首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Diamondiferous kimberlites occur in eastern Finland, in the areas of Kaavi–Kuopio and Kuhmo. Active diamond exploration has been ongoing in the country for over two decades, but the Karelian craton still remains under explored given its size and potential. In order to develop techniques that can be applied to diamond exploration in glaciated terrains, the Geological Survey of Finland (GTK) carried out a detailed heavy mineral and geochemical survey of Quaternary till in 2001–2003 around two of the known kimberlitic bodies in Finland, Pipe 7 in Kaavi and Dyke 16 in Kuhmo. The mineralogical and geochemical signatures of these two kimberlites were studied in the basal till deposited down-ice from the targets. The kimberlites were selected to represent two different types in terms of shape, size, age and petrology, as well as showing contrasting country rocks and Quaternary deposits. Till samples up to 60 kg in weight were taken by excavator and by drill rig. Kimberlitic indicator mineral grains (0.25–1.0 mm) were concentrated using a GTK modified 3″Knelson Concentrator. Fine fractions (< 0.063 mm) of selected samples were analyzed by XRF and ICP-MS. The indicator grains down-ice from Pipe 7 form a well-defined fan in the basal till that can be followed for at least 2 km with a maximum concentration at 1.2 km distance from the pipe. Another kimberlitic body discovered during the study 300 m down-ice from Pipe 7 demonstrates that there are in fact at least two superimposed indicator fans. The results do not rule out the possibility of even more undiscovered kimberlitic sources in the area. In contrast, the indicator dispersal trail from Dyke 16 is shorter (1 km) and less well-defined than that at Kaavi, mainly due to the lower indicator content in the kimberlite itself and subsequently in till, as well as a large population of background chromites in till. The latter population is likely having been derived from the Archean Näätäniemi serpentinite massif and the associated ultramafic metavolcanics of the Kuhmo greenstone belt, located ca. 30 km up-ice from the sampling area. The indicator maximum at Seitaperä dyke swarm occurs immediately down-ice from the kimberlite, after which the concentration drops rapidly. Results of this study contribute to the overall understanding of the Quaternary history of the Kaavi and Kuhmo areas, and more importantly, provide key information to diamond exploration in these particular regions and also elsewhere in glaciated terrains.  相似文献   

2.
In the late 1990s, the Fazenda Largo kimberlite cluster was discovered in the Piauí State of Brazil. As with earlier known kimberlites in this area – Redondão, Santa Filomena-Bom Jesus (Gilbues) and Picos – this cluster is located within the Palaeozoic Parnaiba Sedimentary Basin that separates the São Francisco and the Amazonian Precambrian cratons. Locations of kimberlites are controlled by the ‘Transbrasiliano Lineament’. The Fazenda Largo kimberlites are intensely weathered, almost completely altered rocks with a fine-grained clastic structure, and contain variable amounts of terrigene admixture (quartz sand). These rocks represent near-surface volcano-sedimentary deposits of the crater parts of kimberlite pipes. By petrographic, mineralogical and chemical features, the Fazenda Largo kimberlites are similar to average kimberlite. The composition of the deep-seated material in the Fazenda Largo kimberlites is quite diverse: among mantle microxenoliths are amphibolitised pyrope peridotites, garnetised spinel peridotites, ilmenite peridotites, chromian spinel + chromian diopside + pyrope intergrowths, and large xenoliths of pyrope dunite. High-pressure minerals are predominantly of the ultramafic suite, Cr-association minerals (purplish-red and violet pyrope, chromian spinel, chromian diopside, Cr-pargasite and orthopyroxene). The Ti-association minerals of the ultramafic suite (picroilmenite and orange pyrope), as well as rare grains of orange pyrope-almandine of the eclogite association, are subordinate. Kimberlites from all four pipes contain rare grains of G10 pyrope of the diamond association, but chromian spinel of the diamond association was not encountered. By their tectonic position, by geochemical characteristics, and by the composition of kimberlite indicator minerals, the Fazenda Largo kimberlites, like the others of such type, are unlikely to be economic.  相似文献   

3.
Manganoan ilmenite was identified in Juina, Brazil kimberlitic rocks among other megacrysts. It forms oval, elongated, rimless grains comprising 8–30 wt.% of the heavy fraction. Internally the grains are homogeneous. The chemical composition of Mn-ilmenite is almost stoichiometric for ilmenite except for an unusually high manganese content, with MnO = 0.63–2.49 wt.% (up to 11 wt.% in inclusions in diamond) and an elevated vanadium admixture (V2O3 = 0.21–0.43 wt.%). By the composition, Mn-ilmenite megacrysts and inclusions in diamond are almost identical. The concentrations of trace elements in Mn-ilmenite, compared to picroilmenite, are much greater and their variations are very wide. Chondrite-normalized distribution of trace elements in Mn-ilmenite megacrysts is similar to the distribution in Mn-ilmenites included in diamond. This confirms that Mn-ilmenite in kimberlites is genetically related to diamond. The finds of Mn-ilmenite known before in kimberlitic and related rocks are late- or postmagmatic, metasomatic phases. They either form reaction rims on grains of picroilmenite or other ore minerals, or compose laths in groundmass. In contrast to those finds, Mn-ilmenite megacrysts in Juina kimberlites are a primary mineral phase with a homogeneous internal structure obtained under stable conditions of growth within lower mantle and/or transition zone. In addition to pyrope garnet, chromian spinel, picroilmenite, chrome-diopside, and magnesian olivine, manganoan ilmenite may be considered as another kimberlite/diamond indicator mineral.  相似文献   

4.
《International Geology Review》2012,54(11):1680-1683
Pseudocubical convex-faceted grains of pyrope are often found in upper parts of weathered crust, in sedimentary rocks and in modern alluvium, inside and outside the Yakutian diamond fields. They are never in the diamond pipes or in dense kimberlites where pyrope maintains its normal shape. The “cuboid” shape of pyrope grains is probably due to diagenetic and solubility effects, inasmuch as their optical properties and impurities are the same as those of the “normal” pyrope.  相似文献   

5.

The Central Mackenzie Valley (CMV) area of Northwest Territories is underlain by Precambrian basement belonging to the North American Craton. The potential of this area to host kimberlitic diamond deposits is relatively high judging from the seismologically-defined lithospheric thickness, age of basement rocks (2.2–1.7 Ga) and presence of kimberlite indicator minerals (KIMs) in Quaternary sediments. This study presents data for a large collection of KIMs recovered from stream sediments and till samples from two study areas in the CMV, the Horn Plateau and Trout Lake. In the processed samples, peridotitic garnets dominate the KIM grain count for both regions (> 25% each) while eclogitic garnet is almost absent in both regions (< 1% each). KIM chemistry for the Horn Plateau indicates significant diamond potential, with a strong similarity to KIM systematics from the Central and Western Slave Craton. The most significant issue to resolve in assessing the local diamond potential is the degree to which KIM chemistry reflects local and/or distal kimberlite bodies. Radiogenic isotope analysis of detrital kimberlite-related CMV ilmenite and rutile grains requires at least two broad age groups for eroded source kimberlites. Statistical analysis of the data suggests that it is probable that some of these KIMs were derived from primary and/or secondary sources within the CMV area, while others may have been transported to the area from the east-northeast by Pleistocene glacial and/or glaciofluvial systems. At this stage, KIM chemistry does not allow the exact location of the kimberlitic source(s) to be constrained.

  相似文献   

6.
Discovery of diamondiferous kimberlites in the Mainpur Kimberlite Field, Raipur District, Chhattisgarh in central India, encouraged investigation of similar bodies in other parts of the Bastar craton. The earlier known Tokapal ultramafic intrusive body, located beyond the 19-km milestone in Tokapal village along the Jagdalpur–Geedam road, was reinterpreted as crater-facies kimberlite. Its stratigraphic position in the Meso-Neoproterozoic intracratonic sedimentary Indravati basin makes it one of the oldest preserved crater-facies kimberlite systems. Ground and limited subsurface data (dug-, tube-wells and exploratory boreholes) have outlined an extensive surface area (>550 ha) of the kimberlite. The morphological and surface color features of this body on enhanced satellite images suggest that there is a central feeder surrounded by a collar and wide pyroclastic apron. Exploration drilling indicates that the central zone probably corresponds to a vent overlain by resedimented volcaniclastic (epiclastic) rocks that are surrounded by a 2-km-wide spread of pyroclastic rocks (lapilli tuff, tuff/ash beds and volcaniclastic breccia). Drill-holes also reveal that kimberlitic lapilli tuffs and tuffs are sandwiched between the Kanger and Jagdalpur Formations and also form sills within the sedimentary sequence of the Indravati basin. The lapilli tuffs are commonly well stratified and display slumping. Base surges and lava flows occur in the southern part of the Tokapal system. The geochemistry and petrology of the rock correspond to average Group I kimberlite with a moderate degree of contamination. However, the exposed rock is intensely weathered and altered with strong leaching of mobile elements (Ba, Rb, Sr). Layers of vesicular fine-grained glassy material represent kimberlitic lava flows. Tuffs containing juvenile lapilli with pseudomorphed olivine macrocrysts are set in a talc–serpentine–carbonate matrix with locally abundant spinel and sphene. Garnet has not been observed, and phlogopite is very rare. Very limited microdiamond testing (two 18-kg samples) proved negative; however, the composition of chromite grains indicate crystallization in the diamond stability field.  相似文献   

7.
The mineralogy of a new lamproitic diatreme 200–250 m in diameter and 3 ga in area is studied in detail. The chemical and 3-D mineralogical analysis identify the diatreme rocks as strongly altered olivine lamproites with a large volume (50–60%) of xenoliths of strongly altered spinel (garnet) lherzolites and harzburgites-dunites. Numerous grains-xenocrysts of indicator minerals of diamond have been extracted from the heavy concentrates (the weight of the initial product is 742 g and the size is 100–500 μm) as a result of hydroseparation: (1) subcalcium (CaOav. 2.6 wt %) high-Cr (Cr2O3 av. 5.3 wt %) pyrope (50 grains); (2) chrome diopside (7 and 8 mol % of kosmochlor and jadeite components, respectively, >40 grains); (3) high-Cr chromite (Cr2O3 > 62 wt %); and (4) picroilmenite (MgO 12–13.8 wt %) and Cr-rutile (Cr2O3 1.1 wt %). Xenocrysts prove the mantle endogene (the level of garnet lherzolites) source of the magmatic center of lamproites and forecast the diamond potential of the new diatreme in the Kostomuksha ore district.  相似文献   

8.
Samples from diamondiferous pipes in the Mengyin and Fuxian regions were investigated. The chemical compositions of Cr spinels in kimberlites of China were found to be similar to those in kimberlites of the Arkhangelsk province in Russia. A long and complex evolution that was individual for each pipe was demonstrated. The kimberlites of the Shandong Province proved to be rich in high-Cr chromites. This means that the kimberlites formed at large depths in the field of diamond thermodynamic stability. Variations in the redox conditions were noted. They manifested themselves as a wide range of fluctuations of the chemical composition of microcrystalline spinels, up to formation to Ti-magnetite and magnetite.  相似文献   

9.
白露山岩体是苏北地区重要的金刚石含矿岩体。通过研究该岩体中的铬铁矿化学成分,探讨其成因及金刚石的含矿性,进一步分析金刚石的成矿潜力。白露山岩体中的铬铁矿具有高Cr、低Al、高Mg的特征,属于镁铬铁矿,是深部地幔橄榄岩结晶而成的,不是岩体本身的结晶产物,可能来源于岩体中的深源捕虏体。铬铁矿的结晶温度为1 253~1 354 ℃,与金刚石的形成温度(1 150~1 400 ℃)相近,二者关系密切。铬铁矿化学成分与山东、辽宁含矿金伯利岩中铬铁矿的化学成分较相似,多数属于S4组和S6组铬铁矿,少数属于S1组和S2组铬铁矿,其中S1组和S2组铬铁矿是含矿岩体的标型矿物。白露山岩体具有良好的金刚石成矿潜力和找矿前景。  相似文献   

10.
地质建造背景可以直接反映该地区的形成演化过程、物质组成和地理条件,直接或间接地影响基岩上的生态环境。小范围内生态环境效应由地质建造直接控制,再由不同的气候条件、人类活动进行改造。土壤中的营养元素基本继承于母岩,而气候条件和人类活动同样会对土壤的物理性质、化学性质形成扰动。以中国地质调查局生态地质调查工程之大凉山区生态地质调查项目为依托,以沉积建造特征、空间分布、大地构造属性等因素为基础,将西昌地区划分为11个地质建造单元。通过详细的野外调查和数据分析,对西昌地区不同地质建造单元进行研究,认为建造单元上的生态地质环境存在明显的差异性,地质建造背景直接制约了成土母质及土壤的物理化学性质,营养元素在成土母质和土壤之间的迁移存在明显的继承性。同时,不同的地质建造单元和不同的地理地貌特征共同决定了不同地质建造单元的生态功能属性。研究成果为下一步开展生态地质调查提供依据和思路。  相似文献   

11.
《International Geology Review》2012,54(10):1142-1152
On the basis of a study of a large quantity of deep-seated xenoliths from the kimberlites of the Malo-Botuobuya, Daldyn-Alakit, Upper Muna, and Lower Olenek regions of Yakutia, we have discussed the distribution of the ultrabasic rocks and eclogites in the kimberlite pipes both on the basis of petrographic composition, and also on depth facies, and a comparison is presented of the mineral composition of the deep-seated inclusions and of the amounts of defined types of xenoliths with the diamond capacity of the kimberlites. The conclusion has been reached that: 1. the amounts of inclusions of deep-seated rocks vary significantly not only in kimberlites from the various diamond fields, but also in the pipes of a single diamond-bearing region; 2. the composition of the ultrabasic rocks and eclogites of the diamond-bearing pipes is distinguished from that of the inclusions of the non-diamond kimberlites in these rocks; and 3. the diamond capacity of the kimberlites has been determined by the depth of occurrence of the magmatic focus and the velocity of uprise (intrusion) of the melt during the formation of the kimberlitic diatremes —Authors.  相似文献   

12.
A representative collection (138 analyses) of chromites from kimberlites of the Botuobinskaya pipe in Yakutia was studied. With allowance for the Cr, Ti, and Al contents, the chromites are subdivided into the low-Cr aluminous group A and the high-Cr and high-Ti group B. The chromites of group A with their compositional variations controlled by the Al3+-Cr3+ isomorphism are not related to kimberlite in composition and reveal attributes of restites. The chromites of group B with heterovalent Ti4+ + Fe2+ + Fe3+-3Cr3+ isomorphism vary in their composition in line with the compositional variations of kimberlites, thus demonstrating their primary magmatic origin. The chromites of the second group crystallized simultaneously with olivines from kimberlites, and both minerals could have formed nodules of spinel dunite.  相似文献   

13.
In Venezuela, kimberlites have so far only been found in the Guaniamo region, where they occur as high diamond grade sheets in massive to steeply foliated Paleoproterozoic granitoid rocks. The emplacement age of the Guaniamo kimberlites is 712±6 Ma, i.e., Neoproterozoic. The Guaniamo kimberlites contain a high abundance of mantle minerals, with greater than 30% olivine macrocrysts. The principal kimberlite indicator minerals found are pyrope garnet and chromian spinel, with the overwhelming majority of the garnets being of the peridotite association. Chrome-diopside is rare, and picroilmenite is uncommon. Chemically, the Guaniamo kimberlites are characterized by high MgO contents, with low Al2O3 and TiO2 contents and higher than average FeO and K2O contents. These rocks have above average Ni, Cr, Co, Th, Nb, Ta, Sr and LREE concentrations and very low P, Y and, particularly, Zr and Hf contents. The Nb/Zr ratio is very distinctive and is similar to that of the Aries, Australia kimberlite. The Guaniamo kimberlites are similar in petrography, mineralogy and mantle mineral content to ilmenite-free Group 2 mica kimberlites of South Africa. The Nd-Sr isotopic characteristics of Guaniamo kimberlites are distinct from both kimberlite Group 1 and Group 2, being more similar to transitional type kimberlites, and in particular to diamondiferous kimberlites of the Arkhangelsk Diamond Province, Russia. The Guaniamo kimberlites form part of a compositional spectrum between other standard kimberlite reference groups. They formed from metasomatised subcontinental lithospheric mantle and it is likely that subduction of oceanic crust was the source of this metasomatised material, and also of the eclogitic component, which is dominant in Guaniamo diamonds.  相似文献   

14.
元古代蛇绿岩及铬铁矿   总被引:2,自引:1,他引:1  
鲍佩声 《岩石学报》2019,35(10):2971-2988
本文总结了国外典型元古代蛇绿岩的岩石组合、野外产状、地球化学资料以及成矿特征,并与显生宙蛇绿岩进行了对比,继而探讨元古代板块构造演化和铬铁矿成因。资料表明,早元古代和中-新元古代均有蛇绿岩的存在,但前者较少,仅见于Canadian地盾的Cape Smith Belt中的Prutuniq蛇绿岩(2. 05~2. 0Ga)和芬兰Fennoscandian地盾的Outokumpu和Jormua蛇绿岩(时代为1. 97~1. 96Ga),而中-新元古代的蛇绿岩则见于世界许多地区,如埃及东部沙漠区(~750Ma)和非洲东北部地区(ca.900~800Ma)等。与显生宙蛇绿岩相比,这些老蛇绿岩具如下特征:(1)它们均为被肢解的蛇绿岩,大多与"弧火山岩"和(或)混杂岩伴生,经历不同程度的变形和变质(具绿片岩相-角闪岩相组合);(2)岩石组合大多较齐全,壳层组合发育,以镁铁-超镁铁岩(堆晶岩)、辉长岩、镁铁质席状岩床(墙)杂岩、火山岩为代表;层状镁铁-超镁铁岩的韵律层以及矿物的隐晶变化等均提示了岩浆多期次活动及开放岩浆房的特征;(3)元古代蛇绿岩中既有高铝型铬铁矿,也有高铬型铬铁矿,且主要寄主于纯橄岩(或蛇纹岩)中;高铝型和高铬型直接受控于熔体的熔融程度及含水流体的参与,反映了铬铁矿形成于俯冲带演化的不同阶段;铬铁矿规模均较小,且均以低TiO 2为特征,均为岩浆分异作用的产物,明显区别于显生宙熔融残余成因的豆荚状铬铁矿;(4)元古代蛇绿岩常伴有硫化物Cu-Co-Zn-Au矿,且铬铁矿含Zn较高(Zn=0. 11%~0. 18%)(如芬兰Outokumpu蛇绿岩);橄榄岩及铬铁矿中常含较高的MnO (高达1. 79%,如埃及东部的Wizer蛇绿岩);(5)元古代蛇绿岩具多种成因:主要为俯冲带成因(如埃及蛇绿岩、北东非蛇绿岩、芬兰Outokumpu蛇绿岩),少量为洋中脊成因(加拿大Purtuniq蛇绿岩)及裂谷成因(芬兰Jormua蛇绿岩)等。  相似文献   

15.
The Manipur ophiolite belt within the Western Ophiolite Belt of the Indo-Myanmar Ranges (IMR), consists of tectonised to massive serpentinised peridotite, dunite pods, chromitite pods/lenses, cumulates, dykes, volcanic rocks and pelagic sediments. Chromitite pods and lenses hosted in peridotitic mantle rocks show magmatic textures, post magmatic brecciation and ferritchromitisation. Electron microprobe analyses show two types of massive chromitite, with one group having high-Cr (Cr# 75–76), medium-Al (Al2O3 12.2–12.4 wt%) chromites (Sirohi-type) and the other group (Gamnom-type) having a wide range of compositions with generally lower Cr and higher Al (Cr# 65–71, Al2O3 15.7–19 wt%). Accessory chromites in peridotitic mantle rocks have consistently low Cr (Cr# 38–39) and high Al (Al2O3 34–35 wt%), whereas chromites in dunite pods have intermediate compositions (Cr# ~60; Al2O3 20.7–21.2 wt%). The chromite chemistry suggests moderate (20 %) partial melting of the tectonised mantle harzburgite. The estimated Al2O3melt, (FeO/MgO)melt and TiO2melt for the Sirohi-type chromites indicate boninitic parentage, whereas chromite compositions from the Gamnom area suggest mixed boninitic—island arc tholeiitic magmas. The compositions of magmatic chromites suggest that the Manipur ophiolite was formed in a supra-subduction zone (SSZ) setting.  相似文献   

16.
Ilmenite is one of the common kimberlitic indicator minerals recovered during diamond exploration, and its distinction from non-kimberlitic rock types is important. This is particularly true for regions where these minerals are present in relatively low abundance, and they are the dominant kimberlitic indicator mineral recovered. Difficulty in visually differentiating kimberlitic from non-kimberlitic ilmenite in exploration concentrates is also an issue, and distinguishing kimberlitic ilmenite from those derive from other similar rocks, such as ultramafic lamprophyres, is practically impossible. Ilmenite is also the indicator mineral whose compositional variety has the most potential to resolve provenance issues related to mineral dispersions with contributions from multiple kimberlite sources.

Various published data sets from selected kimberlitic (including kimberlites, lamproites, and various ultramafic lamprophyres) and non-kimberlitic rock types have been compiled and evaluated in terms of their major element compositions. Compositional fields and bounding reference lines for ilmenites derived from kimberlites (sensu stricto), ultramafic lamprophyres, and other non-kimberlitic rock types have been defined primarily on MgO–TiO2 graphs as well as MgO–Cr2O3 relationships.  相似文献   


17.
辽宁金伯利岩中镁铝榴石与金刚石的关系   总被引:1,自引:0,他引:1  
辽宁金伯利岩中镁铝榴石的含量与金刚石的含量成正比。富含矿的岩体中镁铝榴石颜色有紫色、红色和橙色等种类,其中以紫色的为主,金刚石的含量越多紫色类型所占比例就越大。 镁铝榴石中Cr_2O_3和CaO的含量随其颜色的加深而升高;Al_2O_3、MgO、TiO_2的含量变化则相反。富矿岩体中富铬(>5%)镁铝榴石的含量高于中等含矿和贫含矿的岩体。 文中还列出了山东和贵州金刚石矿中镁铝榴石的资料以资对比。  相似文献   

18.
贵州省镇远地区钾镁煌斑岩岩石特征   总被引:9,自引:0,他引:9  
贵州省镇远地区的钾镁煌斑岩(Lamproite)的分布在大地构造上受地台和地台内隆起与坳陷间的深断裂控制,为浅成侵入脉岩,呈岩墙或岩床产出,规模不大,厚几厘米至数米,长数十米至千米,已见于深冲、白坟、思南塘等岩群。岩石具煌斑结构,块状构造,斑晶为钛金云母、透辉石、假像橄榄石,基质除上述矿物外,还有透长石、白榴石、角闪石、磷灰石、锆石、金红石等,还见到微量镁铝榴石和铬铁矿。其中钛金云母、铬铁矿、镁铝榴石的矿物化学成分与西澳同类岩石十分接近,投入米切尔,J·格尼有关图件中,均落入钾镁煌斑岩趋势区。岩石化学成分属钾质超基性岩,K_2O>Na_2O,K_2O/Na_2O为20.85~66.51,富含TiO_2,但MgO较西澳同类岩石略低。富含Sr、Ba、Zr、Nb、P等痕量元素。稀土总量高,富集轻稀土。稀土分配模式与西澳同类岩石一致。D_5岩体中经1987年再次选矿证实含微量金刚石。  相似文献   

19.
中国铬铁矿的铂族元素分布特征   总被引:2,自引:0,他引:2  
周美付  白文吉 《矿物学报》1994,14(2):157-163
用NiS溶解和Te沉淀方法富集铂族元素(PGE),制成镍扣,再溶解于浓HCl中,使PGE和Te一起沉淀。制备的样品溶液在ELAN-5000型电感耦合等离子质谱仪(ICP-MS)上分析PGE。中国铬铁矿矿石,包括蛇绿岩套中的豆荚状铬铁矿床、非层状侵入体铬铁矿,计13个矿床(化)样品,其PGE模式表明,主要呈RU正异常模式,个别不同模式是由母岩不同以及铂族元素矿化叠加引起的。铬铁矿的PGE模式不取决于铬铁矿的化学成分,而取决于其母岩性质以及形成温度和铂族元素的熔点。  相似文献   

20.
The Buffalo Hills kimberlites define a province of kimberlite magmatism occurring within and adjacent to Proterozoic crystalline basement termed the Buffalo Head Terrane in north-central Alberta, Canada. The kimberlites are distinguished by a diverse xenocryst suite and most contain some quantity of diamond. The xenocryst assemblage in the province is atypical for diamondiferous kimberlite, including an overall paucity of mantle indicator minerals and the near-absence of compositionally subcalcic peridotitic garnet (G10). The most diamond-rich bodies are distinguished by the presence of slightly subcalcic, chromium-rich garnet and the general absence of picroilmenite, with the majority forming a small cluster in the northwestern part of the province. Barren and near-barren pipes tend to occur to the south, with increasing proximity to the basement structure known as the Peace River Arch. Niobian picroilmenite, compositionally restricted low-to moderate-Cr peridotitic garnet, and megacrystal titanian pyrope occur in kimberlites closest to the arch. Major element data for clinopyroxene and trace element data for garnet from diamond-rich and diamond-poor kimberlites suggests that metasomatism of lithospheric peridotite within the diamond stability field may have caused destruction of diamond, and diamond source rocks proximal to the arch were the most affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号