首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Neoproterozoic central African Copperbelt is one of the greatest sediment-hosted stratiform Cu–Co provinces in the world, totalling 140 Mt copper and 6 Mt cobalt and including several world-class deposits (10 Mt copper). The origin of Cu–Co mineralisation in this province remains speculative, with the debate centred around syngenetic–diagenetic and hydrothermal-diagenetic hypotheses.The regional distribution of metals indicates that most of the cobalt-rich copper deposits are hosted in dolomites and dolomitic shales forming allochthonous units exposed in Congo and known as Congolese facies of the Katangan sedimentary succession (average Co:Cu = 1:13). The highest Co:Cu ratio (up to 3:1) occurs in ore deposits located along the southern structural block of the Lufilian Arc. The predominantly siliciclastic Zambian facies, exposed in Zambia and in SE Congo, forms para-autochthonous sedimentary units hosting ore deposits characterized by lower a Co:Cu ratio (average 1:57). Transitional lithofacies in Zambia (e.g. Baluba, Mindola) and in Congo (e.g. Lubembe) indicate a gradual transition in the Katangan basin during the deposition of laterally correlative clastic and carbonate sedimentary rocks exposed in Zambia and in Congo, and are marked by Co:Cu ratios in the range 1:15.The main Cu–Co orebodies occur at the base of the Mines/Musoshi Subgroup, which is characterized by evaporitic intertidal–supratidal sedimentary rocks. All additional lenticular orebodies known in the upper part of the Mines/Musoshi Subgroup are hosted in similar sedimentary rocks, suggesting highly favourable conditions for the ore genesis in particular sedimentary environments. Pre-lithification sedimentary structures affecting disseminated sulphides indicate that metals were deposited before compaction and consolidation of the host sediment.The ore parageneses indicate several generations of sulphides marking syngenetic, early diagenetic and late diagenetic processes. Sulphur isotopic data on sulphides suggest the derivation of sulphur essentially from the bacterial reduction of seawater sulphates. The mineralizing brines were generated from sea water in sabkhas or hypersaline lagoons during the deposition of the host rocks. Changes of Eh–pH and salinity probably were critical for concentrating copper–cobalt and nickel mineralisation. Compressional tectonic and related metamorphic processes and supergene enrichment have played variable roles in the remobilisation and upgrading of the primary mineralisation.There is no evidence to support models assuming that metals originated from: (1) Katangan igneous rocks and related hydrothermal processes or; (2) leaching of red beds underlying the orebodies. The metal sources are pre-Katangan continental rocks, especially the Palaeoproterozoic low-grade porphyry copper deposits known in the Bangweulu block and subsidiary Cu–Co–Ni deposits/occurrences in the Archaean rocks of the Zimbabwe craton. These two sources contain low grade ore deposits portraying the peculiar metal association (Cu, Co, Ni, U, Cr, Au, Ag, PGE) recorded in the Katangan sediment-hosted ore deposits. Metals were transported into the basin dissolved in water.The stratiform deposits of Congo and Zambia display features indicating that syngenetic and early diagenetic processes controlled the formation of the Neoproterozoic Copperbelt of central Africa.  相似文献   

2.
The Dashui gold deposit is a structurally controlled, Carlin-type gold deposit hosted by recrystallised limestone in the West Qinling Orogen of Central China. The major, structurally late east-trending Dashui Fault forms the hanging wall to the gold mineralisation at the Dashui mine and defines the contact between Middle Triassic limestone and a steeply dipping overlying succession of Middle Triassic argillaceous limestone, dolomite, and sandstone. Multiple carbonate veins and large-scale supergene enrichment, represented by hematite, goethite, limonite and jarosite, characterise the deposit. Detailed geochronological investigation using zircon SHRIMP U-Pb dating reveals that volcanic rocks closely associated with the Dashui gold deposit were synchronous with the Ge’erkuohe Granite and pre-date mineralisation. The igneous dyke sample from the hanging wall has the same U-Pb zircon age as the footwall, ca. 213 Ma. (U-Th)/He thermochronology on dykes in the hanging wall and footwall of the Dashui Fault yields identical (U-Th)/He zircon ages of ca. 210 Ma but distinct (U-Th)/He apatite ages of ca. 136 and 211 Ma, respectively. Therefore, the hanging wall and footwall are interpreted as having distinct post-mineralisation exhumation histories. Reverse fault movement exhumed the hanging wall ~2 to 4 km since the Late Triassic with the main component of faulting taking place between the Late Triassic and Early Cretaceous. These relationships suggest a Late Triassic to Early Cretaceous age for the primary gold mineralisation at the Dashui gold deposit, with the corollary that any ‘missing portion’ of the deposit, previously hypothesised to exist in the hanging wall of the Dashui Fault, has been eroded away. The mineralisation in the footwall may have been supergene enriched soon after the primary mineralisation was emplaced, because it has been located at shallow depth since the Late Triassic. Semi-quantitative results obtained in this study also constrain the maximum depth of formation of the Dashui gold at no more than 2 km.  相似文献   

3.
South Greenland has been the site of historic mining of cryolite, copper, graphite and gold, hosts mineral deposits with gold, uranium, zinc, niobium, tantalum, zirconium, hafnium, REE, iron, titanium, vanadium, fluorite and graphite, and has additional potential for lithium, beryllium, phosphorus, gallium and thorium. Data from stream sediment geochemical surveys document that South Greenland is enriched in a range of these elements relative to the rest of Greenland and to estimates of the upper crust composition. Distribution patterns for individual elements within south Greenland exhibit enriched regions that are spatially related to lithological units, crustal structure and known mineralisation.The Northern Domain of South Greenland includes the southernmost part of the orthogneiss-dominated North Atlantic craton. Orogenic gold mineralisation is hosted by quartz veins and hydrothermally altered rocks associated with shear zones intersecting the Mesoarchaean Tartoq Group of mafic metavolcanic rocks. Geochemical exploration indicates that additional potential for gold mineralisation exists within Palaeoproterozoic supracrustal rocks overlying the Archaean basement.Rocks formed during the Palaeoproterozoic Ketilidian orogeny occupy a major part of South Greenland and has been divided into two domains. The Central Domain is underlain by the Julianehåb igneous complex forming a 100 km wide ENE–WSW zone centrally across South Greenland. Intrusive and extrusive, mostly felsic magmatic rocks were emplaced in two main stages (1850–1830 and 1800–1780 Ma) in a continental arc setting. Positive anomalies in aeromagnetic data indicate that mafic plutons are common in the late igneous complex. Intra-arc mafic metavolcanic rocks contain syngenetic stratabound copper sulphide and epigenetic shear zone-hosted copper–silver–gold mineralisation at Kobberminebugt and Kangerluluk, whereas metasedimentary and metapyroclastic rocks contain stratabound uraninite mineralisation. Orthomagmatic iron–titanium–vanadium mineralisation is hosted by a gabbro. A potential for porphyry-type mineralisation related to the late intrusive stages of the Julianehåb igneous complex is suggested by showings with copper, molybdenum and gold together with stream sediment anomalies for these elements. Vein-type uranium mineralisation occurs in fault zones in the Julianehåb igneous complex related to Mesoproterozoic rifting.The Southern Domain contains an assemblage of Palaeoproterozoic metasedimentary and metavolcanic rocks that underwent moderate to strong deformation, peak HT–LP metamorphism and partial melting with subsequent retrograde exhumation at 1790–1765 Ma. The supracrustal rocks contain syngenetic Au, As, Sb, U, and Zn mineralisation in volcanic or graphite- and sulphide-rich sedimentary environments; graphite was mined historically at two sites. Many stream sediment gold anomalies are located in a NE-trending belt along the boundary between the early Julianehåb complex and the supracrustal rocks to the south. They reflect a number of auriferous quartz vein occurrences, including the Nalunaq gold deposit, hosted in a system of shear zones and probably generated as orogenic gold during Ketilidian accretion. The 1755–1730 Ma, A-type Ilua plutonic suite is the latest magmatic event in the Ketilidian orogen.The 1300–1140 Ma Gardar period involved continental rifting, sedimentation and alkaline magmatism. Numerous dykes and 10 ring-shaped intrusion complexes were formed across South Greenland. An orthomagmatic iron–titanium–vanadium deposit is hosted by troctolitic gabbro. Residual magmas and fluids resulting from extreme magmatic differentiation, possibly combined with assimilation of older crust, created mineral deposits including cryolite that was mined at Ivigtut, large low-grade deposits of uranium–rare earth elements–zinc at Kvanefjeld and tantalum–niobium–rare earth element–zirconium at Kringlerne, in the Ilímaussaq complex, as well as tantalum–niobium–rare earth elements at Motzfeldt Sø in the Igaliko complex.The South Greenland crustal evolution records effects of mantle processes, such as lithospheric extension, subduction and underplating, which resulted in recurrent magma emplacement in tectonically active environments. As such, the geology of South Greenland reflects events and circumstances that are favourable to the generation and preservation of hydrothermal ore-forming fluid systems during the Ketilidian orogeny as well as to the development of extreme rock compositions within the Gardar alkaline igneous province.  相似文献   

4.
A case history is presented describing geochemical exploration of the porphyry Cu-Mo system at Yandera in the Bismark Ranges of Papua New Guinea. Three phases of geochemistry are discussed: (1) stream sediment, (2) ridge and spur, and (3) detailed rock and soil from contour trails. Results of each phase are presented and their relationship to drill-indicated mineralisation discussed. The effectiveness of the three techniques and various elements as geochemical guides to primary mineralisation is compared.Copper in stream sediment samples at a density of one sample per 1–2 km2 effectively delineated the porphyry Cu system. The extent of ridge and spur sampling was limited, therefore its effectiveness is uncertain. Detailed sampling along contour trails indicated that Au and Mo are the most effective geochemical tools. Copper geochemistry is of limited use as its distribution is largely a function of recent processes and dispersion from supergene mineralisation. No clear relationship exists between Ag geochemistry and mineralisation. Lead and Zn are distributed peripheral to the porphyry Cu system.The effectiveness of Au and, to a lesser extent, Mo as geochemical guides to ore in the steep mountainous terrain of the prospect area where high rainfall, deep weathering and rapid erosion prevail is due to the relatively high stability of these metals in the soils and the oxide zone.  相似文献   

5.
新疆温泉县北达巴特斑岩铜钼矿的蚀变带划分   总被引:4,自引:0,他引:4  
北达巴特铜钼矿赋存于酸性次火山.浅成斑岩体中,其矿化作用呈上铜下钼的双层矿化结构模式。蚀变作用可划分为二期:早期蚀变作用发生在主成矿期之前,表现为黑云母化和钾长石化;晚期蚀变作用与铜钼矿化关系密切,主要表现为硅化、绢云母化、水白云母化、伊利石化、萤石化、电气石化及绿帘石化等,其成因类型可确认为斑岩型铜钼矿.  相似文献   

6.
A significant proportion of the copper in the Ca?ariaco Norte porphyry copper deposit in northern Peru occurs in chalcocite and covellite-rich veins and disseminations that exist from the surface to depths greater than 1?km. The overall range of Cu isotopic ratios of 42 mineral separates from Ca?ariaco varies from ?8.42 to 0.61?‰, with near-surface chalcocite and Fe oxides having isotopically depleted values compared to chalcocite, covellite, and chalcopyrite from deeper levels. The majority (34 of 36) of measured Cu sulfides have a typical hypogene copper isotope composition of δ65Cu?=?0.18?±?0.38?‰, with no enriched isotopic signature existing in the Ca?ariaco Norte sulfide data. Thus, the copper isotope data indicate that most of the chalcocite and covellite formed from high-temperature hypogene mineralization processes and that only a minor portion of the deposit is enriched by supergene processes. The nonexistence of an enriched δ65Cu reservoir suggest the presence of an undiscovered lateral/exotic Cu occurrence that enriched 65Cu that remained in solution during weathering. Regardless of the cause, the comparative analysis of the Cu isotope dataset reveals that little exploration potential for an extensive supergene enrichment blanket exists because the weathering history at Ca?ariaco Norte was not conducive to preservation of enriched Cu at depth beneath the leach cap.  相似文献   

7.
Deep weathering of basalt-hosted sulphidic gold mineralisation has resulted in remobilisation of the gold and the formation of a supergene deposit. The deposit occurs beneath an ephemeral lake system and is at least partially saturated by highly saline groundwater. A general downward movement of an iron redox front associated with the weathering has controlled the distribution of the gold and its morphology. It is unusual in that the high fineness gold crystals formed are coarse and well-preserved. Small octahedra, up to 50 μm, are the most abundant form of gold crystals but large, up to 3 mm, octahedral plates are common. Crystal morphology variations described here suggest that the gold is initially precipitated as euhedral octahedra and plates. Subsequent dissolution and recrystallisation associated with fluctuations in the chemical environment above the redox front has led to the development of the more common irregular dendritic or wire gold forms observed in other supergene deposits.  相似文献   

8.
Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran   总被引:1,自引:0,他引:1  
Mineralisation at the Zarshuran, NW Iran, occurs on the flank of an inlier of Precambrian rocks hosted in black silty calcareous and carbonaceous shale with interbedded dolomite and limestone varying in thickness from 5 to 60 m and extending along strike for approximately 5–6 km. Two major, steeply dipping sets of faults with distinct trends occur in the Zarshuran: (1) northwest (310–325) and (2) southwest (255–265). The main arsenic mineralisation occurs at the intersection of these faults. The mineral assemblage includes micron to angstrom-size gold, orpiment, realgar, stibnite, getchellite, cinnabar, thallium minerals, barite, Au-As-bearing pyrite, base metal sulphides and sulphosalts. Hydrothermal alteration features are developed in black shale and limestone around the mineralisation Types of alteration include: (1) decalcification, (2) silicification, (3) argillisation, (4) dolomitisation, (5) oxidation and acid leaching and (6) supergene alteration. The early stage of mineralisation involved removal of carbonates from the host rocks, followed by quartz precipitation. The main stage includes massive silicification associated with argillic alteration. In the late stage veining became more dominant and the main arsenic ore was deposited along fault cross cuts and gouge. These characteristics are typical of Carlin-type sediment-hosted disseminated gold deposits. The early stage of mineralisation contains only two-phase aqueous fluid inclusions. The main stage has two groups of three-phase CO2-bearing inclusions with minor CH4 ± N2, associated with high temperature, two-phase aqueous inclusions. During the late stage, fluids exhibit a wide range in composition, salinity and temperature, and CH4 becomes the dominant carbonic fluid with minor CO2 associated with a variety of two-phase aqueous fluid inclusions. The characteristics of fluids at the Zarshuran imply the presence of at least two separate fluids during mineralisation. The intersections of coexisting carbonic and aqueous inclusion isochores, together with stratigraphic and mineral stability evidence, indicate that mineralisation occurred at 945 ± 445 bar and 243 ± 59 °C, implying a depth for mineralisation of at least 3.8 ± 1.8 km (assuming a lithostatic pressure gradient). Fluid density fluctuations and the inferred depth of formation suggest that the mineralisation occurred at the transition between overpressured and normally pressured regimes. Geochronologic studies utilising K/Ar and Ar/Ar techniques on hydrothermal argillic alteration (whole rock and separated clay size fractions) and on volcanic rocks, indicates that mineralisation at Zarshuran formed at 14.2 ± 0.4 Ma, and was contemporaneous with nearby Miocene volcanic activity, 13.7 ± 2.9 Ma. It is proposed that mineralisation was the result of the infiltration of hydrothermal fluids containing a magmatic gas component, and that it was localised in the Zarshuran Unit because of the redox boundary that it provided and/or because it lay between an overpressured region at depth and a zone of circulating, hydrostatically pressured fluids above. Received: 10 December 1997 / Accepted: 5 March 1999  相似文献   

9.
The 50 km2 Monywa copper district lies near the Chindwin River within the northward continuation of the Sunda‐Andaman magmatic arc through western Myanmar. There are four deposits; Sabetaung, Sabetaung South, Kyisintaung, and the much larger Letpadaung 7 km to the southeast. Following exploration drilling which began in 1959, production of copper concentrates from a small open pit started at Sabetaung in 1983. Since 1997, when resources totaled 7 million tonnes contained copper in 2 billion tonnes ore, a heap leach–electro‐winning operation has produced over 400,000 t copper cathode from Sabetaung and Sabetaung South. Ore is hosted by mid‐Miocene andesite or dacite porphyry intrusions, and by early mid‐Miocene sandstone and overlying volcaniclastics including eruptive diatreme facies which the porphyries intrude. District‐wide rhyolite dykes and domes with marginal breccias probably post‐date andesite porphyries in the mine area and lack ore‐grade copper. Host rocks to mineralization are altered to phyllic and advanced argillic hydrothermal assemblages within an outer chlorite zone; hypogene alunite is most abundant at Letpadaung and Kyisintaung. Most mineralization is structurally‐controlled with digenite‐chalcocite in breccia dykes, in steeply dipping NE‐trending sheeted veins, and in stockwork and low‐angle sulfide veins. A high‐grade pipe at Sabetaung grades up to 30% Cu, and much of the ore at Sabetaung South is in a NE‐trending zone of mega‐breccia and stockworked sandstone. The hydrothermal alteration, together with replacement quartz, alunite and barite in breccia dykes and veins, the virtual absence of vein quartz, and the presence of chalcopyrite and bornite only as rare veins and as inclusions within the abundant pyrite, indicate that the deposits are high sulfidation. Regional uplift, resistance to erosion and leaching of the altered and mineralized rocks have resulted in porous limonite‐stained leached caps over 200 m thick forming the Letpadaung and Kyisintaung hills. The barren caps pass abruptly downwards at the water table into the highest grade ore at the top of the supergene enrichment zone, within which copper grade, supergene kaolinite and cubic alunite decrease, and pyrite increases with depth; in contrast, marcasite is mostly shallow. Much of the copper to depths exceeding 200 m below the water table occurs as supergene digenite‐chalcocite and minor covellite. Disseminated chalcocite is mostly near‐surface and hence almost certainly supergene. We infer that during prolonged uplift at all four deposits, oxidation of residual pyrite at the water table generated enough acid to leach all the copper from earlier supergene‐enriched ore; below the water table the resulting acid sulfate solutions partly replaced enargite, covellite, chalcopyrite, bornite and pyrite with supergene chalcocite. Undeformed upward‐fining cross‐bedded conglomerates and sands of the ancestral Chindwin River floodplain overlie the margins of the Sabetaung deposits, form a major aquifer up to 40 m thick, and are a potential host for exotic copper mineralization. A mid‐Miocene pluton is inferred to underlie the Monywa deposits, but the possibility of porphyry‐type mineralization within the district is at best highly speculative.  相似文献   

10.
The Lora del Río metamorphic core complex corresponds to the lowermost, high-grade block below a Hercynian extensional shear zone. A peculiarity of this sector is that exhumation of the metamorphic core was the result of the activity of two low-angle, approximately perpendicular shear zones: the main and the secondary shear zones, both of which are separating three structural levels with distinct tectonometamorphic imprints. The Lora del Río metamorphic core underwent rapid exhumation due to the combined action of both extensional shear zones. The Huéznar unit, which represents the median block, shows a complex evolution whereby the highest metamorphism occurs in relation to the secondary extensional structure, although most structures appear to be controlled by the main extensional shear zone. Metamorphism and deformation within the upper block (Los Miradores unit) are controlled by the underlying units. Recognition in the Ossa-Morena zone of extensional deformation processes (dated at 340 Ma), spatially and temporally related with the convergent deformations, can help in the establishment of comparisons and correlations with other sectors of the European Hercynian foldbelt.  相似文献   

11.
The Konkola deposit is a high grade stratiform Cu–Co ore deposit in the Central African Copperbelt in Zambia. Economic mineralisation is confined to the Ore Shale formation, part of the Neoproterozoic metasedimentary rocks of the Katanga Supergroup. Petrographic study reveals that the copper–cobalt ore minerals are disseminated within the host rock, sometimes concentrated along bedding planes, often associated with dolomitic bands or clustered in cemented lenses and in layer-parallel and irregular veins. The hypogene sulphide mineralogy consists predominantly of chalcopyrite, bornite and chalcocite. Based upon relationships with metamorphic biotite, vein sulphides and most of the sulphides in cemented lenses were precipitated during or after biotite zone greenschist facies metamorphism. New δ34S values of sulphides from the Konkola deposit are presented. The sulphur isotope values range from −8.7‰ to +1.4‰ V-CDT for chalcopyrite from all mineralising phases and from −4.4‰ to +2.0‰ V-CDT for secondary chalcocite. Similarities in δ34S for sulphides from different vein generations, earlier sulphides and secondary chalcocite can be explained by (re)mobilisation of S from earlier formed sulphide phases, an interpretation strongly supported by the petrographic evidence. Deep supergene enrichment and leaching occurs up to a km in depth, predominantly in the form of secondary chalcocite, goethite and malachite and is often associated with zones of high permeability. Detailed distribution maps of total copper and total cobalt contents of the Ore Shale formation show a close relationship between structural features and higher copper and lower cobalt contents, relative to other areas of the mine. Structural features include the Kirilabombwe anticline and fault zones along the axial plane and two fault zones in the southern limb of the anticline. Cobalt and copper behave differently in relation to these structural features. These structures are interpreted to have played a significant role in (re)mobilisation and concentration of the metals, in agreement with observations made elsewhere in the Zambian Copperbelt.  相似文献   

12.
The Meiduk deposit possesses three different Cu reservoirs each with a unique Cu isotope signature. δ65Cu for the leached cap minerals ranges from ?2.5 to +0.49‰ to ?0.45 to +0.3‰ for hypogene minerals and from +1.3 to +4.4‰ for supergene enrichment minerals. Oxidation of hypogene sulphides and effective trapping of copper (from solutions derived from the leached cap) in the supergene enrichment zone caused this relationship. A systematic pattern of low Cu isotope values close to the surface and higher isotope values with depth reveals a palaeo‐fluid pathway in the northwest–southeast direction over the deposit. Thus, the copper isotope data from leached cap and enrichment minerals can be used to monitor copper migration during supergene weathering at the Meiduk deposit.  相似文献   

13.
大别地块超高压变质省的构造变形研究   总被引:9,自引:0,他引:9  
索书田 《地学前缘》1999,6(4):255-262
构造解析的基本目的是建立构造事件造成的地质体几何学、运动学、动力学和流变学。大陆碰撞造山带内含柯石英及微粒金刚石等矿物组合的超高压(UHP) 变质岩的形成和折返,是极为复杂的地球动力学过程。与世界上已知大多数超高压变质带相似,中国大别地块内超高压变质省现今观察到的主体构造形式,主要是在碰撞或超高压变质峰期后伸展体制下形成的。通过对大别超高压变质省内伸展组构及挤压( 碰撞) 组构的鉴别、分析,结合有关超高压变质带构造学研究领域的简略综述指出,在揭示超高压变质带的形成及折返动力学过程中,构造解析的思维和工作方法是行之有效的  相似文献   

14.
K-bearing Mn oxides may potentially constitute useful objects for isotopic dating of ore-forming events. A comprehensive 40Ar/39Ar study performed on supergene K–Mn oxides sampled from different sub-alpine mountain terrains in Germany and France has been undertaken. The objective of these investigations was to provide new insight into how and when these secondary Mn accumulations may have formed. Developed in supergene environments at the expense of Mn2+/Mn3+-bearing precursor minerals, the Mn4+ oxides occur either as pseudomorphic ores or as cavity-fillings and linings.

The isotopic ages range from 25 to 1 Ma, indicating intense chemical weathering, especially during the Miocene and Pliocene. It is yet too early to decide whether the age range represents a more or less continuous process or distinct weathering episodes. Formation of supergene Mn oxides may result from combined climatic and tectonic factors: local uplift, exhumation, and associated fracturing of rocks provided fresh mineral surfaces for percolating meteoric fluids that induced subsequent weathering under warm–temperate to subtropical conditions.  相似文献   


15.
Here, we report the first discovery of an amorphous SiO2 phase (APSI phase) in a pseudomorph after coesite included in garnet from an ultrahigh‐pressure (UHP) eclogite from the Su–Lu metamorphic belt, eastern China. Using transmission electron microscopy, Raman spectroscopy and selected area electron diffraction, we show that the internal structure of the pseudomorph consists of an APSI phase with nano/submicrocrystalline particles of quartz and a polycrystalline K‐bearing fibrous sheet‐silicate phase (KFSS phase). The APSI phase‐bearing aggregates included in the garnet might have formed by reactions involving a supercritical fluid during exhumation by the following processes: (1) the development of radial cracks within the host garnet by the phase transition of coesite to quartz; (2) the decomposition of a part of the pseudomorph following infiltration of supercritical fluid; (3) the precipitation of the KFSS phase from the fluid phase during subsequent exhumation and cooling, which was likely promoted by a change in the metamorphic fluid from supercritical and/or subcritical to aqueous fluid; and (4) the rapid precipitation of the APSI phase under a metastable (non‐equilibrium) state, such as quenching, during a later stage of the exhumation. Whether the APSI phase generally formed during exhumation and survived widely throughout the Su‐Lu terrane is unknown. However, the presence of the APSI phase in a UHP eclogite provides new insight into the geodynamic phenomena occurring at continental collision zones.  相似文献   

16.
The Serra Pelada Au-PGE-rich deposit is located in the Serra dos Carajás, a leading mining area in Brazil. This region is characterised by a complex geological and structural framework and is affected by deep lateritisation which has lasted for more than 70 Ma. The Serra Pelada deposit is emplaced in a late-Archean low-grade metasedimentary sequence (Rio Fresco/Águas Claras Formation) which is host to other gold deposits in the region (Igarapé Bahia, Águas Claras). The Rio Fresco/Águas Claras sequence was deposited in tectonic basins developed on Archean basement and Au-bearing greenstone terranes which were intruded by PGE-rich layered mafic complexes (e.g. Luanga). The Serra Pelada mineralisation is located along a regional, complex system of strike-slip faults (Cinzento-Carajás systems) which were active during the late Archean to early Proterozoic. The mineralisation appears to be concentrated along a faulted hinge zone of a fold. Ore zone rock facies are dominated by low-grade ferruginous to carbonaceous metasiltstones and minor sandstones, locally brecciated and cemented by quartz (-sulphide) stockwork. Supergene alteration led to partial to total transformation into friable aggregates of kaolinite, Fe oxide-hydroxides, silica and secondary phosphate-sulphates even at depths exceeding 200 m. Precious metals are exceptionally enriched, with up to more than 1,000 ppm Au+PGE in some peculiar ferruginous-graphitic zones locally called "hidrotermalito". Geochemistry shows complex patterns of major and trace elements, particularly rare-earth elements (REE), in mineralised vs. nonmineralised samples. These patterns are interpreted in terms of variable degree of superposition of hydrothermal and supergene alteration. Precious metals show progressive increase from samples with hydrothermal imprint to samples with supergene imprint. The geological evolution of the Carajás region and the characteristics of mineralisation at Serra Pelada may suggest a composite mineralising process: hydrothermal activity (by fluids likely originated from granitoids) was followed by supergene alteration during long-lasting lateritisation to develop extreme precious metal enrichments in a geological context probably already anomalous for Au and PGE.  相似文献   

17.
四川盆地灯影组是中国最为古老的海相碳酸盐岩沉积地层,也是年代最老的含气储集层之一,灯影组在漫长的地质历史时期中经历过多期次的岩溶作用改造,而表生岩溶作用是其中最为重要的一种。本文以野外露头以及钻井岩心样品的宏观、微观特征为基础,以不同结构组分进行微区取样的多参数实验分析方法为辅助手段,对灯影组白云岩表生岩溶作用进行了研究。灯影组表生岩溶作用主要发育在三个层位,即灯四段顶部,灯二段顶部以及灯二段中、下部。其中桐湾Ⅰ幕和桐湾Ⅱ幕构造运动是造成灯二段顶部以及灯四段顶部表生岩溶作用的主控因素,而灯二段早、中期的表生岩溶作用主要受气候等原因引起的大规模海平面升降所控制。  相似文献   

18.
Sulphide mineralisation associated with rocks from the Palaeoproterozoic Olary Domain (OD) and overlying Neoproterozoic Adelaidean sequences has undergone a complex history of metamorphism and remobilisation. In this study, new trace element and sulphur isotopic analyses of pyrites from a large number of deposits and paragenetic generations are combined with an existing data set to build up a sequence of mineralising events linked to the tectonometamorphic evolution of the region. The typically high Co/Ni ratios (>10) indicate that early strata-bound pyrite precipitated from a volcanic-related fluid, which had fluctuating activities of the two metals during the early stages of the evolution of the Willyama basin. This period of mineralisation was followed by a diagenetic concentration of sulphide mineralisation at the horizon known as the Bimba Formation, which occurred as a result of the differing redox conditions between the upper and lower sequences in the Willyama Supergroup. During the Mesoproterozoic (1600 to 1500 Ma) Olarian Orogeny, metamorphic remobilisation of strata-bound pyrite resulted in an epigenetic signature; the trace element concentrations of this generation were controlled primarily by the proximity of mineralisation to the mafic intrusive bodies found throughout the terrane. Further reworking of existing sulphides during the Delamerian Orogeny and associated granitoid-intrusive rocks led to the formation of a new generation of epigenetic pyrite that occurs in quartz veins in the Adelaidean sequences and veins that crosscut Olarian fabrics in the Olary Domain. δ34S results range from 16‰ to 11‰, but most data fall between 2‰ and 4‰. This association is suggestive of an initial uniform deep-seated crustal reservoir of sulphur, which has been repeatedly tapped throughout the metallogenic history of the region. The isotopic outliers can be explained by the input of biogenic sulphur or sulphur derived from oxidised, possibly evaporitic, sediments, respectively. Previous workers have invoked the Kupferschiefer and the Zambian Copperbelt as analogues to mineralisation processes in the Olary Domain. This study shows that δ34S and trace element data are suggestive of some affinities with the aforementioned analogues, but a more likely link can be made between epigenetic remobilisation in the Olary region and the iron oxide copper gold (IOCG) style of mineralisation found at the nearby Olympic Dam deposit.  相似文献   

19.
Recent studies have suggested the involvement of highly saline deep formation waters that modified preexisting Cu assemblages to form atacamite during supergene oxidation of Cu deposits in the Atacama region. In this report, we document the occurrence of (Ag–I) inclusions hosted by supergene chalcocite from Mantos de la Luna, an argentiferous Upper Jurassic stratabound Cu deposit in the Coastal Range of northern Chile. The presence of this unusual mineral assemblage indicates that iodargyrite precipitated from reducing iodine-rich waters, suggesting that the fluids involved in supergene enrichment of Cu deposits in the Coastal Range were more complex than previously thought. This suggests the prevalence of hyperarid conditions during the latest stages of supergene enrichment of the Mantos de la Luna Cu deposit in the Atacama region, supporting the notion that supergene enrichment processes in hyperarid areas are dynamic in nature and do not exclusively require the presence of meteoric water.  相似文献   

20.
孙剑  朱祥坤 《地质论评》2015,61(6):1370-1382
铁同位素地球化学已成为当前国际上地球化学领域的研究热点。表生过程涉及地球表层,包括大气圈、水圈、生物圈及岩石圈浅部,与人类生活密切相关,也是地球科学中的基本地质过程之一。本文对表生体系中的土壤、河流、海洋等主要储库的铁同位素组成特征及表生体系铁同位素分馏的基本过程进行总结。在此基础上,对表生过程中的风化作用、河流搬运作用、沉积作用、成岩作用及海洋铁的地球化学循环过程中铁的同位素地球化学行为进行介绍。表生过程中铁的同位素地球化学理论框架已经基本建立,并且显示出铁同位素是表生地球化学领域新的示踪工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号