecasting activities of severe weather-related natural hazards. At present, a meteo-hydrological chain is operated to provide flood forecasting on the main river pattern. The development of a forecasting tool for shallow landslides triggered by heavy rainfall is presented. Due to the difficulties in modelling shallow landslides triggering in a large and complex area like the Piemonte region, an empirical model is developed on the basis of the correlation between rainfall and previous landslides in historical documents. The research focuses on establishing rainfall thresholds for landslides triggering, differentiating the critical rainfall values through a geological characterisation of the different territories. The period from 1990 to 2002 is considered. A total number of 160 landslides with hourly information and time of triggering are used to calibrate the system. As a first outcome, two different zones have been identified: (1) zones in alpine environments, principally characterised by a bedrock composed of metamorphic rocks, igneous rocks, dolostones or limestones that require high values of critical rainfall and (2) zones in hilly environments, principally characterised by sedimentary bedrock that require low values of critical rainfall. Verification has been performed on a total number of 429 landslides with known date of occurrence. The results show a good agreement with the model with no missed alarms and a very low number of false alarms, thus suggesting an effective operational implementation.  相似文献   

16.
This paper concerns a regional scale warning system for landslides that relies on a decisional algorithm based on the comparison between rainfall recordings and statistically defined thresholds. The latter were based on the total amount of rainfall, which was cumulated considering different time intervals: 1-, 2- and 3-day cumulates took into account the critical rainfall influencing shallow movements, whilst a variable time interval cumulate (up to 240 days) was used to consider the triggering of deep-seated landslides in low permeability terrains. A prototypal version of the model was initially set up to define statistical thresholds. Then, thresholds were calibrated using a database of past georegistered and dated landslides. A validation procedure showed that the calibration highly improves the results and therefore the model was integrated in the regional warning system of Emilia Romagna (Italy) for civil protection purposes. The proposed methodology could be easily implemented in other similar regions and countries where a sufficiently organised meteorological network is present.  相似文献   

17.
Rainfall-induced landslides are a significant hazard in many areas of loess-covered terrain in Northwest China. To investigate the response of a loess landslide to rainfall, a series of artificial rainfall experiments were conducted on a natural loess slope, located in the Bailong River Basin, in southern Gansu Province. The slope was instrumented to measure surface runoff, pore water pressure, soil water content, earth pressure, displacement, and rainfall. The hydrological response was also characterized by time-lapse electrical resistivity tomography. The results show that most of the rainfall infiltrated into the loess landslide, and that the pore water pressure and water content responded rapidly to simulated rainfall events. This indicates that rainfall infiltration on the loess landslide was significantly affected by preferential flow through fissures and macropores. Different patterns of pore water pressure and water content variations were determined by the antecedent soil moisture conditions, and by the balance between water recharge and drainage in the corresponding sections. We observed three stages of changing pore water pressure and displacement within the loess landslide during the artificial rainfall events: Increases in pore water pressure initiated movement on the slope, acceleration in movement resulting in a rapid decrease in pore water pressure, and attainment of a steady state. We infer that a negative pore water pressure feedback process may have occurred in response to shear-induced dilation of material as the slope movement accelerated. The process of shear dilatant strengthening may explain the phenomenon of semi-continuous movement of the loess landslide. Shear dilatant strengthening, caused by intermittent or continuous rainfall over long periods, can occur without triggering rapid slope failure.  相似文献   

18.
The main objective of this study is to assess regional landslide hazards in the Hoa Binh province of Vietnam. A landslide inventory map was constructed from various sources with data mainly for a period of 21 years from 1990 to 2010. The historic inventory of these failures shows that rainfall is the main triggering factor in this region. The probability of the occurrence of episodes of rainfall and the rainfall threshold were deduced from records of rainfall for the aforementioned period. The rainfall threshold model was generated based on daily and cumulative values of antecedent rainfall of the landslide events. The result shows that 15-day antecedent rainfall gives the best fit for the existing landslides in the inventory. The rainfall threshold model was validated using the rainfall and landslide events that occurred in 2010 that were not considered in building the threshold model. The result was used for estimating temporal probability of a landslide to occur using a Poisson probability model. Prior to this work, five landslide susceptibility maps were constructed for the study area using support vector machines, logistic regression, evidential belief functions, Bayesian-regularized neural networks, and neuro-fuzzy models. These susceptibility maps provide information on the spatial prediction probability of landslide occurrence in the area. Finally, landslide hazard maps were generated by integrating the spatial and the temporal probability of landslide. A total of 15 specific landslide hazard maps were generated considering three time periods of 1, 3, and 5 years.  相似文献   

19.
A dramatic increase in debris flows occurred in the years after the 2008 Wenchuan earthquake in SW China due to the deposition of loose co-seismic landslide material. This paper proposes a preliminary integrated model, which describes the relationship between rain input and debris flow run-out in order to establish critical rain thresholds for mobilizing enough debris volume to reach the basin outlet. The model integrates in a simple way rainfall, surface runoff, and concentrated erosion of the loose material deposited in channels, propagation, and deposition of flow material. The model could be calibrated on total volumes of debris flow materials deposited at the outlet of the Shuida catchment during two successive rain events which occurred in August 2011. The calibrated model was used to construct critical rainfall intensity-duration graphs defining thresholds for a run-out distance until the outlet of the catchment. Model simulations show that threshold values increase after successive rain events due to a decrease in erodible material. The constructed rainfall intensity-duration threshold graphs for the Shuida catchment based on the current situation appeared to have basically the same exponential value as a threshold graph for debris flow occurrences, constructed for the Wenjia catchment on the basis of 5 observed triggering rain events. This may indicate that the triggering mechanism by intensive run-off erosion in channels in this catchment is the same. The model did not account for a supply of extra loose material by landslips transforming into debris flow or reaching the channels for transportation by run-off. In August 2012, two severe rain events were measured in the Shuida catchment, which did not produce debris flows. This could be confirmed by the threshold diagram constructed by the model.  相似文献   

20.
四川雅安市雨城区降雨诱发滑坡研究   总被引:3,自引:0,他引:3  
降雨是滑坡灾害的重要诱发因素之一。通过详细的地质灾害调查及地质灾害与降雨相关关系的研究,得出降雨对雅安雨城区地质灾害诱发作用的规律并进一步定量评价了诱发因素级别。研究发现,降雨量对滑坡的诱发因素可划分为4级,1d降雨量分级临界值分别为20mm、50mm和100mm,3d降雨量分级临界值分别为100mm、150mm和240mm。这一研究成果为雅安雨城区地质灾害预警预报提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号