首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
新疆阿勒泰地区是中国季节性积雪水资源最为丰富的地区之一。2016年12月在克兰河中游地区开展了积雪观测,利用直尺和量雪筒测量雪深和雪密度,调查了积雪水资源的分布情况;利用针式温度计测量雪层温度,获取了雪层之间的温度梯度;利用雪特性分析仪和显微镜测量了积雪剖面的雪层密度、液态水含量、介电常数和雪粒径。通过分析研究区积雪水资源的空间分布和积雪特性的垂直分异发现:研究区雪深的分布非常不均匀,北部的雪深总体上大于南部,即使在同一地区,雪深也因风力等原因而分布不均匀;研究区总体上属于"干寒型"积雪,密度较小,且密实化迅速;各雪层属于干雪或者湿度极低的潮雪,绝大多数雪层的液态水含量在0.3%以下;积雪温度总体上从表层到底层逐渐升高,表层温度日变化较大;阴天积雪温度高于晴天,各雪层温度日变化小于晴天,且午后积雪会出现负温度梯度,冷中心出现在积雪次表层;雪粒径较小,雪粒长短轴比的最小值出现在中间层,且符合新雪的粒径特点。  相似文献   

2.
祁连山区风吹雪对积雪质能过程的影响   总被引:4,自引:3,他引:1  
李弘毅  王建  郝晓华 《冰川冻土》2012,34(5):1084-1090
风吹雪是山区积雪水文过程的重要组成部分. 采用祁连山区冰沟流域2008年积雪期观测数据, 通过对风吹雪实地观测分析、风吹雪的发生概率、风吹雪迁移以及风吹雪升华等分析, 从野外观测、计算模拟两个方面对祁连山区风吹雪质能过程进行了详细探讨. 结果表明: 位于流域海拔较高处(海拔4 146 m)的研究区垭口站, 风吹雪现象较为显著, 因之造成的积雪重新分布极为严重. 垭口站风吹雪频发于冬季及初春融雪未发生时, 积雪在风速作用下迁移量较大; 而进入融雪期之后, 因气温上升、雪面融化以及再冻结, 风吹雪发生概率急剧减小. 风吹雪在积雪升华中占有较大比重, 2008年积雪期, 垭口站风吹雪升华估算值约占积雪升华(包括雪面升华)的41.5%.  相似文献   

3.
连懿  陈圣波  孟治国  张锋  张莹 《地球科学》2014,39(11):1644-1650
月壤介电常数是当前月球微波遥感探测的基础, 是月壤厚度、成分等信息提取不可或缺的参数.为了实现全月介电常数反演, 通过对嫦娥二号卫星微波辐射计亮温数据进行时角校正, 得到同一时角的全月微波亮温图.全月微波亮温表现出随月球地形、月壤成分及纬度变化的特征.基于校正后的微波辐射亮温, 结合辐射传输模型, 通过解算相关参数, 反演得到3GHz频率下全月介电常数分布.其中, 月海地区的介电常数实部高于月陆地区, 且月球极地区域介电常数实部偏低; 而介电常数虚部则在月海区域和艾肯盆地较高.通过模拟月表介电常数实验对反演结果进行温度校正, 得到22℃下全月介电常数.将反演结果和月壤真实样品的介电常数测量值进行比较评价.结果表明介电常数实部相对误差都低于11%;虚部相对误差偏大, 但其差值最大仅为0.02.因此, 基于嫦娥二号卫星微波辐射计亮温数据反演月表介电常数的方法是可行的.   相似文献   

4.
王志明  杨莹  吴世红  许刚  李静 《世界地质》2020,39(1):135-140
微波介电常数是分析和研究微波与介质之间相互作用的重要基础参数之一。笔者设计了一种针对低损耗介质微波介电常数的反演方法。引入并改进了辐射传输方程,将介质介电常数的实部和虚部与其微波亮温相关联。在温度均匀分布且表面光滑的条件下,利用改进的辐射传输方程,构造了低损耗介质微波介电常数的反演模型。基于模拟月壤物质,进行了反演模型的验证。结果表明,反演的介电常数的实部与北京师范大学提供的检测结果吻合良好,虚部与阿波罗14号月壤样品的平均测量值吻合良好。  相似文献   

5.
我国东北低山区不同坡位积雪特性研究   总被引:4,自引:3,他引:1  
曹志  范昊明 《冰川冻土》2017,39(5):989-996
为研究坡位对积雪性质的影响,利用Snow Fork雪特性分析仪等采集积雪物理性质(积雪深度、密度、液态水含量)数据,分析了不同坡位积雪特性的变化趋势、差异及成因。结果表明:坡位的差异可显著影响积雪,特别是积雪表层的特性,积雪表层温度与积雪反辐射强度呈显著正相关关系;阴、阳坡各坡位积雪液态水含量变化趋势一致,但阳坡液态水含量最大值出现在上坡位,阴坡则是中坡位最大;阴、阳坡各坡位在液态水含量增加的影响下雪密度也在逐渐增大,并且随着积雪深度的增加雪密度逐渐减小;试验区融雪期阳坡积雪液态水含量最先对环境变化做出响应,进而影响雪密度,深度随之响应;阴坡则是液态水含量首先响应,积雪深度次之,密度最后响应。研究结果将为融雪径流形成、融雪侵蚀防治以及季节性积雪区生态系统评估提供理论依据。  相似文献   

6.
典型草原区芨芨草灌丛积雪形态与滞雪阻雪能力   总被引:1,自引:0,他引:1  
左合君  闫敏  刘宝河  董智 《冰川冻土》2016,38(3):725-731
通过对典型草原区芨芨草(Achnatherum splendens)灌丛积雪体的调查,研究了灌丛特征(灌丛高度、灌丛迎风侧宽度、灌丛顺风侧长度)对于积雪形态(积雪高度、积雪宽度、雪辫长度)的影响。结果表明:芨芨草积雪形态参数与灌丛特征单一因子间呈显著的幂函数关系(指数<1),灌丛积雪发育过程及其形态特征是灌丛特征参数共同影响和作用的结果,灌丛高度对积雪高度与雪辫长度影响最大,灌丛迎风侧宽度对积雪宽度影响最大;在灌丛积雪的形成发育过程中,较小灌丛积雪形态发育较快,大灌丛积雪形态发育相对缓慢,不论灌丛特征如何变化,所有灌丛积雪体前期发育迅速,后期发育缓慢;灌丛二维空间滞雪范围模型直接反映灌丛对风力的干扰范围和积雪的潜在范围,间接反映灌丛的滞雪能力;灌丛三维空间阻雪量模型直接反映一定雪源、风况条件下灌丛的阻雪能力。建立的灌丛滞雪范围与灌丛阻雪体积模型,可为典型草原风吹雪区积雪资源估算和雪害植物防治技术提供理论依据。  相似文献   

7.
锡林郭勒典型草原植被高度和盖度对风吹雪的影响   总被引:2,自引:1,他引:1  
采用野外调查与风雪流实测的方法对内蒙古锡林郭勒大针茅典型草场风雪流与植被高度、盖度的关系进行了研究.结果表明:随着草场退化程度的减轻和草场植被高度、盖度的增大,下垫面粗糙度、积雪厚度和积雪量呈增大趋势,而近地表风速、移雪强度与上层含雪量则呈下降趋势.移雪强度与距地表高度,积雪深度与植被高度,积雪深度与盖度间均符合指数函数关系.中度、轻度退化草场和封育草场的积雪深度分别是重度退化草场的1.7、3.1和5.2倍.随着退化程度的增加,风吹雪灾害形成的可能性增大.加强草原保护与建设,对减轻风吹雪危害和积蓄积雪资源具有重要作用.  相似文献   

8.
祁连山区冰沟流域积雪分布特征及其属性观测分析   总被引:8,自引:5,他引:3  
以祁连山冰沟流域为研究区,通过在流域内布设花杆观测积雪深度,渊查了山区积雪分布情况;利用雪特性分析仪测量了区内积雪密度、介电常数、液念水含量等积雪参数,光谱仪测量了不同类型积雪的光谱特征,手持反照率测量计观测积雪表面反照率,带刻度手持放大镜测量积雪粒径,红外温度计和针式温度计测量雪层的温度和实地测量积雪属性.同时,在研究区内选择加强观测区挖雪坑,对雪层内部属性和雪剖面分层特性作了进一步研究,计算民流域内积雪等效密度;最后对试验中所使用的野外实测积雪的各种方法进行了评价.研究表明:山区积雪分布很不均匀,在阴坡山谷雪深最深,阳坡雪积累最少,即使在同一样区,积雪分布也小均匀;研究Ⅸ的积雪属于潮雪,体秋含水量在3%以下;不同粒径、类型和表面粗糙度的积雪反射率不同,验证了积雪光谱是雪颗粒、污染物和地面粗糙度的函数;积雪反照率随太阳高度角升高逐步降低,在没有新降雪的情况下,日反照率也逐渐降低;雪分层比较明显,雪下冰晶层发育良好.当深度达剑20 cm时,积雪具有保温作用;冰沟流域的积雪等效密度随时间和空间变化不大,经汁算为0.16 g·cm-3.  相似文献   

9.
阿尔泰山融雪期不同下垫面积雪特性观测与分析研究   总被引:3,自引:1,他引:2  
2014年3月融雪期间在阿尔泰山额尔齐斯河河源区,基于已有的气象和积雪(雪深、雪密度)观测,利用Snow Fork雪特性仪和便携式温度计TP3001,选择草地、水泥地和河冰三种不同的下垫面分别观测了分层积雪密度、液态水含量和雪层温度变化.结果表明:三种下垫面上表层积雪的温度、液态水含量和密度变化规律基本一致.积雪特性的差异主要体现在积雪层底部,河冰和草地与积雪接触面温度日变化过程呈现出"单峰型",而与水泥地接触面上的温度日变化呈现出"双峰型";河冰上积雪底部的液态水含量最小且日变化幅度较小,草地次之,水泥上积雪底部液态水含量的波动最大;水泥和草地上底部积雪的密度变化趋势一致,为密实化过程,而河冰上积雪底部的积雪因深霜层的形成致使雪密度逐渐减小.对同一下垫面上的积雪而言,水泥和草地上积雪温度的极大值出现在雪层中间,河冰上雪层的温度廓线沿雪深有波动上升的趋势,最大值出现在积雪与河冰的接触面处.三种下垫面上积雪的液态水含量最大值均出现在中间雪层,雪密度均呈现沿雪深增加而递减的变化趋势.液态水含量受积雪温度的控制,当积雪温度低于-3℃时,积雪中的液态水可以忽略不计;当积雪温度低于-1℃时,积雪的液态水含量低于1%;当积雪温度大于-1℃时,积雪中出现液态水的比例显著增加,且液态水含量的波动范围较大,最高可到6.2%.  相似文献   

10.
中国积雪特性及分布调查   总被引:3,自引:3,他引:0  
介绍了"中国积雪特性及分布调查"的背景、科学目标、调查内容及方案。调查的总体目标是建立中国全面而系统的积雪特性数据库,服务于气候变化、水资源调查和积雪灾害的数据需求。调查将从历史资料整编、典型积雪区积雪特性地面调查以及积雪遥感调查等方面展开。历史资料的整编包括收集气象站以及各单位已开展的积雪特性观测资料,并按照一定的规范进行整编;典型积雪区地面调查主要是在东北地区、新疆地区和青藏高原开展不同季节的积雪特性调查,以点、线、面3种方式开展,观测内容包括雪深、雪密度、雪水当量、积雪形态、表层硬度、液态水含量、雪粒径、雪层温度、雪土界面温度、介电常数以及积雪的若干化学特性;遥感积雪调查将利用地面调查的积雪特性信息改进已有的积雪参数反演算法,建立中国长序列的积雪面积、反照率以及雪水当量数据集。最终,利用地面和遥感调查所获取的积雪特性及分布数据集对中国进行积雪类型划分,并生产系列积雪特性及专题分布图。  相似文献   

11.
湿雪的密实化与颗粒粗化过程研究   总被引:5,自引:0,他引:5  
研究了处于自然状态下的湿雪的密实化和颗粒粗化过程.在野外观测的基础上,通过应用粘滞流体模型,发现与干雪相反,当湿雪的含水率达到一定程度(重量含水率约5%)后,粘滞度随密度增加而降低.通过粒径量测与颗粒大小分布统计发现,与含水饱和的雪相同,在湿雪演变过程中,不同时刻的雪粒粒径积累频率分布曲线形状基本相同,且与含水饱和雪的基本一致,说明含水不饱和的雪与含水饱和的雪在颗粒粗化过程中具有相同的粒径分布及其演进特征.分析还显示,含水不饱和雪的颗粒粗化速率比含水饱和雪的小得多.  相似文献   

12.
雷向杰  李亚丽  李茜  王娟  陈卫东 《冰川冻土》2016,38(5):1201-1210
利用太白气象站1962-2014年地面积雪观测资料,太白、眉县气象站1980-2014年高山积雪观测记录和1988-2010年卫星遥感资料,分析了秦岭主峰太白山西部中山区、西部中高山区和中部中高山区积雪初、终日期、积雪日数和积雪深度等的变化特征,以及西部中山区积雪变化的成因.结果表明:1962-2014年太白山西部中山区积雪初日推迟,终日提前,初终间日数减少,积雪日数显著减少,积雪深度呈现波动变浅的趋势;1980-2014年西部中高山区积雪日数同样呈现波动减少趋势,西部中山区和中高山区年积雪日数减少率分别为3.2 d·(10a)-1和8.9 d·(10a)-1.1980-2014年中部中高山区积雪初、终日期和积雪日数变化趋势不明显.卫星遥感监测资料分析结果显示太白山地区积雪面积呈现波动减少趋势.1962-2014年西部中山区气温升高,降水减少,积雪参数与气候要素相关分析结果表明气温和累积雪深等参数变化关系密切,气温升高是太白山积雪减少的主要原因.1980-2014年太白山地区7月积雪日数很少,关中八景之一的“太白积雪六月(公历7月)天”已很少见到.  相似文献   

13.
一种基于MODIS积雪产品的雪线高度提取方法   总被引:3,自引:2,他引:1  
冰川雪线高度的遥感提取对冰川物质平衡研究具有重要意义。提出一种基于晴空环境下积雪覆盖频率的雪线高度提取方法。使用MOD10A1积雪产品中的像元积雪面积比例数据,提取了2000/2001-2014/2015年间高亚洲地区冰川消融期末雪线高度。使用实测的冰川年物质平衡资料和气象格网数据对提取的雪线高度变化的可信度进行分析。研究表明:近15 a高亚洲雪线高度变化及趋势具有明显的东西差异,雪线高度变化幅度自青藏高原内部地区向四周呈增加趋势,西部大于东部。提取的冰川雪线高度变化与观测的年物质平衡序列具有很高的相关性,对物质平衡波动的平均解释率可高达75%;与气象要素(气温、降水)的年际变化的相关性也较高,约61.58%的格网冰川雪线高度变化可以由夏季气温和季节降水解释。而高亚洲各分区冰川雪线高度的波动规律也与大气环流背景分布一致。因此提取的雪线高度变化具有冰川学意义,可以进一步应用于冰川物质平衡估算及模拟研究中。  相似文献   

14.
北京-张家口地区冬春季积雪特征分析   总被引:6,自引:4,他引:2  
2022年冬奥会将在北京-张家口(以下简称北-张地区)举办,揭示该地区的积雪变化特征及其在全球变暖背景下的发展趋势,对冬奥会的筹备以及当地的积雪资源的开发利用等方面都有重要意义。利用2002-2014年MODIS遥感积雪产品提取了研究区域积雪数据,结合1966-2013年台站积雪、气温和降水资料和DEM数据,分析了积雪的时空分布特征,并对冬奥会场地进行积雪资源评价。结果表明:2002-2013冬春年北张地区的整体积雪频率较小,多处于0~0.2之间,但场馆区2月的积雪频率多在0.5以上,最大值接近0.9左右,积雪的分布呈带状和点状。积雪覆盖率最大值出现在1月初,达到0.23。积雪的形成缓慢,但是消亡迅速。1966-2012冬春年冬季积雪日数的波动幅度大于春季,延庆和崇礼县的2月份积雪日数分别为4.6d和13.9d,且均呈下降状态。积雪初终日均有提前,但整体的积雪期在减少。北京和张家口整体的最大积雪深度变化平稳,在1966-1980年和2000-2012年处于高值区,波动较大,其他年份最大雪深处于低值变化平稳,延庆和崇礼县的2月份最大积雪深度分别为3.6cm和5.1cm。通过分析积雪指标与气象因子(气温、降水)的相关关系发现,在年内(年际)变化上,积雪指标与气温(降水)的关系更为密切。冬奥会场地的2月份气温在-14~2℃之间,月平均降水量仅0.2mm·d-1,积雪日数不足,预计难以形成足够深度的雪,且未来气温上升,达到0.8℃·(10a)-1,降水、积雪深度和积雪日数均呈下降趋势,可能60%~95%的赛事用雪将来自人造雪,以应对可能的积雪不足。  相似文献   

15.
基于气象要素的我国南方低温雨雪冰冻综合评估   总被引:3,自引:0,他引:3  
利用1962-2012年260个常规气象观测站的逐日资料, 使用模糊信息分配方法划分我国南方出现低温雨雪冰冻天气时各气象要素的等级, 计算各等级出现的概率, 选取合理的气象要素条件建立了低温雨雪冰冻综合评估指数, 并给出了我国南方发生低温雨雪冰冻的风险区划. 结果表明:日最高气温≤6 ℃, 日最低气温≤0 ℃, 相对湿度≥80%, 日照时数≤1.3 h这一综合气象阈值条件能够合理地评估出南方地区低温雨雪冰冻事件发生的次数和持续时间. 四川省中南部、云南省东北部和贵州省西部、湖南省东部、江西省北部、安徽省、湖北省大部分地区以及陕西省的部分地区发生低温雨雪冰冻的风险等级最高. 近51 a来我国南方低温雨雪冰冻的风险虽有减小的趋势, 但近年出现重大灾害的可能性将有所增加.  相似文献   

16.
刘章文  陈仁升  宋耀选 《冰川冻土》2014,36(6):1582-1590
在气候变化的背景下, 寒区灌丛与积雪的相互关系成为寒区水文循环研究的重要环节. 综述近几十年来寒区灌丛-积雪相互关系的国内外研究现状, 并对未来研究提出了展望. 寒区灌丛过去几十年来覆盖面积和生物量等呈现增加趋势, 灌丛的增加可截留积雪, 改变积雪重分布, 影响积雪消融过程; 积雪可增加灌丛区地温, 制约灌丛区融雪时空变化过程, 影响寒区灌丛的生理生态过程. 灌丛与积雪同为寒区自然生态系统和环境的重要组成部分, 二者相互作用使地面太阳辐射和地表水分分配过程复杂化, 从而间接地影响寒区冻土环境变化. 最后, 指出了未来研究需要重点关注的几个问题: 寒区灌丛区积雪分布的精确估计; 灌丛-积雪-冻土连续体的研究; 耦合灌丛-积雪作用的寒区水文模型的构建.  相似文献   

17.
积雪是地表特征的重要参数,其对辐射收支、能量平衡及天气和气候变化有重要影响。利用1980-2019年被动微波遥感积雪深度资料对青藏高原积雪时空特征进行分析,在此基础上将高原划分为东部、南部、西部及中部4个区域,并分区域讨论了多时间尺度积雪的变化特征及其与气温、降水的相关关系。结果表明:不同区域积雪深度在不同时间尺度的变化特征存在差异,高原东部积雪深度累积和消融的速率比西部快,南部积雪深度累积和消融速率比中部快。季节尺度上,冬季积雪高原东部最大,中部最小;春季积雪高原东部消融速率最大,西部积雪消融较慢但积雪深度最大;夏季高原西部仍有积雪存在。年际尺度上,各区域积雪深度在1980-2019年均呈现缓慢下降趋势,但东部积雪减少不显著;高原东部积雪深度在1980-2019年呈现出增加-减少-增加-减少的变化,其余3区均呈现出减少-增加-减少-增加-减少的变化。不同区域积雪深度对气温、降水的响应不同,高原东部和中部积雪深度与气温相关性较好;各区域积雪深度与降水呈不显著的正相关关系。  相似文献   

18.
科学监测新疆叶尔羌河流域山区积雪面积及其变化特征对该区域的气候研究、雪水资源开发利用、环境灾害预报和生态环境保护等方面有重要意义. 利用2000-2012年近13 a的MOD10A2积雪产品提取研究区域内积雪,结合DEM数据分析研究区内积雪面积的动态变化特征. 结果显示:新疆叶尔羌河流域山区的积雪面积的年际变化幅度较大,其中,2005年和2009年积雪面积较大,2007年则为典型少雪年;年内变化差异显著,总体上呈现“M”型的特点,12月和3月处于高位,2月和8月处于低谷. 叶尔羌河流域山区积雪覆盖率随着海拔的上升逐渐增大,稳定积雪主要分布在海拔5 000 m以上的地区;不同坡向的积雪覆盖率差异比较明显,西北坡、东坡、东北坡的积雪覆盖率比北坡、东南坡、西坡、南坡的积雪覆盖率高,西北坡高达52.8%,南坡仅为20%. 叶尔羌河流域山区的积雪面积与气温呈负相关,与降水量呈正相关,积雪面积变化对气温因素更为敏感.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号